




garding the effects of α were graphical and did not 
provide a quantitative formulation its effects. The 
best-fit values of c1 and c2 found here, 3.4 and 0.6, 
provide an explicit method for accounting for α.  

Once the effects of KC, Uc||/Um and α had been 
removed from B/D, a strong remaining relationship 
between scour-induced burial and the Shield’s pa-
rameter of the form fθW = aθ 

b was evident for obser-
vations of cylinders that involved waves (Fig. 9), in-
cluding small cylinders observed in the lab (D < 2.6 
cm) and relatively large cylinders observed in the 
field (D ≈ 50 cm). The best-fit values for a and for b 
for cylinders, displayed in Fig. 9, were well con-
strained by hundreds of observations of normalized 
B/D. The dozens of observations of normalized B/D 
for conical frustums were sufficient to confirm that 
no significant relationship exists between θ and B/D 
(p = 0.86), and for conical frustums we set fθW = 1. 

Trends for the exponent b were found to be simi-
lar to that for cylinders for the cases of tapered cyl-
inders and spheres, but with a larger for tapered cyl-
inders and smaller for spheres, respectively. A 
tendency for tapered cylinders to bury more and 
spheres less was likewise noted for steady currents 
(see Section 3.1). Here the well-constrained value of 
b found for cylinders was also assigned to tapered 
cylinders and spheres, and a was then chosen to 
maximize the overall fit.  

Normalized B/D as a function of θ in Fig. 9 sug-
gests a transition occurs (i) from clear-water scour to 
classic live-bed scour under waves at θ ≈ 0.05 and 
(ii) from classic live-bed scour to fluidization of the 
upper bed via sheet flow at θ ≈ 0.6 (c.f., Dibajnia 
and Watanabe, 1992). These transition points are 
supported by the fact that the majority of values for 
normalized B/D for cylinders fall well below the 
trend line in Fig. 9 for θ < 0.05 and fall well above 
the trend line for B/D > 0.6. Thus the best-fit values 
of a and b displayed on Fig. 9 were calculated based 
only on observations for 0.05 < θ < 0.6.  

The sudden transition to relatively complete buri-
al for the field data, indicated by * symbols at high θ 
in Fig. 9, provides evidence to support the use of 
Uw10 to estimate Uw under random waves as sug-
gested by Myhraug and Ong (2009). If a less ener-
getic value of Uw were used for the field data in Fig. 
9, such as Uw = 21/2σU instead of Uw = 2σU, then the 
transition to an influence of sheet flow/fluidization 
on burial for the most energetic field data would not 
be nearly as clear. 

Parameterizations of the form fρoW = a(ρo/ρ)b, 
where ρo is object density, were also tested against 
the remaining unexplained variance in B/D under 
waves (Fig. 10). A statistically significant relation-
ship was found for non-fluidized live-bed data from 
Fig. 9 within the range 1.7 < ρo/ρ  < 3.3, but not out-
side this range of ρo/ρ.  Because fρoW = a(ρo/ρ)b per-
formed poorly outside of 1.7 < ρo/ρ  < 3.3,  fρoW  was 
not utilized as part of the final parameterized model. 

 

  
Figure 9. B/D normalized by the functional relationships from 
Fig. 7 and Fig. 8, and plotted as a function of θ for all cases 
that include waves. Symbols are as in Fig. 7. The coefficients a 
and b displayed above in association with the dashed lines are 
utilized in fθW as part of the relations applied in Fig. 10 and Fig. 
11. From top to bottom, the dashed lines apply to tapered cyl-
inders, cylinders, and spheres, respectively;  fθW = 1 for conical 
frustums. ( ) = assumed outlier not included in analysis. 
 

  
Figure 10. B/D normalized by the functional relationships from 
Fig. 7 through Fig. 9, for all non-fluidized live-bed data from 
Fig. 9 available within the range 1.7 < ρo/ρ  < 3.3. Symbols are 
as in Fig. 7 with minor random noise added to ρo/ρ to prevent 
complete visual overlap of symbols. Because it performed 
poorly outside of 1.7 < ρo/ρ  < 3.3, the power law relation dis-
played above was not utilized as part of the final parameterized 
model.  

 
Other parameters tested for importance to B/D 

under waves included L/D and d50/D. However, nei-
ther of these ratios was found to have statistically 



significant effects on normalized B/D, either within 
specific classes of objects or across multiple classes 
of objects. 
 

  
Figure 11. All available, non-fluidized, live-bed observations 
of B/D under waves (including cases with waves plus currents), 
plotted as a function of the final parameterized model for B/D 
under waves, (B/D)predicted = fKC fUc|| fα fθW .  Symbols are as in 
Fig. 7. The formulations and coefficients for fKC, fUc||, fα and 
fθW are provided in Fig. 7, Fig. 8 and Fig. 9. (Cases with Uw = 0 
in Table 3 are not included in Figs. 7 to 11.) 

 
Combining the above results, the final parameter-

ized model for predicted B/D for self-burying ob-
jects subject either to waves alone or to waves in 
combination with mean currents is 

(B/D)predicted = fKC fUc|| fα fθW (9) 

with the formulations and coefficients for fKC , fUc||, 
fα and fθW provided in Fig. 7, Fig. 8 and Fig. 9. For 
fKC, the a and b values for lower dashed line in Fig. 7 
were applied to conical frustums, while the values 
for the upper dashed line were applied to all other 
cases. The relationships in Fig. 8 apply to all obser-
vations under waves. In Fig. 9, the lines from top to 
bottom apply to tapered cylinders, cylinders and 
spheres, while fθW = 1 for conical frustums. Fig. 11 
compares Eq. (9) to all 578 available observations of 
self-burial of objects in sand under non-fluidized, 
live-bed conditions under waves. For these cases, 
Eq. (9) explains 85% of the observed variance in 
B/D.  

4 CONCLUSIONS 

A compilation and analysis of 761 observations of 
equilibrium self-burial depth associated with scour 
on sandy beds is presented. Observed object burial-

to-diameter ratios (B/D) vary by a factor of 100, D 
by a factor of 50, length-to-diameter ratios (L/D) by 
a factor of 30, object densities (ρo) by a factor of 9, 
and median sand size (d50) by a factor of 5. Object 
shapes include cylinders, tapered cylinders, spheres 
and conical frustums. Nonetheless, simple parame-
terized models for B/D are identified via an infor-
mal, step-wise least-squares regression approach that 
account for 85% of observed variance.  

The main factor which increases scour-induced 
B/D under steady currents (Uc) in the absence of 
waves is found to be an increasing Shields parame-
ter, θ = τb/[(ρs-ρ)gd50], with distinctly different 
power law relations applicable to B/D as a function 
of θ for clear-water and live-bed scour. Greater B/D 
is observed as a function of θ for small cylinders 
(D < 3 cm) and for tapered cylinders, while smaller 
B/D is observed for spheres. After accounting for the 
effects of θ, normalized B/D for larger cylinders is 
observed in increase with greater ρo.  

The main factor which increases scour-induced 
B/D under wave-dominated conditions is an increas-
ing Keulegan-Carpenter number, KC = UmT/D, with 
distinct power-law relations for conical frustums 
versus other object shapes, such that conical frus-
tums bury less. After accounting for effects of KC, 
normalized B/D is shown to decrease as the strength 
of the component of Uc parallel to wave orbital ve-
locity increases and as the angle between orbital ve-
locity amplitude, Uw, and a cylinder’s long axis de-
creases. Normalized B/D under waves is also shown 
to generally increase as a function of θ, with larger 
B/D at a given θ for tapered cylinders relative to cyl-
inders, and smaller B/D at a given θ for spheres rela-
tive to cylinders. 

Finally, observations of B/D in the field suggest 
that the highest 10% of Uw may better represent 
scour in random waves, and they highlight the likely 
importance of burial by bed fluidization associated 
with sheet flow at high θ. 
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