
1 INTRODUCTION 

The interaction between water and soil poses prob-
lems in different areas of marine, Geomechanics and 
hydraulic engineering. Numerical predictions for 
such interactions in the case of large deformations 
could provide useful knowledge for engineering 
practice and design. 

There are some traditional numerical methods 
used for simulating the deformation and failure of 
geometries in the framework of continuum mechan-
ics, such as finite element method, finite difference 
method and boundary element method. These meth-
ods have been successfully implemented. On the 
other hand, in the case of large deformation prob-
lems, the previous methods produce instabilities due 
to excessive distortion of a mesh. 

Recently a new class of numerical methods, 
which are called mesh-free methods, has been de-
veloped. Mesh-free methods do not require Eulerian 
grids and they deal with a number of particles in a 
Lagrangian framework. Many mesh-free methods 
have been developed in the last decades, among 
these methods; the Smoothed Particle Hydrodynam-
ics (SPH) method will be exploited to simulate the 
soil–water interaction.  

SPH method is a mesh-free particle method and it 
is considered to be one of the most modern mesh-
free particle techniques. It was originally invented 
for astrophysical applications; then it has been ap-
plied in a huge range of applications such as, free 

surface fluid flow (Monaghan, 1994) and (Ab-
delrazek et al. 2014), multi-phase flow (Monaghan 
& Kocharyan, 1995), snow avalanching (Abdelrazek 
et al. 2014), and gravity granular rapid flow (Shin-
ichi et al. 2011, Abdelrazek et al. 2015, 2016). In 
SPH method, each particle in the domain carries all 
field variable information such as density, pressure, 
velocity and it moves with the material velocity. The 
governing equations in the form of partial differen-
tial equations are converted to the particle equations 
of motion, and then they are solved by a suitable 
numerical scheme. 

In this simulation, the advantages of SPH will be 
exploited to simulate the soil–water interaction. Wa-
ter is considered as a viscous fluid with week com-
pressibility and soil is assumed to be an elastic–
plastic material. The elastic–perfectly plastic model 
based on Mohr–Coulomb’s failure criterion is im-
plemented in SPH formulations to model the soil 
movement (Bui et al. 2007 & 2010).  

Modeling of soil and water in the framework of 
the smoothed particle hydrodynamics method have 
been presented and verified as one-phase flow mod-
els in the authors’ former published papers (Ab-
delrazek et al. 2014, 2015, 2016), however, these 
models only allow to simulate soil-water interaction.  

The interaction between soil and water is taken 
into account by means of seepage force and pore wa-
ter pressure in order to conduct the two-phase mod-
el. 

Numerical simulation on local scour below a weir using Two-phase  
WC-SPH method 

Ahmed M. Abdelrazek 
Hydraulic Research Laboratory, Graduate School of Engineering, Hokkaido University, Hokkaido, Japan 
Irrigation & Hydraulic Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt 

I. Kimura & Y. Shimizu 
Hydraulic Research Laboratory, Graduate School of Engineering, Hokkaido University, Japan 
 

ABSTRACT: In this study, numerical simulation of the local scour behind a weir due to overflow using a La-
grangian formulation of the Navier–Stokes equations, based on the weakly compressible smoothed particle 
hydrodynamics (WC-SPH) method, has been done. In this simulation, the advantages of SPH will be exploit-
ed to simulate the soil–water interaction. Water is considered as a viscous fluid with weak compressibility and 
soil is assumed to be an elastic–plastic material. The elastic–perfectly plastic model based on Mohr–
Coulomb’s failure criterion is implemented in SPH formulations to model the soil movement. Interaction be-
tween soil and water is taken into account by means of seepage force and pore water pressure. Numerical 
Simulation of local scour behind the weir has been done; the numerical results are then compared with exper-
imental data. The results have shown that the proposed model could be considered a powerful tool to simulate 
extremely large deformation and failure of soil. 



The aim  of this study is to test the predictive 
power of the WCSPH method to simulate local 
scour, which consider a typical for the natural water-
fall, also be observed in the plunging jet pool down-
stream of hydraulic structures, such as a weir in a 
river or the spillway of a dam.  

2 SPH FORMULATION 

The SPH method is a continuum-scale numerical 
method. The material properties 𝑓𝑓(𝑥𝑥), at any point x 
in the simulation domain are calculated according to 
an interpolation theory over its neighboring particles 
which are within its influence domain 𝜴𝜴 as shown in 
figure1, through the following formula, 

 
〈𝑓𝑓(𝑥𝑥)〉 = ∫ 𝑓𝑓(𝑥𝑥′)𝑊𝑊(𝑥𝑥 − 𝑥𝑥′,ℎ)𝑑𝑑𝑥𝑥′     Ω  (1) 

 
where h is the smoothing length defining the in-
flence domain of the kernel estimate and  W (x–x’, h) 
is the smoothing function, which must satisfy three 
conditions (Liu & Liu 2003): the first condition is 
the normalization, 

 
∫ 𝑊𝑊(𝑥𝑥 − 𝑥𝑥′,ℎ)𝑑𝑑𝑥𝑥′𝛺𝛺 = 1    (2) 

 
the second one is the Delta function condition, 
 
𝑙𝑙𝑙𝑙𝑙𝑙ℎ→0𝑊𝑊(𝑥𝑥 − 𝑥𝑥′,ℎ) = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)  (3) 

 
and the third condition is the compact condition, 

 
𝑊𝑊(𝑥𝑥 − 𝑥𝑥′,ℎ) = 0     when |𝑥𝑥 − 𝑥𝑥′| > 𝑘𝑘ℎ     (4) 

 
where k  is a constant depending on the type of 
smoothing function. 

     

 
 

Figure 1. Particle approximation based on kernel function W in 
influence domain 𝜴𝜴 with radius kh (k=2) 

 
There are many possible types of smoothing func-
tions, which can satisfy the aforementioned condi-

tions. The most known function, among them, is the 
cubic spline interpolation function, and Wendland 
function. In this study, we used the cubic spline in-
terpolation function which was proposed by Mona-
ghan and Lattanzio (1985), and it is defined as: 

 
𝑊𝑊(𝑅𝑅,ℎ) =

𝛼𝛼𝑑𝑑 × �
1.5 − 𝑅𝑅2 + 0.5𝑅𝑅3  0 ≤ 𝑅𝑅 < 1
(2 − 𝑅𝑅)3/6              1 ≤ 𝑅𝑅 < 2

0                          𝑅𝑅 ≥ 2
          (5) 

 
where 𝛼𝛼𝑑𝑑 = 3

2𝜋𝜋ℎ3
 in 3D space, and  𝑅𝑅 = �𝑥𝑥−𝑥𝑥′�

ℎ
 . 

 
In the SPH method, the calculation domain is rep-

resented by a finite number of particles, which carry 
mass and the field variable information such as den-
sity, stress, etc. (Liu & Liu 2003, 2010). According-
ly, the continuous integral representation for 𝑓𝑓(𝑥𝑥) is 
approximated in the following form: 

 

〈𝑓𝑓(𝑥𝑥)〉 = �𝑓𝑓(𝑥𝑥′)𝑊𝑊(𝑥𝑥 − 𝑥𝑥′,ℎ)𝑑𝑑𝑥𝑥′
Ω

 

≈�𝑓𝑓�𝑥𝑥𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

𝑊𝑊(𝑥𝑥 − 𝑥𝑥′,ℎ)
𝑙𝑙𝑗𝑗

𝜌𝜌𝑗𝑗
    

 (6) 
 
Using equation (6), the approximation function of 

each particle i can be written as, 
 

〈𝑓𝑓(𝑥𝑥𝑖𝑖)〉 = �
𝑙𝑙𝑗𝑗

𝜌𝜌𝑗𝑗
𝑓𝑓�𝑥𝑥𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

𝑊𝑊𝑖𝑖𝑗𝑗            

 (7) 
where 𝑊𝑊𝑖𝑖𝑗𝑗 =  𝑊𝑊(𝑥𝑥 − 𝑥𝑥′,ℎ) 

 
Equation (7) states that the value of the function at 

particle i is approximated using a weighted average 
of those values of the function at all other particles 
in the influence domain of particle i. Following the 
same argument, the particle approximation of the 
spatial derivative of a function at any particle i is, 

 

〈∇.𝑓𝑓(𝑥𝑥𝑖𝑖)〉 = �
𝑙𝑙𝑗𝑗

𝜌𝜌𝑗𝑗
𝑓𝑓�𝑥𝑥𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗        

 (8) 

3 SPH MODELS FOR WATER AND SOIL 

For a fluid like water, it is customary to model it as 
exactly incompressible. However, the approach in 
SPH is different; the real fluid is approximated by an 



artificial fluid which is more compressible than the 
real one. The governing equations for fluid flow are 
the well-known Navier–Stokes equations, which in 
the Lagrangian description state the conservation of 
continuity and momentum as follows: 

 
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −𝜌𝜌 𝜕𝜕𝜈𝜈𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
                                     (9) 

 
𝐷𝐷𝜈𝜈𝛼𝛼

𝐷𝐷𝐷𝐷
= 1

𝐷𝐷
�𝜕𝜕𝜎𝜎

𝛼𝛼𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
�   + 𝑓𝑓𝛼𝛼                    (10) 

 
where ρ is the density; 𝜈𝜈 is velocity; 𝜎𝜎𝛼𝛼𝛼𝛼 is stress 
tensor, 𝑓𝑓𝛼𝛼 is the component of acceleration caused 
by external force. 

The stress tensor, σαβ, normally consists of two 
parts: an isotropic pressure P and a viscous shear 
stress, which is proportional to the shear strain rate 
denoted by ε through the viscosity 𝜇𝜇, 

 
𝜎𝜎𝛼𝛼𝛼𝛼 = −𝑃𝑃𝛿𝛿𝛼𝛼𝛼𝛼 + 𝜇𝜇𝜀𝜀𝛼𝛼𝛼𝛼                        (11) 
where: 

 
𝜀𝜀𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜈𝜈𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
+ 𝜕𝜕𝜈𝜈𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
− 2

3
�𝜕𝜕𝜈𝜈

𝛾𝛾

𝜕𝜕𝑥𝑥𝛾𝛾
� 𝛿𝛿𝛼𝛼𝛼𝛼             (12) 

 
Equation of state is used to estimate the pressure 

change of water 
 

𝑃𝑃 = 𝐵𝐵 �� 𝐷𝐷
𝐷𝐷𝑜𝑜
�
𝜆𝜆
− 1�                                    (13) 

 
where 𝜆𝜆 is a constant (=7), 𝜌𝜌𝑜𝑜 is the reference densi-
ty, B is a problem dependent parameter, which sets a 
limit for the maximum change of the density and 
will be calculated as  
 

𝐵𝐵 =
100 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

2 𝐷𝐷𝑜𝑜
𝜆𝜆

  , 𝑉𝑉𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡 = �2 g 𝐻𝐻     (14) 
 
Modeling the behavior of soil using the SPH 

method is similar to that of water. The SPH form of 
conservation equations (9) and (10) are still used to 
estimate the density and motion of soil particles. The 
key difference between these two models is the cal-
culation of the stress tensor appearing in Eq. (2), in 
which the pressure and stress–strain relationship of 
soil are calculated differently from those of water; 
soil is assumed herein to be an elastic–plastic mate-
rial. The stress tensor of soil is made up of two parts: 
isotropic pressure P and deviatoric shear stress S, 

 
𝜎𝜎𝛼𝛼𝛼𝛼 = −𝑃𝑃𝛿𝛿𝛼𝛼𝛼𝛼 + 𝑆𝑆𝛼𝛼𝛼𝛼                             (15) 
 

Since soil is assumed to have elastic behavior 
(Bui and others, 2007; Yaidel and others 2012), so 
the pressure equation of soil will obey Hooke’s law, 
as follows, 
 

𝑃𝑃 = −𝐾𝐾 ∆𝑉𝑉
𝑉𝑉

= 𝐾𝐾 � 𝐷𝐷
𝐷𝐷𝑜𝑜
− 1 �                       (16) 

 
where K is bulk modulus; ΔV/V is the volumetric 
strain; and 𝜌𝜌𝑜𝑜 is the initial density of soil. The rate of 
change of deviatoric shear stress dS/dt can be calcu-
lated using shear modulus, μ, using the Jaumann rate 
from the following constitutive equation, 
 
𝑑𝑑𝑆𝑆𝛼𝛼𝛼𝛼

𝑑𝑑𝑑𝑑
= 2𝜇𝜇 �𝜀𝜀̇𝛼𝛼𝛼𝛼 −

1
3
𝜀𝜀̇𝛾𝛾𝛾𝛾� + 𝑆𝑆𝛼𝛼𝛾𝛾𝜔𝜔𝛼𝛼𝛾𝛾

+ 𝜔𝜔𝛾𝛾𝛼𝛼𝑆𝑆𝛼𝛼𝛾𝛾                                    
 (17) 
 

where 𝜀𝜀̇𝛾𝛾𝛾𝛾 = 𝜀𝜀̇𝑥𝑥𝑥𝑥 + 𝜀𝜀̇𝑡𝑡𝑡𝑡 + 𝜀𝜀̇𝑧𝑧𝑧𝑧, is the strain rate ten-
sor and 𝜔𝜔𝛾𝛾𝛼𝛼 is the rotation rate tensor. It can be de-
fined by, 

 
𝜀𝜀̇𝛼𝛼𝛼𝛼 = 1

2
�𝜕𝜕𝜐𝜐

𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
+ 𝜕𝜕𝜐𝜐𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
�                            (18) 

 
𝜔𝜔𝛼𝛼𝛼𝛼 = 1

2
�𝜕𝜕𝜐𝜐

𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
− 𝜕𝜕𝜐𝜐𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
�                          (19) 

 
Using the concept of the SPH approximation the 

system of partial differential equations (1) and (2) 
can be converted into the SPH formulations which 
will be used to solve the motion of soil particles as 
follows: 

 
𝐷𝐷𝜌𝜌𝑖𝑖
𝐷𝐷𝑑𝑑

= �𝑙𝑙𝑗𝑗�𝜈𝜈𝑖𝑖𝛼𝛼 − 𝜈𝜈𝑗𝑗𝛼𝛼�
𝑁𝑁

𝑗𝑗=1

𝜕𝜕𝑊𝑊𝑖𝑖𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖𝛼𝛼
                           

 (20) 
𝐷𝐷𝜐𝜐𝑖𝑖𝛼𝛼

𝐷𝐷𝑑𝑑
= �𝑙𝑙𝑗𝑗 �

𝜎𝜎𝑖𝑖
𝛼𝛼𝛼𝛼

𝜌𝜌𝑖𝑖2
+
𝜎𝜎𝑗𝑗
𝛼𝛼𝛼𝛼

𝜌𝜌𝑗𝑗2
�

𝑁𝑁

𝑗𝑗=1

𝜕𝜕𝑊𝑊𝑖𝑖𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
𝛼𝛼  + 𝑓𝑓𝛼𝛼        

 (21) 
 
Similarly, the SPH approximation of the shear 

strain rate(𝜀𝜀𝑖𝑖
𝛼𝛼𝛼𝛼) in the water model, and the  strain 

rate tensor (𝜀𝜀�̇�𝑖
𝛼𝛼𝛼𝛼) and the rotation rate tensor 

(𝜔𝜔𝑖𝑖
𝛼𝛼𝛼𝛼) in the soil model can be derived as follows: 

 

𝜀𝜀𝑖𝑖
𝛼𝛼𝛼𝛼 = �

𝑙𝑙𝑗𝑗

𝜌𝜌𝑗𝑗
�𝜈𝜈𝑖𝑖𝛼𝛼 − 𝜈𝜈𝑗𝑗𝛼𝛼�

𝑁𝑁

𝑗𝑗=1

𝜕𝜕𝑊𝑊𝑖𝑖𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
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𝑙𝑙𝑗𝑗

𝜌𝜌𝑗𝑗
�𝜈𝜈𝑖𝑖
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𝑁𝑁
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𝜕𝜕𝑊𝑊𝑖𝑖𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖𝛼𝛼
 

−   �
2
3
�

𝑙𝑙𝑗𝑗
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𝛾𝛾�

𝑁𝑁
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𝜕𝜕𝑥𝑥𝑖𝑖
𝛾𝛾 �𝛿𝛿𝛼𝛼𝛼𝛼     (22) 

 (22) 
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+
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 (23) 

 𝜔𝜔𝑖𝑖
𝛼𝛼𝛼𝛼 = 1

2
∑  𝑁𝑁
𝑗𝑗=1 �𝑚𝑚𝑗𝑗

𝐷𝐷𝑗𝑗
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�𝜈𝜈𝑖𝑖
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�                       (24) 

 (24) 

4 SOIL–WATER INTERACTION MODELING  

When groundwater is seeping through the pores of a 
soil, viscous friction will produce drag on soil parti-
cles in the direction of water flow, so-called seepage 
force. This seepage force acts on the soil particles in 
addition to the gravitational force, and will be intro-
duced into the momentum equations for soil and wa-
ter as an external force according to the following 
model equation based on the Darcy’s law: 

 
𝑓𝑓𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 = 𝛾𝛾𝑤𝑤 𝑛𝑛

(𝑣𝑣𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤 −𝑣𝑣𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠 )
𝑘𝑘

               (25) 
 

where γw  is the unit weight of water; n is the porosi-
ty; and k is the soil permeability. 

As saturated soil consists of soil and water mixed 
together while standard SPH models only handle one 
phase problem, it is necessary to develop a saturated 
soil model using in SPH simulation. This saturated 
soil model will be described as follows: 

We assumed that the saturated soil domain in 
SPH can be divided into two separate phases, which 
are water phase and soil phase. The motion of SPH 
particles on each phase is solved separately using its 
own SPH governing equations, which are SPH for 
soil and SPH for water. These two-phases are then 
superimposed and the interaction between two-
phases will be taken into account through the seep-
age force, which is introduced into the momentum 
equation as mentioned before. In addition, the water 
pressure is also allowed to contribute to the soil 
pressure during the overlapping procedure. This al-
lows us to simulate the pore water pressure, which 
always exists in natural saturated soil.  

Accordingly, the momentum equations for satu-
rated soil can be summarized as follows,  
Momentum equation for soil phase 
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Momentum equation for Water phase 
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where the subscripts i and j represent for soil parti-
cles while a and b are used for water particles. It is 
clear that these momentum equations of saturated 
soil are different from that of single phase, equation 
(21). The presence of the seepage force in equations 
(26), (27), and the contribution of pressure from wa-
ter to soil in equation (27) make them possible to 
simulate the effect of seepage force and pore water 
pressure in the saturated soil model, as a result the 
interaction between soil and water could be simulat-
ed through SPH. 

In order to damp out the unphysical stress fluctu-
ation and to prevent shock waves and the penetration 
of particles through the boundaries, an artificial vis-
cosity has been employed to the pressure term in the 
momentum equation. The most widely used type is 
proposed by Monaghan and Lattanzio (1985), [12], 
and specified as follows 
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in which 𝛼𝛼 and 𝛽𝛽 are constants and are taken 

0.01, 1.0 respectively, and c represent the speed of 
sound. As well as having beneficial effects, artificial 
viscosity can also introduce unwanted numerical de-



fects in some cases, among which the excess dissipa-
tion and false shearing torque in rotating flows (Dal-
rymple, and Knio, 2001). 

The momentum equations for saturated soil after 
introducing the artificial viscosity to the pressure 
term are: 
Momentum equation for soil phase: 
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Momentum equation for Water phase: 
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5 BOUNDARY CONDITIONS 

 
 

Figure 2. Arrangement of boundary particles 
 
In this study, a dynamic boundary condition is used 
to represent the boundary particles, which are forced 
to follow the governing equations (continuity, mo-
mentum and state equations), but they are fixed. 
When the particles move closer towards the bounda-
ry, the density of the boundary particles increases, 
according to the continuity equation, which leads to 
an increase in the pressure following the equation of 
state. Subsequently, the force exerted on the ap-
proaching particles increases because of the pressure 

term in the momentum equation by the generations 
of repulsion between the material particles and the 
boundary particles (Dalrymple and Knio, 2001). The 
boundary particles are set in a staggered manner in 
order to prevent the particle leakage as shown in fig-
ure 2.  

6 SCOUR OF THE GROUND BEHIND THE 
WEIR DUE TO OVERFLOW 

6.1 Model description 
In order to evaluate our SPH model for soil–water 
interaction, simulations of the local scour behind the 
weir due to overflow have been carried out in this 
study.  

The experiment done by Maeda et al. 2016, figure 
3 shows a schematic sketch of the experimental set-
up. The experiment channel was 2.0m in length, 
0.3m in width, and 0.3m in height. In the tank, sedi-
mentary soil (0.5m long, 0.3m wide, and 0.1m high) 
was installed as the ground, the starting point of 
which was 1.0m from the upstream end. For the flu-
id force, a circulation flow was generated using a 
submersible pump to unify the external force. 

The experiment was recorded by using a high-
speed camera (200–400 frame/Sec) and a video 
camera (29.97 frame/Sec) to observe scouring and 
corrosion. 

In this experiment, a weir with hweir= 80mm in 
height was installed at the uppermost side of the 
ground, and a water sealing plate was set at the low-
ermost side of the channel to control the water level 
in the downstream. The Geo-material in this experi-
ment was Toyoura sand (D50=4.73mm). The initial 
water-level difference expressed as Δh and Δh was 
20mm. 

 

  
Figure 3. Schematic sketch of the experiment, Matsuda 2013 

6.1. Numerical simulations 
The simulation of the local scour was carried out us-
ing the proposed SPH model. 

The dry soil is modeled by one type of particles 
with uniform material properties. These particles 
have the following properties: Young’s modulus  E 
= 150 MPa and Poisson’s ratio 𝜐𝜐 = 0.3. The water 
particles have density of 𝜌𝜌= 1.0 g/cm 3 and viscosity 
μ =10-3 Ns/m2. 



In total 12801 and 25602 particles representing 
the soil and water particles, respectively, with an ini-
tial distance 0.002 m was used. 

6.2. Results and analysis 
To validate the model, the computed free surfaces 
and bed evolution profiles using the SPH model are 
compared with the experimental data (Maeda et al. 
2016)  in figure 4 at two different time instants be-
fore and after formatting the scouring, i.e. t =  0.5 
min, and 2.0 min; respectively. 

The saturated soil consisted of two-phases, water 
and soil, and each phase have to handle separately 
using its own SPH model in order to obtain the field 
variables of each particle. After the field variables of 
particles in each phase are computed, the interaction 
between soil and water can perform. The water pres-
sure is permitted to contribute to the pressure of soil 
particles through the SPH summation, and thus the 
pore water pressure can be simulated. The seepage 
force is also computed as a function of the relative 
velocity between soil and water particles, and be-

cause of the presence of the seepage force in the 
momentum equations (18), (19), these water parti-
cles will force soil particles to move together, so the 
saturated soil mixture is effectively incompressible. 

The comparisons in figure 3 indicated that the 
SPH computed free surface profiles match the meas-
ured interface-contours quite well.  

The  development of the scour and the profile of 
the bed level, is reproduced in a characteristic man-
ner by the numerical model. However, the shape of 
soil erosion is slightly different compared with the 
experiment. Also, as can be seen from figure 2, the 
fluid particles are able to enter the sediment layer up  
to a certain depth, which is similar to seepage. The 
exerted forces by the fluid  particles in the pores may 
be interpreted as a mix of pore water pressure  and 
seepage force forces. The overall agreement is none-
theless satisfactory, a more accurate constitutive 
model for soil, not yet implemented in this research, 
would take into account the plastic strain in the plas-
tic flow regime. 

 

 

 
 

 Predicted free surface by SPH 
 Predicted bed profile by SPH 

 
Figure 4. Snapshots of the local scour experiments (t=0.5, 2.0 min) compared with SPH simulations 

 
 
 

  



8 CONCLUSIONS 

The development of an improved smoothed particle 
hydrodynamics to simulate the behavior of soil–
water interaction has been described through this 
paper. Water was modeled as a viscous fluid with 
week compressibility while the soil was modeled as 
an elastic–perfectly plastic material. Interaction be-
tween soil and water was modeled by means of pore 
water pressure and seepage force. Simulation of the 
Louvain erosional dam-break experiment presented 
has been presented. The results have shown that the 
extremely large deformation and failure of soil can 
be handled in SPH without any difficulties. 
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