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FOREWORD

This report contains the text of the PhD thesis the author presented to the
University of Reading in September 1985. Although the report is laid out in
the style of the thesis, some minor errors that were discovered after the
thesis was examined and accepted by the University of Reading have been
corrected in this edition. The thesis covers work undertaken on a part time
basis in the Department of Mathematics from 1977 to 1985.






ABSTRACT

This thesis examines both the mathematical formulation of the physics
of river flows and the use of the finite element method on the
resulting equations. The type and appropriate boundary data for three
models of the flow are discussed; steady flow controlled by friction,
and, steady and unsteady flow iIncorporating the convective
accelerations. The means chosen to depth 1ntegrate the convective
accelerations is shown to influence the type of the equations and the
conditions for thelr solutlon to exhibit closed streamlines. An
analytic solution is derived for the interaction between the flows in
the channel and flood plain assuming a simple rectangular geometry.
It indicates that the entire width of the channel may be affected by

the drag of the slower flood plain flow.

Galerkin finite element approximations are applied to the stream
function and potential formulations of the equations. The potential
formulation is new and uses the water surface level as a non—linear
velocity potential. Tt 1s shown to be superior to using a stream
function for friction controlled flow. The veloclty field is taken as
plecewise constant in each trlangular element and a new recovery
technique is introduced to estimate its derivatives. The computation
of the convective accelerations uses these derivatives. A successive
substitutlion algorithm converges only for sufficiently slow steady
flows. Analysis of this limit motivated the use of a time stepping
method which proved stable for all velocities tested subject to a

limit upon the time step.

The method produces acceptable results when judged against

experimental observations from a laboratory flume. The performance of



the method is, however, unsatisfactory for data representing a
practical problem, flow at a bridge site. Further work is recommended

before the methods can be used In engineering practice.
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NOTATION

The notation used for principal variables (water level, velocity, etc)
is consistent throughout the thesis. However, other symbols can have

different meanings as defined according to the context-

A element area
a3,854a43,a, constants
b bed level

c cos (%k Ax)

c convection term

c constant

C Chezy roughness coefficient
C constant

Cr Courant number UAt/ Ax

D depth

e unit vector

E error at a node

f Darcy friction factor

F body force

F friction function (or friction velocity)
F streamwise component of W
Fm mesh Froude number
2 acceleration due to gravity
G transverse (cross—-stream/normal) component of ME
G function
h water surface level
H finite element approximation to h

I function



|3

=

|e=

wave number in Fourier Analysis
roughness size

conveyance function

metric functions

Manning's roughness coefficient

area coordinate basls function
exponent of depth in conveyance function
unit flow vecotr (components S qy}
finite element approximation to g
total discharge

asymptotic convergence rate

radial polar coordinate

radius of curvature

sin {(%k Ax)

streamline coordinate

surface slope

time

turbulent stress ternm

3d veloclty vector {components u,v,w)
2d velocity vector (components u,v}
plan velocity component

2d depth averaged flow velocity vector (components
G,v)

plan depth average velocity component
velocity deficlt

plan velocity component

depth averaged plan veloclty component

vertlical velocity component



W weightlng coefficient in quadrature rule

X,¥,2 coordinate axes
o velocity distribution coefficient
a constant
o perturbation to surface slope
B a - Daha
B perturbation to velocity
X perturbation to convection term
Y constant

T boundary
& perturbation to water level
) distance

el shear layer width

A twice the area of a triangle
£ turbulent eddy viscosity

(3 convergence parameter

1 update vector to H

8 time weighting coordinate

8] polar (angular) coordinate

A relaxation parameter

V! gradient parameter

il mesh ratio A/ Ax
£ update to VY
n function

P density

o radius
g stress tensor
T stress components



b function
$ basis function (linear)

& function

X basls function (linear discontinuous or constant)
i stream function
¥ finite element approximation to ¢

Q flow domain

Subscripts
e,i,j,k node or element values
u,d up and down stream
t transverse (ie, normal to stream)
S streamwise
X,¥,2 in coordinate direction
D,N Dirichlet and Neumann boundary data
Superscripts
e element value
i iteration index
m iteration index
n iteration index or time step

Qperators, etc

MC ML averaging finlte difference operators
14

ax, etc partial derivative with respect to X



AO,A_, A+ difference operators (central, backwards, forwards}
<., > inner product over flow domain

v gradient

N Fourier transform






1.1

CHAPTER 1

INTRODUCTION

Physical background

Rivers form a part of the natural environment and fulfil a
variety of functions including water supply, drainage and
recreation. The river usually comprises a well defined channel
flanked by areas of land which are subject to occasienal
inundation; the flood plain. The plan form of the channel and
flood plain system depends upon many geomorphological factors
as does the time scale overwhich changes may occur, see for
example Chorley, (1969). Whether the river 1s in flood or not
the flow boundaries are geometrically irregular, being the
edges of the river valley or main channel. On the flood plain
human activity (residential and industrial development,
agriculture, road constructlon etc.) sometimes conflicts with
the natural function of the land to pass flood discharges.
Engineers and others with the responsibility to manage river
basins often use models to study proposed englneering works to
ensure that the capital expenditure involved 1s a good long

term investment.

Two types of wmodel can be employed in design studies; analogue
models and computational models. The most common type of
analogue model is the scale physical hydraulic model.

However, alr-pressure models have been used, see Militeev and
Shkolnikov (1981), and it 1s conceivable that analogue computer

studies may have been done. Physical models may be constructed



to a natural or distorted scale and may be used to study
extremely complicated flows. They have an immediate visual
impact for engilneer and layman allke and are a well established
investigative method for example Novak and Cabelka, (1981).
Physical models, however, are expensive to construct and
operate, and they are limited by scale effects and the space

available for their construction.

Over the past twenty-five years, a variety of computational
river wodels have been developed, see Cunge, Holly and Verwey,
(1980). In one-dimensional wmodels the flow is averaged across
a section normal to the typical velocity direction; this
process gives the Salnt-Venant equations of open channel flow.
Some quasi two-dimenslonal models have been constructed in
which the river flood plain 1s divided into a number of cells.
The exchange of flow between contiguous cells 1s based upon the
the physical properties of thelr common boundary and the
difference In water level between the cells, see Section 1.3.2.
One-dimensional models are a widely accepted method of
simulating the flow in long reaches of rivers but they cannot
resolve all the local detail that may be required. No model
can represent any features of the flow at a scale finer than
the grid size without additional assumptions nor can any
one—-dimensional model represent features which are produced by
two or three dimensional effects. Empirical formulae and
coefficients can be included to simulate, for example, the
meandering of the main channel within the fleood plain or the
energy losses assoclated with a bridge (Samuels and Gray,

1982). However, when precise information 1s required on the
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effects of such features it 1s usually necessary to construct a

physical model.

Scope of Thesis

This thesis examines several models of flow in a river and over
its flood plain. The investigation has been limited to two-
dimensional models, 1n plan, rather like a birds eye view of
the flow. The models are based upon standard principles of
fluid dynamics lncorporating a varlety of physically realistic
simplifications. In none of the models is the bed topography
allowed to change in time since for British rivers, the time
gcale for geomorphological changes to the system 1is usually
much greater than duration of a flood. The finite element
method is used to generate numerical approximations to the
solution of the resulting flow equations. The ultimate goal of
the project was not the development of new numerical techniques
for their own sake but the construction of computational models
that can be used for solving problems of engineering
importance. The conference paper, Samuels (1983a), 1included as
Appendix 5 gives a summary of most of the main points of this

thesis.

As various processes are included in the mathematical model the
nature of the equations changes. This affects the most
appropriate numerical method for solving the flow equations.
The numerical methods consldered in this research project were
directed at chooslng the lowest order of approximation possible

for the flow equations. It was assumed that, since the typical
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1.3.1

data available for commercial studies are quite coarse, it was
not reascnable to use high order approximation schemes. A
topographic survey of a river and its flood plain can be
expensive particularly 1f the river cross sections are surveyed
with a separation comparable with the main channel width or if
many flood plain ground levels an accuracy better than +0.lm
are required. In any prototype Investigation there 1s pressure
to keep data needs to the minimum necessry for the accuracy
required from the study. However, the complex relationship
between the model accuracy and the density of prototype data

is not considered further in this thesis.

At some stages in the course of thls investigation several
approaches were possible to solve particular problems. To have
examined all these would have extended the duration of the
project considerably. Usually the most simple approach was
examined, in line with the overall philcsophy discussed above.
The propertles of the methods adopted, however, are analsyed in

detall.

Mathematical modelling of flow on river flood plains

Types of model

This sectlon reviews the various appreoaches adopted for
modelling river and flood plain flow. There appears to be no
consensus of opinion on what equations are the best for
constructing a two dimensional model of flood plain flow. This

1s in marked contrast to the near universal acceptance of the



Saint Venant equations for modelling one-dimensional flow in
rivers, see Cunge, Holly and Verwey (1980). The section
concentrates on models which produce quantitative predictions
of the flow and not on qualitative models such as the one

described by Lewin and Hughes (1980).

Two-dimensional models of flood plain flow vary widely in their
complexity from the simplest statement of steady flow, with the
surface slope equal to the friction slope, to those taking
account of the varlation of inundated area with time and
including the effects of turbulent dissipation of energy.

Models may be classifled as:

{1} cell type in which the flow 1s computed from cell to
cell on the flood plain according to certaln laws,

(2) differential equation type, in which the bulk flow is
described as a set of coupled partial differential

equations derived from physical principles.

Models in the second class may employ the method of
characteristics, a finite difference method (fdm} or the finite
element method (fem) to generate approximate solutions of the
differential equations. Some may be constructed to satisfy
conservation laws for certain physical quantitles. Such
properties are important if hydraulic jumps or bores occur

in the flow field and could be taken as the ultimate test of
all wodels. Abbott (1979) and Cunge, Holly and Verwey (1980)
polnt out the lmportance of proper treatment of conservation

principles for one dimensional flows. Imn particular, Cunge et



1.3.2

al show how Preissmann's classic finite difference scheme is in
fact a statement of the integral form of the conservation laws

for one dimensional flow.

Cell type models

The distinctive feature of cell type models is that they are
based on irregular computational grids which are defined
according to the ground topography. Usually the boundaries of
these cells are taken either along lines normal to the local
direction of flow or along lines across which there will be no
flow. The grid thus roughly follows the outline of the channel
and flood plain in plan, see Fig 1l.1. This constrasts with the
regular, rectangular grids used in finite difference methods.
Several cell models have been developed aver the past 15 years,
see Zanobetti et al (1968), Cunge (1971}, Thirriot and Gaudu
(1971), Cunge (1975), Weiss (1976), Price (1980) and
Lesleighter (1983). These wodels vary in their complexity.
Most neglect the effects on the momentum equatlion of the co-
ordinate transformation that is involved in passing from the
natural river topography to the idealized situation.
Typlcaily, flow on the flood plain is controlled by equations
such as:

Qg = Kyhy = 0" (1.1)
for a river type link between cells i and j or for a weir type

link:

Q5 = © E(h;,by) (hi—hw)l's (1.2)

where h_ Is the height of the weir crest.

In a steady flow slwmulation the levels hi and discharges Qij



are obtalned by iteration and for unsteady flow the total
volume V of water stored in each computational cell is also
taken into account. The calibration of such models depends
upon the correct choice for the links of the conveyance
function KR’and the welr discharge coefficlents ¢ and f in
equations (l.l) and (l.2) respectively. The flood plain flow
may be coupled to either steady or unsteady flow ln the main
river channel. Placing river or welr type links at cell
boundaries or where to allow no flow at all is left to the
judgement of the engineer responsible for investigation. These

decisions can radically affect the model results, see Cunge

(1971).

When the water level variation over the floed plain is
controlled by features such as banks, hedges, fences etc and
the cell boundaries are placed along these features, a cell
medel should produce satisfactory results. However, 1if the
head losses occur more or less uniformly over the whole flow
domain, such as when the bed stresses are dominant, a cell
model may give misleading results. For frictlon controlled
flow the dynamic equation becomes:

K2 + q|q) = © (1.3)
where K is the conveyance function, h the stage (water surface
level) and q the unit flow vector, see Section 2.5.1. 1In the
direction of the unlt vector e we have:

K2ah= - |gf? e e (1.4)

=q =s

where Eq is the unit vector 1n the direction of the flow
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velocity. Comparing this with the equation (1.1) used for
river links suggests that:

g o= egeeg |7 ey e/l (1.5)
where e, is the unit vector normal to the common side between
the two cells, & is the length of the side and fs and e, are
the distance and unit vector between the cell centres. The
weakness of the cell type model lies in the dependence of the

conveyance function for the link K upon the local direction of

2
-k .

the flow through the factor |Eq'Esl . Thus the appropriate

conveyance function for a link may change if the flow pattern

of the flood plain changes significantly. This will limit the

predictive abilites of such models when assessing the effects

of works which alter the direction of flow across the flood

plain.

Alternatively it is possible to include some of the dynamics of
the flow on the flood plain by treating the channel and flood
plain flow paths as separate one dimensional channels using the
Saint Venant equations (see Grijsen and Meijer (1979) and
Samuels (1979)). In such models there may be stability
problems assoclated with the treatment of the flow over the
river banks (see Samuels (1983b), Tagg and Samuels (1984) and
Cunge, Holly and Verwey (1980)). However, this type of wmodel
can produce realistic results for the design of engineering

works.

Models based on the method of characteristics

Kalkwi jk and De Vriend (1980) used a scheme based on
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characterlstics to scolve the equations describing primary and
secondary flow in river bends. They transformed the flow
equations into a coordinate system based upon the approximate
streamlines of the primary flow. This method requires an

a priorl estimate of the streamlines of the flow and so may be
difficult to apply to flows that are not contained by a well
defined river channel. Schmitz, Seus and Czirwitzky (1983)
have produced a metnod based upon a dJifferent transformation of
the flow equaticons, and subsequent integratlon over the
complete characterlstic cone of these equations. Thelr method
describes the topography of the river using a rectangular grid
which is capable of local refinement. This method would appear
to be a viable alternative to the finite element model
described in this thesis. Schmitz et al, however, acknowledge
that their model requires significant computational resources
and cannot easlily include situatlons where the lateral extent

of flooding is not known in advance of the cowputation.

Models based on the finite difference method

Finite difference methods have been applied successfully to the
shallow water eguatlons in estuaries for many years. The
principal problems emerge from the representation of the
boundarlies of the flow domain. It is possible to use
curvilinear coordinates to lmprove the representation of the
boundaries in simulations of tidal flow. This, however, leads
to a more complicated set of equations to solve as the local
stretching and distortion of the cartesian coordinate grid is

included In the differential equatidns.



Recently Vreugdenhil and Wijbenga (1982) have applied a finite
difference model from tidal engineering to a river channel and
flood plain system and compared the results with those from a
physical model. Their investigation showed the sensitivity of
the results to various terms in the mathematical model
equations. This is discussed further in chapter 2 below.
Overall they report a good agreement between the physical and
computational models, despite the relatively jagged appearance
of the fitted difference net to the line of the main river
channel. The model was based upon a 30m grid with a river
width of about 150m and a flood plain width of up to 450m. The
model time step was limited by the need for the anti-diffusive
effects of the truncation error to be dominated by physical
diffusion of the system. This forced the use of time steps of
10 seconds or less despite formal unconditional stability of

the numerical scheme employed.

Zielke and Urban (1981) compare several models based on finite
difference and finite element methods, including some based on
coupling one and two-dimensional wmodels together. Their
example computations come from models developed initially for
tidal flow. When using a finite difference based model with a
grid size of 50m, the maximum that could resolve the river
channel width, Zielke and Urban report that "it was not always
easy to represent the characteristic featares of the terrain”
and the calculations were limited to time steps of 4 seconds.
Militeev and Shkolnikov (1981) also describe the application of
a finite difference based model of flood plain flow, comparing

its results with an experimental study. Again, they comment on

10
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difficulties caused by the relative coarseness of the grids

employed.

There is not space here to describe the use of standard fdms
for two dimensional fluid flow, including tidal flow. These
are well covered by standard texts such as Roache (1972) and

Abbott {(1979).

Models based on the finite element method

Over the past 15 years there has been a great interest in
applying the fem to problems of fluid flow. Several
applications to tidal hydraulic problems have been made, see
for example Brebbia and Connor (1976), Herrling (1978) and
Holtz and Witsche (1980). However, less has been published on
the use of the fem to model flood plain flow. This 1s somewhat
surprising since the 1rregular topography of a river flood
plain lends itself naturally to description by finite

elements.

Franques and Yannitell (1974) and Tseng (1975) have both
developed finite element models for flow on river flood plains
In the neighbourhood of a bridge. One conclusion drawn from
these papers is that much of the head loss at the bridge they
studied 1s accounted for by friction losses along correctly
located streamlines. Niemeyer (1979) has presented an
application of the finite element method to steady flow at the
confluence of two maln rivers. In thelr comparison paper
Zielke and Urban (1981) describe an application of the estuary

finite element model developed by Holtz and Nitsche (1980) to

11



flow on a river meandering in its flood plain. This model also
takes account of the variation of the inundated area of the
flood plain in time. Herrling (1982) also applied an estuary
model to river flow. XKing and Norton (1978} and Lee (1980)
both describe the application of Tseng's model to particular
case studies. King and Norton draw attention to large errors
within the model for the continuity equation (54% in the worse
case}. Lee points out the difficulties in representing the
bottom topography and roughness variations and questions
whether a new approach is needed. Tseng's model is based upon
quite large finite elements with a quadratic variation of

velocity in each.

Su, Wang and Alonso (1980} have developed a model for two
dimensional flow within a river channel. They applied their
model to investigate flow at channel junctions. The model
contained a linearization of the flow equations, putting the
convection term in particular at the old time or iteration.
The approach was therefore similar to that adopted for the
present investigation and some of the consequences of this
representation of the convection term are described in chapter

5 below.

Some other finite element solutions of the flood plain flow
equations have been published in which the tests reported were
restricted to rectangular meshes over rectangular domains and
thus geometric problems were avoided. Taylor (1976) looked at
the runoff over a hill slope and for his tests the convection

term in the dynamic equation was small in comparison with the

12



other terms. Thienpont and Berlamont (1980) compare the
results of their model with experimental data for a flume with
and without an obstacle in the centre of the flow field. These
comparisons indicate the presence of a diffusive effect which
is larger than in the prototype. Katapodes (1980} simulates
the propagation of a dam break wave in a rectangular basin with
regions of supercritical flow. Finally, Moult (1980) presents
a model based upon using a stream function of lateral discharge

into a channel.

These published results use a variety of element types and
formulations of the flow equations as laid out in Table 1l.1.
Here ¢ and w represent stream function and vorticity, g and U
represent the unit discharge and mean velocity vectors (see

chapter 2) and h denotes either water surface level or depth.

It is clear from Table l.1 that there is no consensus on what
is the most appropriate fem to use for modelling river and
flood plain flow. Some discontinuous velocity fields have been
used, e.g. Franques and Yannitell (1974), whereas other workers
use a velocity representation of higher order than that for
water level, e.g. Tseng (1975). Even the most appropriate
formulation of the flow equations is not clear. Some of the
merits and disadvantages of these various approaches are
discussed below. In fact in only two of the papers listed in
Table 1.1, Lee (1980) and Zielke and Urban {198l) is the river
channel resolved separately from. the flood plain ian any example

computation.
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CHAPTER 2

THE MATHEMATICAL MODEL

In this chapter we develop the two—dimensional depth integrated
flow equations and analyse some of their properties. The
integration of fluid flow equations through the flow depth is
not new, see for example Dronkers (1964), Leendertse (1967) and
Kuipers and Vreugdenhil (1973). However, the treatment of the
convection term (u. V)u presented here differs from the
approach usually adopted. This difference is not superficial
since it can affect both the type of the set of partial
differential equations and the conditions under which a steady
flow wodel wmay exhibit closd streamlines (see Sections 2.2.3,
2.4.3 and 2.6 below). The equations are also derived in terus
of the unit flow vector q rather than the depth mean velocity

vector Hf

tHaving derived in detaill the depth integrated flow equations in
Section 2.2, the representation of turbulent stresses is
discussed only briefly in Section 2.3 since in the
computational studies these stresses were neglected. The
practical significance of these stresses, however, is discussed
in Section 2.4.2 where estimates are given of the typical
widths of the shear layers at the edges of the flow field and

at the boundary between the main channel and flood plain.

The three sets of model equations used as a basis of practical

computations are then set out in Section 2.5, being steady
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friction controlled flow and steady and unsteady flow with
friction and convection., In Section 2.6 we examine the type of
these equations and what are appropriate boundary data. Some
aspects of these problems are not fully resolved. Finally, in
Section 2.7 we present the steady flow equations in the
curvilinear orthogonal co—ordinate system based upon the
streamlines of the flow. Thils form of the equation is
convenient for manual calculations of the magnitude of warious

terms.

Assumptions

There are at least four distinct phases in developing a

deterministic computer based model of any prototype situation.

They are:

1. determine the relevant physics of the real life
situation;

2. express the physics in a convenient symbolic form - the
mathematical model;

3. construct algorithms to approximate the mathematical model
equations ~ the numerical model;

4. incorporate data which link the numerical model to the
prototype.

This chapter 1s concerned with the first two of these steps;

the other two steps are discussed in the remainder of the

thesis.

At the outset the followlng assumptions will be made:
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l. Newtonian mechanlcs are approprilate;

2. the flow 1s turbulent;

3. the fluid density 1s uniform;

4. the fluid is incompressible;

5. vertical acceleratlons are negligible;

6. there are no tangentlal stresses on the alir/water free
surface;

7. the effects of the earths rotaticon can be neglected;

8. the spatial variation of atmospheric pressure can be
neglected;

9. the river bed does not change with time.

Other more detailed assumptions necessary to derive particular
model equations are identified as appropriate. All the above
assumptions are reasonable for the construction of a model of
the bulk flow in a river and over 1its flood plain. Obviously
some of the assumptions can be relaxed, giving different flow
equations with a different range of applicability. Typical of
the restrictions forced by these assumptions Is the neglect of
secondary flows (assumption 5). These flows occur at sharp
changes in the river bed, see for example Knight et al (1983),
and around river bends, see Henderson (1966) and Kalkwijk and
de Vriend (1980). The latter authors show how the mathematical
model can be augmented to include a certain class of secondary

flows.

The starting point for producing the two dimensional

mathematical model is the full three dimensional fluid flow

17



2.2.1

equations. These are derived from applying Newton's principles
of mass and momentum conservation to the motion of a fluid
element, see sections 2.2 and 3.2 of Batchelor (1967). 1In

cartesian coordinates these equations are:

o0 p + F(puw) 0 (2.1)

PO u+ pu-w &£+ ¥y.0 - (2.2)
Here, u is the three dimensiocnal velocity vector, pis the

fluid density, pf represents the body forces and ¢ is the

tensor of internal stresses within the fluid. The gradient
operator V above has components in all three directious.
However, unless explicitly stated to the contrary in the
remainder of this thesis, the operator will be restricted to
two plan dimensions, that is in carteslan coordinates

v = e & +

Derivation of the two dimensional flow equations

The continuity equation

Assumptions 3 and 4 in section 2.1 implies that the three
dimensional continuity equation (2.1) can be simplified to:

bxu + byv + 6zw = 0 . (2.3)
The continuity equation for 2D flow in plan is derived by
integrating (2.3) over the depth of the flow and applying the
appropriate boundary conditions at the bed and the free surface
which are:

btzo+ubxz0+v ayzo—w=0 (2.4)
where 2z, = b for the river bed and z; = h for the free surface,

see Fig 2.1. Assumption 9 implies that E%b = 0. This process
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2.2.2

gives:

h h
o, jb udz + jb vdz + 3h =0 . (2.5)

Defining the unit flows 4, and qy by:

h h
q; = f udz ; q_ = f vdz (2.6)
b b

y
we obtain the continuity equation used in the model
v.49+ bth = 0 (2.7)
with g = (qx qy)t. The form of the continuity equation in
terms of depth mean velocities used by some workers (see the
literature review in section 1.3) is:
¥. (DU + th = 0 (2.8)
where D is the flow depth (h - b) and the mean velocity vector

is defined as:

1

1=

= g/D (2.9)
Comparing equations (2.8) and (2.1) it is evideat that,
although the flow is incompressible, a form of compressibility
has been reintroduced into the flow equations through the
existence of a free surface. The depth D now plays the role of
the density in (2.1). It will be seen that the solutions of
the two-dimensional equations for river flow exhibit some of

the same phenomena as compressible aerodynamic flows.

The dynamic equation

The dynamic equation is obtained by a depth integration of
equation (2.2). However, the process is somewhat wore
complicated than the derivation of equation (2.7) described

above. It is well known that the horizontal velocity
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components u and v vary with depth. In order to 1ncorporate
this variation into the model we assume that we can define a
vertical veloclty profile which is common to u and v, thus:
u=0U0®&z) ; v=V z) (2.10)
where U and V are the components of the depth mean velocity
vector U in equation (2.9). This assumption restricts the
model to where the flow is well mixed vertically and does not
change direction in the vertlical and is not stratified.
Furthermore, the form of & (z) in (2.10) is assumed to be tne
same for steady and unsteady flow conditions.

The sole body force acting on the fluid is gravity. Thus the
term F in equation (2.2) is given by:

F = - ge, (2.11)
The internal stress tensor is separated into an isotropic part
(the mechanical pressure, p) and deviatoric part o whose
existence is solely due to the fluid motion:

+

p (2.12)

lla

i
ien
lla

where § is the isotropic temsor and (in three dimensions)

I

. P = W (2.13)

len

First of all, consider motion in the vertical direction. The
assumption that vertical accelerations are small implies that
the corresponding deviatoric part of the stress tensor is also
small. Integrating the appropriate component of the dynamic

equation (2.2) over the depth we obtain:

| (bzp + pg) dz = constant
Hence:
p(z) + @z = constant

On the free surface p = Pa, the atmospheric pressure, thus;

20



p = Pa+ mgh - z) (2.14)
which is the hydrostatic pressure distribution.
Now consider omne of the horizontal components of the dynamic

equation, in the direction e, say, and integrate this through

depth.

h h
0 f btu dz + p f (uaxu + vi}yu + Wazu) dz

b b

h
+g B, fPa + g (h - 2)] dz

h
= -+ .

bj (31, * 3 Tyt 8T, 0de (2.15)

Examining the terms in (2.15) individually we have:

h

bj pudz = d4q, +udb - udh (2.16)
Using equation (2.3) the second term in (2.15) becomes:

h h

6[ (u 6xu + vi}yu + szu)dz = f,l' (axu2 + ayuv + 6zuw)dz (2.17)
h

bj (duw)dz = ww| - uw| (2.18)
h h h

g (bxu2-+ byuv)dz =0 g u?dz + ay g uv dz

uZd3h - uvdh + u?ab + uvdb . {(2.19)
X ¥ X ¥

The third term in equation (2.15) becomes:

h h

f bx (Pa + mg(h - z) }dz = J' (pgaxh)dz = pgDE)xh (2.20)
b b

since from assumption 3 in section 2.1 d Pa = 0.

The stress terms on the RHS of equation 2.15 becoane:

h
g (B Ty * ayrxy +9,1,,)dz =

h h
h
axbj(txx) dz + aybj(zxy) dz + (7, = T, 820" T, 3,20,
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in which the final term is the difference of the stresses on

the free surface and the bed.

Although the effective stresses on the air/water interface can
be readily quantified, see for example Heaps (1969), they are
excluded from this model of flood plain flow. Significant wind
stresses only occur at high wind speeds In excess of about

20m/s (gale force 8 and stronger).

The bed stresses on the RHS of equation (2.21) may be
calculated from one of several empirical formulae of the
general form {at zg = b):

b = Tz ~ Txx KZ0 T Ty ayzo = 0.125 p fu (u?+ vz)% (2.22)
where f is the Darcy friction factor and u and v are the
components of the depth mean velocity vector u of equation
{2.9). Henderson (1966) presents the following forms of the

friction factor which are in comwon englneering use:

1. Chezy's law:
f = 8gC~? (2.23)

where C is the Chezy coefficient which has dimensions

L%T'l

2. Manning's equation:

£ o= sgn L3 (2.24)

where n is Manning's roughness coefficient and D the depth

of flow. Manning's n has dimensions L_I/BT
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3. Colebrook-White equation {(rough—turbulent)
£ = (2 logyy (14.8 D/k ) 2 (2.25)
where ks is the roughness size, having dimensions of
length. The constant 14.8 is not precisely defined, see
Ackers (1958) and Reynolds (1974). Any changes to its
value will merely alter the roughness size used in

calibrating the model.

Ackers also shows that Manning's equation (2.24) is an
approximation to the Colebrook-White equation (2.25) provided
that:

n = 0.038 k L/6

s

and

7 k_ <D <140k

s s

Changing to natural logarithams equation (2.25) may be written

as.:

% = aj; (In (14.8D/ks))2 (2.26a)

where the constant a, has the value 32(10g10e)2. This equation
for f becomes singular as D tends to zero. Following Ackers

(1958) we may replace the logarithm by a power law for small
depths thus:

8 a
T - 32 é}—) 3 for D <ay RS (2.26b)
s

Once the exponent a, has been chosen, the cross over point
between (2.26a) and (2.26b) and the constant a, are determined
by the conditions for f to be continucus and to have a

continuous derivative with respect to depth at D =a, k_ . 1In

4 g
this
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investigation, a, has been set to 1.0 and the numerical values

of the other constants are:

a, = 6.035574304
a, = 48.35610855
a, = 0.499260542

The wmodel program contalns all three friction laws to
facilitate comparison with other studies and experimental data.
When trying to reproduce scale physical model results the
Colebrook-White equation should be used since the parameter ks
may be readlly related to the surface finish of the model. For
calibrating a model against field data elther the Colebrook-
White or Manning's equation should be used. However, wmany
European and American engineers use the Chezy equation because
of its simplicity. Ackers (1958) shows how the Colebrook-White
resistance law can be linked to the logarithmic velocity
profile often assumed for the function & z) in equation (2.10).
The logarithmic profile cannot, however, be used near the bed
where 1t becomes singular.

Reassembling the dynamic equation (2.15) from the expansions in

equations (2.16) to (2.22) we have:

h h
£
3 q + d [ u¥dz+ 3 [ uvdz + gD3h + — q |q|
t X Kb yb X BDZX—
1 h 1 h
=_ 3 dz) + = d 2.27
px(bf T, 42) pay(bjrxy 2)  (2.27)

since the other terms on the free surface and the bed cancel
exactly on application of the kinematic boundary condition
(2.4). Using the velocity profile equation (2.10) the depth

mean square velocities in (2.27) can be written as:
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h
f udz = ﬁ-aqx2 H I uvdz = q
b b

where the coefficient o is dimensionless and greater than or

L 9 (2.28)

equal to 1, and is given by:

h h
a = D [ #2dz / ([ ®dz)?
b b

h
= f & dz / D
b

For convenience the function & can also be treated as a power
law in depth that is:

xz) « (z- b)Y’

with p lying in the range 1/6 to 1/10. Samuels and Gray (1982)
show that for this form of & the corresponding value of a lies

in the range 1.021 to 1.008, and ¢ is independent of depth.

The treatment of the horizontal component of the dynamic
equation iIn the direction Ey follows in a similar fashion.

Defining the Z-D exchange vector T = (Tx, Ty)t as;

1 h 1 h
T =—23 [t _dz+—=23 [1_ & (2.29a)
X gD x b XX peD Ty S
1 n 1 h
T = — 2 [t dz+— 2 [1_ 2 (2.29b)
y b X b yx @D vy b Yy =z

we may write the dynamic equation in vector form as:

1 1

—— i 2 =

o0 %1t Y- (aga/d) +qfq|/K?+ =T (2.30)
where q q 1is a diadic tensor and K? is defined by:

K2 = 8pgdD3f (2.31a)

25



2.2.3

The friction factor f depends upon depth accordng to equations
(2.23), (2.24) and (2.25) and an equivalent formula for KZ is
k2= cpP (2.31b)
The power p is 3 for Chezy's equation, 10/3 for Mannlng's
equation and lies between 3 and 4 for the Colebrook-White

equation with the power law extension for small depths.

Alternative forms of the dynamic equation

Two different approaches are possible in deriving the dynawic
equation. Firstly, instead of using the veloclty distribution
coefficient a of equation (2.28) the depth integrated

convection term may be written as follows:

d fh uidz = 3 (q_’i?i] + 2 fh (u - U)%dz (2.32a)
X b X D X b
since u?= (U - (U - u))? and jh U (U - u)dz = 0. Similarly:
b
3 jh uv dz = d (q"qY] + 2 fh (u ~ U)(v ~ V)dz (2.32b)
Y ' y * D Y '

Kulpers and Vreugdenhil (1973) and Falconer (1977) draw an
analogy between the terms involving the departures from the
mean velocities, (u - U) etc, and the Reynolds stress teras in
turbulence modelling and suggest that they can be incorporated
into the model in the same way as the turbulence stresses. The
values of the departures, (u - U), are largest near the bed and
the terms which involve these departures can be argued to
introduce a form of dispersion into the model. Although

plausible, treating these dispersive terms in the same way as
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turbulent stresses implies that a model of steady flow with
convection can exhibit closed streamlines in the absence of
other effective stresses. This 1s shown in certain
circumstances to be false in section 2.4.3 below. Also the
equations (2.34) and (2.37) obtained below by including these
dispersive terms with the turbulent stress terms when combined
with the continuity equation form an incompletely parabolic
system. The alternative formulation of the dynamic equation
with the distribution coefficient o, however, gives a

hyperbolic system, see section 2.6 below.

Nevertheless, defining f;, analogous to Tx of equation (2.29a),

as:
I, = =) {bx t{ (Txx + p(U-u) 2)dz +
h
CH bf (7 + PU-)(V-v) Jz | : (2.33)

with a similar equation for T} we have the dynamic equation:

1

o5 % 4t P +ala|kiem-F (2.34)

gh
Here the exchange vector_f, (f;, T;)t, includes the dispersive

terms from the departure of the fluid velocity from its depth

mean value.

The dynamic equation can also be written in terms of the depth

mean velocity vector U.

1 1
— - 2/ 2 =
5 %MD * 5 T(auUD) +UfupIRI+ Ho=T (2.36)

Or, if the velocity distribution coefficient a is set to 1 and
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the exchange vector is modified as in (2.33) above:

% B.U + -;- (U.MU + Ulu|p K2+ ™ = T (2.37)
which is the form of the dynamic equation used, for example, by
Dronkers {(1964), Leendertse (1967), Kuipers and Vreugdenhil

(1973), Falcouncer (1977) and Vreugdehhil and Wijbenga (1982).

The effects of turbulence

The derivation of the two—dimensional depth averaged equations
(2.7) and (2.30) has not taken explicit account of the
turbulence of the flow. The derivation of the Reynolds
equations of turbulent flow involves an average over a time
scale that 1is large compared with that of turbulent
fluctuations but small compared with variations in the bulk
flow, see for example Rouse {1959) or Reynolds (1974). This
averaging process is conceptually similar to the continuunm
hypothesis, (Batchelor, 1967), which underlies fluid dynamics.
When written in terms of the turbulent mean velocities, etc,
the basic equations for mass and momentum conservation are the
same as (2.1) and (2.2) with the stress tensor O containing the
50 called Reynolds stresses as well as the viscous stresses.
The discussion in section 2.2.2 makes no assumption on the form

of this stress tensor.
These Reynolds stresses affect the mean velocity profiles both

in plan and In depth. The logarithmic velocity profile with

depth discussed briefly in section 2.2.2 results from a simple
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empirical relation between the Reynolds stresses in the
vertical plane and the flow field, the mixing length
hypothesis, see Appendix I of Ackers, (19538). 1In the
horizontal plane the Reynolds stresses produce a lateral
"diffusion” of momentum, the size of the effect being related
in a complex manner to the bulk flow field. The inclusion of
the Reynolds stresses in the flow equations requires some form
of turbulence wmodel. The simplest of these introduce no extra
equations into the system, whereas others introduce one or more
additional equations which describe the transport of
characteristic features of the turbulence field. For a
discussion of turbulence models see Rodi (1980}. The simplest

turbulence closures lead to equations for T or T like:

T = gal 72U (2.38a)
or
T = _892 92 q (2.38b)

where € and €, may be taken as constant or may be related to
some parameters of the flow field such as depth and local
velocity gradient. Falconer (1977) examined the use of
turbulence models for modelling jet induced flows in harbours.
He concluded that only the simplest form of turbulence model
was justified for his particular case. Vreugdennil and
Wijbenga (1982) also used the representation of turbulent (or

effective) stresses given by equation (2.38a}.
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2.4

2.4.1

2.4.2

The efiects of various terms in the model equations

Physical parameters

Betore further approximations to the flow equations are
developed it is necessary to examine the relative importance of
the various terms in the equations. Table 2.1 gives ranges of
values for some of the parameters for British rivers. The
general plcture is that over moderate distances, say a few
kilowetres, the flow at the flood peak may be taken as
approximately steady with the friction slope balancing the
surface slope. Locally other effects may become important,

depending upon the topographic features of the river valley.

The effective stresses

The simple turbulence closure model equation (2.38) gives rise
to boundary or shear layers in the solution to the flow
equations. Vreugdenhil and Wijbenga (1982) show how these
boundary layers can alter the total conveyance of a cross
section. The thickness of the boundary layers depends upon the
effective diffusivity parameter e of equation (2.338).

Different values of ¢ produce different velocity distributions
across the river and flood plain which in turn produce
different total bed stress for the cross section. Approximate

values for the boundary layer thickness are derived below.

Consider steady flow in the x direction at a section across the

river and flood plain where the channel is straight and the

flow depths for the channel and flood plain are constant but
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Parameter

width (m)

depth of flow (m)

velocity (m/s)

streamwise

surface slope

transverse surface

slope

radius of

curvature of

streamlines {(m)

rate of change
of surface

elevation

(m/s)

friction slope
9|g|/K2

temporal
acceleration

|| (u/s®)

TABLE 2.1
PARAMETER RANGES FOR UK RIVERS

Channel

range

5 to 200

1 to 10

0.5 to 3

1072 to 10™°

up to

10-2 locally

natural

>30

near structures

0 (L)

up to
10~ 3 (tidal)

10=4 (fluvial)

10-2 to 10-°

0 (10™5)

or less

31

typical

30

5x10~*

10-5

5x10~*

Flood plain

range

0 to 2000

C to 4

0 to 2

10-2 to 10~°

up to 10~ 3

locally

> 100

0 (1)

0 (10~ %)

1072 to 10-°

0 (10— )

or less

typical

500

0.3

5104

5x10~ 4



different, see Fig 2.2. The dynamic equation for the lateral

distribution of the stream velocity U is:

fUZ/8D + gd h = g3 U 2.39
/ 8% vy ( )

We may set the surface slope bxh to -8, a constant, where s >

0, and the dynamic equation becomes

fu?/8p = gs + " (2.40)

in which the primes denote differentiation with respect to y.

Multiplying by U' we obtain the first integral
where ¢ is a constant of integration, Uf = 8ghs/f and

g = 8De/f. Now suppose that the cross section is semi-infinite
laterally with the flow at the left hand wall y = 0 unaffected
by the conditions to the right. From equation (2.40) we deduce
that U » ans y + o and we use this condition to determine the
constant of integration c as 2U3/3.

Defining the velocity deficit v as UO—U we find

(v')2=v? [zuo/a - 2v/3p] (2.41)
Equation (2.41) can be solved analytically for the current
simple geometry by employing some further substitutions.
Firstly, let m2 denote 2U/p and udenote 2v/3p; equation
(2.41) becomes

(W)?=p2(n*- w

Now set 2 = n2 - pand the differential equation becomes
AT T )2=(n?- gH2 g2

ar _.___.z_d.__(.:._.._._= idy

(n2 - ¢2)
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The ambiguity in sign will be resolved by appealing to the
physical characteristics of the flow. Integrating the above
gives

2 arctanh(%/n) = *yn+ 2c

where ¢ is another constant of integration. Reverting to the
original notation we have

U(y) = U, {3 tanh? [%(u /2 iy +c]-2)

The constant c is deternined from the boundary condition U = 0
at y = giving c = arctanh[i/(2/3)] that is

c = #n [(,/2+./3)/(.f3-«2)]% = 3+ 1.1462.

At the edge of the flow we require that U > Q0 which allows us
to resolve the ambiguity of signs to give

U(y) = 00[3 tanh 2{([10/2;-3)sj

y + 1.1462} -2 ]. (2.42)
The boundary layer thickness is commonly taken to be the
distance over which the velocity deficit reduces to 0.0l of the
free stream value. Putting U(8) = 0.99UO in equation (2.42)
gives the boundary layer thickness § as

_ 1
6= 3.39 (5/Uo) .
Substituting the values of B and U0 gives

- D % % .
§=5.70 (ng) £ . (2.43)
In order to calculate the size of the boundary layer we need to
estimate the typical magnitude of the turbulent exchange
parameter g which has so far been assumed comnstant.

Vreugdenhil and Wijbenga (1982) give the following estiumate

based upon the experimental work of Lean and Weare (1979),
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e = 0,016 &l (2.44)
Here ,ﬂ]l is the velocity of difference across the shear layer
which we may take to be Uo' Substituting these values in
equation (2.43) and simplifying gives

&= 0.92 D/f (2.45)
Vreugdenhil and Wijbenga also give some sample computations

assuming e = 3.0n%"! and €= 1.0m%~ 1.

A further estimate of & 1is avallable from the text by Cunge,
Holly and Verwey (1980). When discussing pollution modelling
these authors suggest a cross stream exchange coefficient of
the form

e= AU,D (2.46)
where the constant A lles in the range (0.25, 0.7) and the
friction velocity U, is related to the bed stress T by

U, = (tb/p)_ii

Using equation (2.22) for the bed stress we have

e= AU (f/8)!ié (2.47)
We note that the turbulent exchange parameter now depends upon
the flow velocity U and thus equation (2.47) would give £ =0
at the edge of the flow since U = 0 there. This of course is
unacceptable and presumably results from the neglect of the
usually insignificant viscous stresses in the derivation of
{2.46)., Taking a mean value of A to be 0.4 and a mean value of
U to be 0.5Uo and substituting into equation (2.43) zives

&= 2.5 D/fk (2.48)
Table 2.2 below glves typical values for the boundary layer

width at the edge of the flood plain and the main channel based
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upon the above estiwmates of the exchange parameter. The wvalues

are based upon the following physical parameters:

Surface slope 0.0004
Flood plain roughness size 3m
Channel roughness size 0.3m
Flood plain depth of flow 1.0m

Channel depth of flow 10.0m

Using the Colebrook-White equation (2.25) gives the friction
factor f as 0.520 for the flood plain and 0.0344 for the
channel and undisturbed flow velocities of 0.25wn/s and 3.0u/s

for the flood plain and channel respectively.

Table 2.2 Estimates of boundary layer width in metres

Channel Flood plain
Equation (2.43)
g=1.0m%"1 94 27
Equation (2.43)
€= 3.0m%"! 160 4o
Equation (2.49) 270 1.8
Equation (2.48) 58 2.9
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Comparing these boundary layer sizes with the typical widths of
the channel and flood plain quoted in Table 2.1 suggests that,
whereas the boundary layer at the edge of the flood plain is
localised, the flow over the entire width of the main channel
is affected by the drag from the banks. The same conclusion
can be drawn about the influence of the slow moving flood plain
of on the flow in the main channel. The velocity may be
affected across the entire width of the channel, see also Fig 4
from the paper by Vreugdenhil and Wijbenga (1982). To estimate
the influence of the shear force from the faster channel flow
on the velocity distribution on the flood plain, we may repeat
the calculations of equatlons (2.44) to (2.48) using the
channel velocity in equation (2.44) and a mean of half this
value in equation (2.47). This gives estimates of the width of
the shear layer on the flood plain to be 6%am using equation
(2.44) and 33m using equation (2.47). Again, given that the
flood plain is of the order of 500m wide, we see that the shear
layer should not influence the flow over its entire width.
Clearly the current knowledge of the magnitude of the turbulent
exchange paraameter ¢ is unsatisfactory and the above

conclusions are only tentative.

The models discussed 1In this thesis do not contain any
representation of the effective stresses. There are two wmain
consequences of this assumption. Flrstly, the roughness values
required to calibrate the model against prototype data will be
different, possibly substantially so, from those for a model

including the effective stresses. Secondly, the true solution
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2.4.3

to the equations should not contain any closed stream lines for
steady flow conditions except possible with grossly non uniform
values of the velocity distribution coefficient «a over the flow
domain. The models, nevertheless, reproduce important features

of the prototype such as the faster flow concentrated in the

main channel.

Closed streamlines

Here we consider the conditions under which the solution to the
mathematical model equations can exhibit closed streamlines.
Suppose there is a closed streamline, ¢, within the flow
domain, we may integrate the dynamlc equation (2.36) around it
to give:

l_
[ (a0 + 5% yap + U W) + gU[U|DHKZ+ gih ).ds

o

= JgT.ds (2.49)
C

Examining the lhs of (2.49) term by term we have:

I (au+ (é'“)gatn).dg = [(3,|u] +(—15-E)-|u|qn)ds (2.50)
[od T

[glujup?/k2. as = [ (g|ufDUKDds » O (2.51)
C C

[#.as = 0 (2.52)
C

and after some manipulation of vector identifies

JU.9¢at))ds =- [ a9 (5|u]?-ds . (2.53)
[ C

Sufficient conditions for the final integral in (2.53) to be

Zero are;

(a) a = constant on ¢, or;

(b) |gl2 = constant on ¢, or;
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(L

(2)

(c) (Vox (W|u}?) = 0 within c.
Now consider some particular cases.
a=1, T =0

Equation (2-49) reduces to:

.

| 3 |ujds + [ g |u|D%YK2ds = O
c ¢

Since the second term is non-negative the magnitude of

(2.54)

the

velocity around the closed streamline decreases as the energy

of the flow is dissipated by friction. In the limit of steady

flow we obtain the condition that |Q| = 0 on the closed

streamline. Furthermore the steady flow continuity equation

iwplies that, in the absence of any internal sources or sinks,

|q| = 0 over the entire flow field except at ispolated points.

Hence closed streamlines only exist in the trivial case of

stationary flow.

a constant (#1), T = U
This situation occurs if a power law profile is assumed

depth variation of the horizontal velocity components.

for the

The

right hand side of equation (2.533) becomes identically zero and

again we infer that there can only be closed streamlines ia the

trivial case U = 0 if che flow is steady- A particular

cdase

result s o= 0 when the convection term vanishes and we obtain

the equation of friction controlled flow. Hence steady

friction controlled flow should contain no closed streamlines.

T=40, a>l, |_E‘a‘:%=0
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(4)

This case is produced by a depthwlse variation of the
horizontal velocity components that is not a power law over the
whole flow domain. For steady flow the line integral equation
{2.49) becomes:

[elujDKR2ds = [ a ¥(5|Uu|2D-ds (2.55)
C C

and it is conceivable that some spatial variations of ¢ may
allow the existence of a closed streamline ¢ for which the
fluid velocity is non-zero.

T %0

For steady flow the integral equation (2.49) becomes:

[elu|%x2= [3 Tuds + [ a 3(5[u| D-ds :
C C C

Again solutions to the steady flow equations may exhibit closed

streamlines for all functions a.

Suppose that the velocity varies as some power of the depth
then by case 2 the flow exhibits no closed streamlines when the

turbulent stress terms are neglected. However, in the

traditional formulation of the dynamic equation (2.37) the
depth variation of the convection term leads to a non—zero
effective stress vector T. Hence we conclude by case 4 that
the flow can contain closed streamlines in the absence of
turbulent stresses. This anomaly is caused by the different
methods and assumptions to depth integrate the convective

accelerations.
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2'5

2.5.

1

Three mathematical models of flood plain flow

Steady friction controlled flow

The simplest mathematical model of flood plain flow considered
in this thesis is that of steady friction controlled flow. The
appropriate equations are:

continuity V.q = 0 (2.56)
dynamic ﬂJgj/Kz + th = 0 (2.57)
This pair of equations may be solved as they stand or be
further manipulated to yield the stream function formulation or

the potential formulation described below.

Defining the scalar stream function, ¢,

by:

and taking the curl of the dynamic equation we have:

E-(|S’¢|K_2E’¢) = 0 . (2.58)

This is the stream function formulation of the problem and is
the equation Franques and Yannitell (1974) used to define tne
streamlines of the flow field. Unfortunately the equation
cannot be solved by itself since it depends implicitly on the
water level through the conveyance K. Thus a numerical
approximation to the solution of this equation will contain an
iteration between the solution of this equation and one for

determining the local water depths. Franques and Yannitell
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produced the local depths by solving equaticn (2.37), with time
derivatives and effective stresses set to zero, along the
streamlines determined from an approximate solution of equation
(2.58). This, however, is unsound since it includes the
streamwise component of the convection term in the
determination of water level but excludes the convection tern
entirely from the derivation of the flow field. The streamline
integration should be based on equation (2.57) as discussed in

chapter 3.

The potential formulation of the flow equations arises directly
from a manipulation of equations (2.56) and (2.57). The
dynawic equation can be rearranged to give the unit flow vector
g explicitly thus:

¢ = -k {m|?

Substituting this in the continuity equation we obtain:

9. ®lm|Pwm - o (2.59)
This, the potential formulation of the flow equations, has not
been used before to generate a model of flood plain flow. The
water surface h acts as a form of (non-linear) velocity
potentlal. It has the advantage over the stream function
formulation that all terms in the equation depend soclely upon h
and are independent of the unit flow vector. Thus an
approximation to the solution of equation (2.59) can be
generated without recourse to the calculation of intermediate

values of the unit flows in the iterative process.
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2.5.2

2.5.3

Steady flow with convection and bed friction

In this case the continulty equation (2.56) Is retained coupled

with either of the dynamic equations:

1
(_gf) 9.(ag g/D) + ™ + ﬂlg\/l{z = 0 {2.60)
or
1
7 LX) + ™+ q|q|/K2 = 0 (2.61)
1
In either case writing the convection term-E U.V (a ) as c we

may rearrange the dynamic equation as:

L
2

g = K (Wm+c)|m+c (2.62)
and combining this with the continuity equation we obtain an
equation similar to the potential formulation above but which

now depends implicitly on the water velocities:

. (KI_V'm“sl_ii (Wte)) = 0 (2.63)

Unsteady flow with convection and bed friction

The third mathematical model examined 1n this investigation was
based upon adding the unsteady terms to the flow equations of
sectlon 2.5.2 above. The motivation for this was the
development of an iteration method based upon time stepping to
solve the steady flow equations including the coanvection teru
(see chapter 5). The continuity and dynamic equations are:

Yeq + ath = 0 (2.64)
2.9 + ¥-(qa/D) + gdth + gng|g_|/l<2 = 0 (2.65)
In the dynamic equation the velocity distribution coefficient ¢«
has been set to 1.0 for all computations. Alternatively the

dynamic equation may be written in terms of the depth wmean
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velocity U:

BU + (U.DU + g + goZyluf/k? = 0 - (2.66)
Note that from the discussion in section 2.4.3 any closed
streamlines present in the initial data for the selution of

these equations should decay when steady state boundary

conditions are applied.

Classification of equations

Friction controlled flow

Both the stream function and potential formulations can be
written in the form

P .
v [c|ye vz] =0 (2.67)
where the power P is 2 for the stream function formulation and
P is -% for the potential formulation. Denoting the
derivatives by ai where x =i =1 and y =i = 2 and using

summation convention we have

&P
CH [G(@J.c:pa:.'@fi 3, @] = 0 . (2.68)

Expanding equation (2.68) we have:

kP %P—la.

bi{: bi@(éj(baj@) 1@
+6 (3.20.8F 3,00 (2.69
5% i1 +69)

+ P 3 . 33 (3. 53,3
d; 20, (aJ ;D

and 1f G is a function of & X and y only we see that the
coefficients of the second order derivatives are:
P -2 2
0,0 ¢lyal [1 +elye| (a® = a
P -2
. = 2b
8, ®: ¢|ya 2 p|ye| "3 .2 3 0]

8,y clyel" 1 + B| gl (ay@)z] =c
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2.6.2

The condition for equation (2.67) to be elliptic is b2 < ac and
using the definitions of a, b and ¢ this becomes 1 + P » 0 if
GlV@lP is everywhere non zero. Hence both formulations of the
steady frictlon controlled flow are elliptic. Since the flow
can have no closed streamlines lyh‘ and |y¢{ can only vanish at
isolated points. Also these gradlents cannot become locally
singular in the absence of sources and sinks of flow. These
a-priori conditions, however, are not strong enough to meet the
sufficient conditions for the existence of a ungiue solution to
the non linear equations given by Froidevaux (1975). Existence
and uniqueness of the solution have been proved by E E Sili

{(private communication) and this is reproduced in Appeandix 4.

Suitable boundary conditions on the flow variable - ¢ in (2.58)
or h in (2.59) - are for the value of the variable itself, its
normal derivative, or a combination of these two to be
specified around the entire boundary of the flow domain. The
conditions imposed on stream function and water level are
complementary: when ¢ is specified on a no-flow (solid)
boundary in the stream function formulation, anh 1s set to zero
on the same boundary in the potential formulation. Similarly
where an¢ is set to zero in the stream functlon formulation,
indicating normal flow across the boundary, h should be

specifled as constant in the potential formulation.

Steady flow with convection and bed friction

Writing the solution vector U = (i, h)t, we may represent the
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equations (2.60) and 2.56) as a first order system Lhus:

A3 U+ Bay U+c(u = 0 (2.70)
where
A = 2 ol 0 c? - gu?
okl - v (2.71)
L O 0 J
[ T
3 = by ol -dqv
0 2o c? - pve (2.72)
L 0 1 0

L.
and ¢ = (gD)*, the speed of zravity waves; B= (a —I)qlﬁ and
gﬁg) contains the lower order terms from the bed friction
and bed gradient. Following Garabedian (1964) p 98ff, the

system has characreristic curves ¢(x,y) = constant where:

+ =
det (A'Oxat 86y¢) 0
Setting 6y¢/éx¢ = -—x and expanding the determinant we have:
(al = A¥) [A%c?2 - V2 + 200V + (c2- @) = 0 (2.73)
Thus x = U/V (2.74)
- + 2 2y - 2
or n = PV tc [BUZFVE - c?] (2.75)
(c2- 89
The roots of this quadratic equation are real if:
luj? » e?
This is the condition for supercritical flow, with the
parameter:
v2 = glul¥c? (2.76)

being the two dimensional equivalent of the critical flow
number introduced by Price and Samuels (1980) for the one
dimensional flow equations. When the velocity distribution

coefficient a is set to L:
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v o= |gl/(gn)5=Fr (2.77)
where Fr is the Froude number of the flow. For supercritical
flow the system has three real characteristics one directed
along the velocity vector U and the other two lying at equal
angles Q on either side of the flow directlon where:

@ = tan~! {((v2 - 1)!5) (2.78)
Thus for supercritical flow all three characteristics enter the
flow domain on an inflow boundary and none enter on an outflow
boundary. Appropriate conditions therefore are to specify data
on g and h on an inflow boundary and none on an outflow
boundary. On the solid boundaries at the side of the flow

domain we may specify g.n to be zero, ie, one boundary

condition only.

The case for subcritical flow in which there is only one real
characteristic is not so clear cut. When considering
conpressible aerodynamic flow in which the flow equations are
the same as (2.70) with a= B =1 and with C(U) set to zero
Garabedian (1964) reduces the subsonic (or subcritical) case to
an elliptic problem by using the Bernoulli equation along
streamlines. For this case the appropriate boundary conditiouns
for the stream function are the same as those for friction
controlled flow (section 2.6.1). The same approach, however,
cannot be used for the more general equation (2.7Q) siunce the
Bernoulli function now contdins an integral of the frictional

resistance, the term C(U) along the streamline, see Franques
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.6.3

and Yannitell (1974). This, however, is only a technical
difficulty as zero order terms should not affect the
classification of the equations. The number and location of
boundary conditions for these two cases are shown on

Figure 2.3.

Although the boundary conditions which guarantee a well posed
problem are not known, the numerical calculations were found to
be stable with water level prescribed on the inflow and outflow
boundaries and the convectioun term (U.V)U set to zero in the
elements touching a flow boundary. When combined with a
constant water level along each flow boundary this produced
zero tangential velocities. Values of water level on the flow
boundaries are an appropriate condition for both steady
friction controlled flow (section 2.6.1) and for unsteady
subcritical flow with convection and friction (section 2.6.3).
In all cases specifying as zero the normal component of the
depth mean velocity or unit flow vector is appropriate on

boundaries across which there is no flow.

Unsteady flow with coanvection and bed friction

Employing the same solution vector U = (g_,h)t as in section
2.6.2, we may write the flow equations (2.30) and (2.7} as a
first order system thus:

La, U + A(U) BU + B(U) ayu~+ cu) = 0 (2.79)
where 1 is the identity matrix, A and B are given by (2.63) and

(2.66) respectively and C contains the lower order teras {rom
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the bed friction and bed gradient. Following Garabedian (1964)
the system has characteristic surfaces defined by:
¢ (x,t) = constant
where ¢ is determined by the equation:
det (IatchAaxchB%(b) = 0 (2.80)
The nature of the characteristics implied by the equation
(2.80) is discussed in detail in Appendix !l using methods
similar to those of Daubert and Graffe (1967). They identified
the characteristics of the shallow water equations, ie the
limit in which the velocity distribution coefficient a is
unity. The skewed circular bicharacteristic cone found by
Daubert and Gratfe appears as the appropriate special case (o =
1) of the general system (2.79). In practice the distributien
coefficlent is likely to be close to unity and the shape of the
bicharacteristic surface, in loose terms, is a skewed
elliptical cone. {In some cases a true ellipse and in others
an oval which is not a conic section). For values of ¢ (and
its depthwise variation) outside those of practical importance,
the bicharacteristic surface has some unusual shapes which are

topologically different from a circular cone.

For the near elliptical cases the conditioen for the
bicharacteristic surface to lie wholly within the problen
domain, ie for the flow to be supercritical, is identical to
that found for steady flow in section 2.6.2. The condition is
that the critical flow number of equation (2.76) satisfies

vZ » 1. The intimate link between the characteristics of the

steady and unsteady flow equations can be further illustrated
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in the case of supercritical flow and « = 1 by considering the
normal projection of the skew circular bi-characteristic cone
of the unsteady flow equations onto the plane t = 0. The
extreme generators of the cone, when projected, fall on lines
at an angle either side of the x axis given by

-4
tan~1((Fr2 - 1) *).
These lines are precisely the characteristics of the steady

flow equations, see Fig 2.4.

Daubert and Graffe (1967) discuss the nuaber of boundary
conditions that should be applied to the shallow water
equations. They show that for subcritical flow two quantities
wmust be specified on an inflow boundary and cne on an outflow
bouandary. For supercritical flow three conditions should be
siven oa an inflow boundary and none on an outflow boundary.
Along a boundary across which there is no flow a single
condition should be specified. The same arguments hold for the
more general equations in this sectlon since the
bi-characteristic surface is tapologically equivalent to the
skew circular cone of Daubert and Graffe. The one condition
that changes is the definition of when the flow is sub or
supercritical, which in Daubert and Graffe's work depends upon
the square of the Froude number equation (2.77), but here

depends on the critical flow number v2
Having established the number of boundary conditlions which must

be applied we need to choose those conditions which give a well

posed problem. The appropriate conditions for the shallow
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water equatlions have been discussed by Oliger and Sundstrim
{1978) and at greater length by Verboom, Stelling and Officier
(1982). The identification of the characteristics of the non-
linear system (2.79) ensures the exlstence of a unique solution
to the equations for analytic Cauchy data by expanding the
solution as a Taylor series. (Considering the flow in a dowain
over the time [O, T] the initial-boundary value problem for the
hyperbolic system (2.79) produced by giving data on Qat t = 0
and on 2 x (0, T) yields a Cauchy problem provided that the
inflow and outflow boudaries are nowhere characteristic, that

is the flow is not exactly critical on these boundaries.

Verboom et al {op.cit) apply the classical energy method to
determine what boundary data gives a stable solution of the
shallow water equations. They consider the flow equations with
the depth mean velocity U as a dependent variable instead of
the unit flow vector g. This change of variables should not
affect the choice of boundary conditions which provide a well
posed problem, neither should the coefficient a for values
sufficiently close to 1 (the shallow water case), since the
topology of the bi-characteristic surfaces is unaffected. The
energy wmethod as applied by Verpoom et al provides sufficient
conditions for a well posed problem which may in fact not be
necessary since the stabilising effect of the non-linear
friction losses 1s ignored. 1In particular they show that for
sub-critical flow the following boundary data are appropriate:
on inflow boundaries — water level and tangential

velocity
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2.6.4

on outflow boundaries - water level

on solid boundaries - normal velocity.

Higher order terms

Tacluding the turbulent stresses in the model as a diffusive
type tera (see section 2.3} changes the type of the flow
equations. The system represented by equations (2.7) and
(2.30) is no longer hyperbolic. Gustafsson and Sundstrom
(1978) describe such systems as incompletely parabolic and they
analyse appropriate boundary data. In particular further
conditions need to be imposed on the solid boundaries which may
describe either no slip or free slip for the tangential
component of velocity. The no slip condition gives rise to the
formation of a bouadary layer in which the tangential component
velocity rises from zero at the edge of the flow region to the
tree stredam value. The typical size of such a boundary layer
has been discussed in section 2.4.2 above and it will require a
mesh of comparable size to resolve it. Vreugdenhil and
Wijbenga (1982) found this too restrictive for their practical

computation.

Streamline coordinate system

When the flow is steady the appropriate continuity equation
(2.56) implies the existence of a stream functioan. The flow
equations may be written in the curvilinear coordinate system
based upon lines of constant stream fuanction and normals to
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Let (s,n) be the streamwise and normal coordinates and
x(s,n) and y(s,n) be the mapping functions from (s,n) to the
common cartesian coordinates (x,y). The metric functions for

the (s,n) system are:

2, = ((ox)2+ (asy)2]5 (2.81)
1= ((ax)2+ (any)l’)15 (2.82)

Since the (s,n) system is orthogonal we have the relationship:
asx anx + asy 6ny = 0 (2.83)

For the case of g = 1 equations (2.56) and (2.60) become (Rouse

1959):
(%, 4) =0 (2.84)
d (h + U?d/2g) + ,QSD2U2/Lc2 =0 (2.85)
_ 1l 2 -

rtor (U¥g)+ 3h =0 (2.86)

where ¢ = UD is now the magnitude of the two dimensional unit
flow vector q. The continuity equation (2.84) can be
integrated immediately to give:
ﬂh q = constant on a Streamline
The components of the convection term are:

stream direction E)S(Uz/Zg)

normal direction -UZ2/gR.
The radius of curvature R of the streamlines is given by
R = 2(82)71
There does not appear to be any advantage in basing a
computational algorithm on these equations since the metric
functions (2.81) and (2.82) and the orthogonality condition
{2.83) are part of the overall problem as is bed topography in

the {s,n) system. However, the sluple nature of the comvection
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term in this coordinate system may be used to check values
obtained from actual computations, provided that the radius of

curvature of the streamlines can be estimated.

A case where the use of streamline cootdinates is helpful is
flow round a bend whicin 1s an arc of a circle. Consider
steady, uniform flow a chaunel with rectangular cross section
forming a 1807 bend (as represented by Mesh 8 of Appendix 2).
If the streamlines argund the bend are semi-circles following
the channel geometry we may write the flow equations using

pelar coordinates (r, ©)

W = g(r) (2.88)
—r—ladl+-uzoz K% =0 (2.89)
o - eyt =0 (2.90)

The depth mean velocity U is a function of r only and the
assumption of uniform flow implies 661 is a constant. Suppose
that the water depth is constant (to first order) across the
flow; equation (2.89) reduces to

y=cpr (2.91)

L _
where C, is K (6CP)2D l. The magnitude of the convection term
in equation (2.90) is

2 -1 -2 -
|u"(gr) "| = cor (2.92)

, 2 2.-1 .

where C, is K 651 (gh”) "+ The water level difference across

the flow is

(2.93)

where Ri is the radius of the inside of the hend and R 1is the
o)
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radius of the outside. A second order solution could be
produced by including this varlation of water level in equation

{(2.89) and (2.90).
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CHAPTER 3

THE STREAM FUNCTION MODEL

Introduction

The stream function model is based upon the pair of equations:
v & 2| 4| 99} (3.1)
dgh + K~ 2| 7yl 2 (3.2)

see section 2.5.1 above.

Equation (3.1) is formed by taking the curl of the steady two
dimensional flow dynamic equation to remove the gradient of the
water level. It determines the streamline geometry for the
given mesh and boundary conditions. Equation (3.2) is merely
the trace of the full dynamic equation (2.57) ia the direction
s of a streamline. Since the conveyance function K in equation
(2.31la) depends upon the flow depth (and hence upon surface
level) equations (3.1) and (3.2) are solved by successive
iteration. The stream fuaction ¢ is determined from (3.1)
gziven a water level function h, and h determined from (3.2)

given a stream function ¢.

The method outlined above is essentially the same as that
proposed by Franques and Yannitell (1974). The principal
difference is that in contrast to the work of Franques and
Yannitell the Bernoulli equation (3.2) contains no contribution
from the convection term. The reason for this is that the

equation (3.1) used to define the flow field also omits the
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3.2

3.2.1

convection term. A consequence of this 1s that the water level
should be constant on an outflow boundary which is normal to
the flow direction. One test of the quality of the numerical
results 1s that the water level calculated on each inflow

boundary should alsc be constant.

The stream function formulation was tested for several
different mesh geometries, see Table A2.1 in Appendix 2. Much
of this chapter discusses the convergence of various iterative
methods for generating approximate solutions to equation (3.1)
and (3.2). Having obtalned methods which converge using an
acceptable amount of computation the quality of the numerical

results and their physical significance are then discussed.

The finite element approximation

The basis functions

In the stream function formulation both the stream function
itself and the water level are represented by piecewise linear
continuous functions based upon the values at the nodes of the
mesh. For example the stream function ({x,y) is approximated

by ¥(x,y) which 1s given by:
e
¥= 3 ¥ NS (%,) (3.3)

where the sum runs over all the elements e and N? (x,y) are the
|

basis functions. In the computer code the basis functions for
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a general triangle have been determined from the area
coordinates, thus for the triangle in Fig 3.1,

NE (p) = area (pjk)/area (ijk) (3.4)

Defining the orthogonal unit vectors (gl, e 5 ga) with e,
pointing out of the plane of the triangle ijk we may define the

basis function and its gradient by

e
- -1 . .
N, (x) b Bx§j+§kx§+§jx§k} e, (3.9)
€ = =1 - .
IN; () it ()gj X ) x ey (3.6)
where p = (Eix X, + K% Xy + ¥ % Ei). ey (3.7)

is twice the area of the triangle ijk and X, etc are position

vectors from an arbitrary origin.

The use of linear triangles for the basis function has a
further consequence of numerical importance: all the
streamlines, jie coatours of ¥ in a given element, are parallel
lines. Thus except in the trivial case that ¥ is a counstant in

an element we may deduce the following simple observations.

Observation 1

In each triangle there exists a node, k, for which the
streamline through that node is contained within the triangle

and cuts the opposite side, s, of the triangle internally.

Observation 2

Except in the case that the streamline coincides with a side of

the triangle the node in observation 1 is unique.
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3.2.2

Observation 3

Each triangle in the mesh falls into one of the following

categories, see Fig 3.2:

A : a side of the triangle coincides with a streamline,
B : the side s is downstream of node k,

C : the side s is upstream of node k.

These observations allow a particularly simple streamline
integration procedure to be drawn up to approximate the

solution of equation (3.2), see section 3.2.4 below.

The bed topography

The channel bed level and flood plain ground level in general
slope gently in the downstream direction. At the river bank,
however, there is a sharp change in bed level, and one of the
early choices to be made in modelling the topography was how to
include this characteristic feature. The options were either
to model the ground level as continuocus as in nature but with a
much refined grid in the neighbourhood of the river banks, or

to adopt a discontinuous representation of the bed.

The second option was chosen since the grid refinement required

for the first option was not practical. The change between

flood plain and channel bed levels occurs over a distance of
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3.2.3

typically less than one twentieth of the main channel width.

Away from the essential discontinuities across the river banks
the ground level may be treated as continuous or discontinuous.
The early tests of the stream function model took the grouad
surface away from the banks to be piecewise linear continuous,
using the same basis functions as for the stream function and

water level. The only discontinuities lay at the river banks.

The final tests of the stream functicn model and all tests of
the potential formulation used a lower order approximation for
ground level: piecewise constant based notionally on the
centroid of each triangular element. An advantage of this
latter methed was that no additional "book-keeping” was
required in the course of the calculation since the
discontinuity at a river bank was automatically included. The
bed topography enters the computation only in the evaluation of

the friction losses with a suitable quadrature rule.

Finite element equations for the stream function

The implementation of the stream functicn method has been based
upon the standard (Bubunov -) Galerkin procedure of weighted
residuals. This is done using the weak form of eguation

(3.13.

= < T(C V), 0 > = < C T, Ter 4 jcf¢anqdr= 0 (3.8)
where ¢ is any ¢l continuous test function, I' 1s the boundary

to the flow domain 2, Cf = K‘2|E¢| and the inner product

59



notation <a,b> 1s defined by [fa.bdQ. Thus given a water level
approximation H and choosing ¢ to be one of the basis functions
Nj we obtain the following equation for the approximation ¥ to

the stream function:

<CeYY Wor= - J'Cfijn‘iﬁl" . (3.9)
The boundary of the flow domain may be classified as either:

1. rb on which Dirichlet data are specified for the stream

function; the no flow boundaries.

2. Iﬁ on which homogeneous Neumann data are specified for the

stream function; the inflow and outflow boundaries.

The choice of test functions is restricted to those for which
Nj = 0 for points on the boundary seguments [., see Strang and
Fix (1973) and Zienkiewicz (1977). On the boundary Ih we have
an¢ = 0 since rh is normal to the flow direction. Hence in all
cases the boundary integral in equation (3.9) is identically
zero and we have the finite element equations:

< CfEW; ij> =0 1 £j £N j not on Ib (3.10)
with the boundary conditions ?k given for k on Ib. In the
initial version of the stream function method, the coefficient
Cf was evaluated from information at the preceding iteration.
However, in the final version the value of IEWI in C. was

f

incorporated at the new iteration level.

Suppose the nodal values of stream function at the new
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iterative level ntl are written as:

+1 1
&= g 3.11
J J ?J ( )
and the finite element equations re-written in terms of &.. A

quasi-Newton form of equation (3.10) is obtained by expanding
to first order in £, thus:

]
<k 29 ve, W+ pe k2| g T e vend W o

= - <K—?ly\fll_mj>, (3.12)

The parameter p controls how the influence of the variation £
affects the magnitude of the gradient of the stream function.
Taking p = 0 gives the successive substitution algorithm used
by Franques and Yannitell (1974) and taking p= 1 gives a

complete first order variation and produces a Newton scheme.

When forming the inner products in equation (3.12) numerical
quadrature wmust be used. For the final version of the stream
function model the centroid value was used since all the terms
are piecewise constant in each element. The i{nitial tests of
the stream function and potential formulations included some

trials of different quadrature rules.

The finite elemnent equations are written in the form:

aij %_= bj (3.13)

h = T e _ e

where a,. = }a_ ., and b, = E b, for 1< £ number of elements.
1) 1) J ]

From equation (3.12) for element e we have, usiug centroid

quadrature:
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aij = A% k2| y¢| {_vni._mj + p(_V\lp._Wi)(_V‘ip._Wj)| v |- 2} (3.14)

b? = A% k2| vﬁy\f‘-yﬂj (3.15)

In these equations A% is the area of the element and all terms
except K~ 2 are constants by definition. Thus the effect of

numerical quadrature was restricted to the function K~ 2

The analysis in section 3.4.2 indicates that a more general

updating procedure than equation {(3.11) should be used to

obtain T§+l thus:

VARl R (3.16)
J J J

where A is a relaxation parameter

3.2.4 The stream line integration procedure

The Bernoulli equation (3.2) is used to define the water levels
at each node appropriate to a given set of nodal values of
stream function. The observations in section 3.2.1 on the
streamline geometry allow the implementation of a particularly

simple explicit marching procedure, as follows:

1 define water level at nodes on each outflow boundary,

2 examine all the elements connected to the outflow boundary,
setting up a stack of integrable elements,

3 if stack is empty, halt,

4 calculate the water level at the upstream node of the
integrable element at the top of the stack and remove that

element from the stack,
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5 examine each element containing the node where the water
was defined in step 4 and add it to the stack if it is
now integrable,

6 loop back to step 3.

The integrable elements of steps 2 and 5 are those of class B
{see Fig 3.2), where the water level is known along the
downstream side and unknown at the upstream node, together with
those of class A, where the water level is known at the
downstream node and at the node not on the streamline but is
unknown at the upstream node. Ia step 4, if the water level is
found to be known at all nodes of an element, then the next

item on the stack is taken immediately.

We observe that
1 at the end of step 2 the stack must be non-eapty if an
cutflow boundary contains more than one node,
2 the alzorithm is finite,
3 the algorithm may not be unique and in that case the
ordering of the elements may affect the calculated water
levels.
The condition for the algorithm to be unique is that tine eleaents in

class A lie along the no flow boundaries of the mesh.

The calculation of water level at the upstream node is based

upon a numerical approximation to equation (3.2). Thus:
2

2 -
ho=h, + s |[v¥] K (3.17)
u d —
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where hu is the unknown water level at the upstream node, hd is
the water level at the point where the stream line intersects
the downstream side, and As is the length of the segment of
streamline within the triangle. The gradient of the stream
function is evaluated from the most recent iteration. The
conveyance function K is obtained at the centroid of the
element and depends upon the unknown level hu' Hence a Newton
method was used on equation (3.17) with the derivative of K wrt
hu being obtained frow the appropriate power law approximation,

see section 2.2.2.

In the initial tests of the stream function model the Chezy
friction law was used, which gives a quartic equation to solve
from (3.17). 1In this case, since the bed topography was
plecewise linear, the mean value of K was determined from the
two ends of the streamline rather than by taking the element

average value at the centroid.

Integrating against the stream direction ensures that the
calculation is stable to growth of rounding error. Suppose
that h0 is the solution of equation (3.2) and { is a
perturbation from an error qa at the downstream end s = d of

the streamline. We have

3,6 = (2pWD )| Vo] K2 . (3.18)

where DD is the undisturbed depth of flow (ho—zb) and p is the

power in the relationship



K = cp? (3.19)
This equation can be integrated as

L(s) = T, exp {-E(ZpDoij¢| X~?) ds} (3.20)
We have L.5 <p <2 (see section 2.2.2) and d > s since we are
considering s positive in the downstream direction. Hence we
see that g(s) < Co and thus errors decay against the stream

directcion.

It is possible to interpret the streamline integration.
procedure as a Petrov—Galerkin finite element method based upon
the full dynamic equation:

L(h) = ¥h + | Yok~ 2 curl ¢ =0 (3.21)
Define the weighting friction xi for an element as follows:

1 if e is in class A or class B and k is the upstream

CamY
[s13
L —
Py
i

{b) xi = 0 otherwise.

This definition is appropriate to the case where algorithm is
unique as defined above. Where this is not the case XE is
taken as 1 in the first element encountered if e lies in class
A and the streamline side is not along a mesh boundary. A
possible but so far untested alternative is to take Xﬁ = % in
the two elements concerned in such a case. The Petrov-Galerikin
equivalent of the streamline integration procedure is then:

<L(h). curl ¢, % >=0 (3.22)
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3.3

3.3.1

Numerical quadrature

Most of the computations used centroid quadrature, this being
the simplest rule compatible with equation (3.1), see Strang
and Fix (1973). However, two other formulae were tested. The
3 point degree 2 rule based upon the area coordinate values
(2/3, 1/6, 1/6) with weight 1/3, and the 7 point degree 5 rule
of Table 4.1 in Strang and Fix. The table of coefficients in
Strang and Fix contains an error for this latter rule. The
weight assoclated with the centroid should be 0.225 exactly,
not 0.22503300033000 as indicated in the-text: this correction
ensures that

Pow, =1 (3.23)
where w, is the weighting value for quadrature point 1.

i

Software techniques

Introduction

The initial software development and testiug was carried out on
an ICL 19045 computer. This had a usable storage capacity of
about 85k words, equivalent to about 40k single precision real
numbers. During the research this computer was replaced with
an ICL 2972 which imposes no limitation on program size. The

finite element codes have all been written in ANSI (1966)
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3.3.2

.3

standard Fortran and have operated successfully on both

computers.

The choices made for internal data storage and manipulation

were influenced by restricted core space of the ICL 19045
computer and as a result the software should fit easily on many

of the current generation of l6 bit micro-computers.

Solution of linear equations

Practical problems in river engineering are likely to lead to
meshes with several hundred nodes and variables. To fit this
size problem on the 19045 computer, obviously an out of core
method of solving the linear equations was required. The
frontal technique develcoped for symmetric systems by Irons
(1970) and adapted for non-symmetric systems by Hood (1976) was
an obvious choice. Its operation is based upon the finite
element philosophy of the gradual assembly of the system of
linear equatlons and is particularly suited to 2D problems
where Lthe mesh has significantly more nodes in one direction
than the other. This is typically the case for river models
where the length of the reach of a river valley being studied
is usually several times the width of the valley. Appendix 3

describes some wodifications made to tHood's code.

doundary data

In the final version of the code the mesh boundary is divided
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3.3.4

into a number of segments where Dirichlet or Neumann data are
imposed. The program examines the mesh in order to pick up the
element edges along the boundaries. These elements do not
share a common side with any other element. The user need only
supply the nodes which divide the following different boundary
types:

1. no flow — stream function specified

2. outflow - water level specified

3. 1inflow - no data given.

The code checks that all the boundary has been classified,

warns 1If the mesh represents a multiply connected region, and
checks that the boundary data are consistent. This last test
includes a check on the values of the stream function at the
limits of the flow boundaries to ensure that the data in fact

Zives inflow or outflow as appropriate.

Initialization

The iterative algorithm using equation (3.12) requires some

initial values for |yw| and for the conveyance function K. The

most important feature was found to be that of providing

reasonable estimates for the conveyance K, since this has a

significantly different value in the main channel from that

typical for the flood plain. The value |EY‘ was set to unity

in all elements for the initial iteration and the conveyance
function calculated from the friction law together with an
estimated depth at the centroid of each element. This depth
was calculated from the water depthg specified along the

outflow
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3.3.5

boundaries taking account of the various reglons of the mesh

defined riverbanks and the wesh boundary.

Convergence criteria

The convergence rate is of prime iwmportance in determining
whether the method is of use for practical calculations. As
there are no known analytic solutions to the flow equations
except for trivial geometries, the convergence criteria have
been based on monitoring the relative change in properties of
the solution as the iteration progresses. The measures of

convergence adopted may be written in the forua:

nt+1

n {Zlftrkl n ’

€ = max - f I/‘f

n
+£% ) (3.25)
L)@t 3 ] J

n . . 1
Here e is the convergence parameter for the n—-th iteration of

the function f. The limit M of the range of j is the number of

nodes if f is based at nodes (eg stream function) or the number

of elements if f is based on elements (eg depth at ceantroid or

velocity).

From the definition of e? we may deduce the following

properties:

(a) if the sequence {f?} diverges at some value of j then

e. »2,

(b) if the sequence {f?} oscillates between two values at soue
n n—-1

value of j then € =g

*
(c) if the sequence {f?} converges to a limit &j} at all
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3.4.1

values of i then En

0.
¢ +

For the stream function formulation the convergence parameters
were calculated for the values of stream function and depth at
the nodes. The convergence parameter for depth was calculated
only in the element used to define the water level at the node

in question during the stream line integration procedure.

Performance and analysis of the lterative methods

Introduction

The tests described in this section were all based upon meshes
derived from 3coky's (1964) flume geometry, see meshes 1 and 4
in Appendix 2. The analysis here conceras only the convergence
rate of the iterative method for the finite element equations
and not the convergence of the finite element solution to a
solution of the differential eguations as the element size is
reduced. In engineering practice the mean element size is
likely to be determined more by the topography of the prototype
and the computing resources available than by the convergence

properties of the method as the mesh size is reduced.

The initial use of the stream function formulation involved the
successive substitution algorithm of Franques an Yannitell
{1974) and the development of the two parameter updating

algorithm. These tests were based upon the geometry of mesh 1
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and a piecewise linear approximaticn te the ground level with
discontinuities at the boundaries between the channel and the
flood plain. The tests assumed Chezy's friction law and the
first test included the convection term in the streamline

integration.

The second phase of the work used the more general form of the
finite element equations (3.12) to (3.15). The bed geowmetry
for these tests was piecewise constant in each element with
significantly larger discontinuities at the boundary between
channel and flood plain than elsewhere. Tests of the potential
formulation were also based on this description of the geometry

see chapter 4.

Successive substitution algorithms

These algorithms are based upon taking the parameter . in
equation (3.12) as zero. They may be written as approximations

to solutions of:

v (k)2 e g+ ) = 0 (3.26)
qP+l - qp + A (3.27)
hn+l _ I(¢n+1) (3.28)

where the superscripts n, otl denote the iteration levels, X is
a relaxation parameter and [{ ) represents the streamline
integration procedure laid out in section J3.2.4. Taking A as 1
we obtain the algorithm published by Frangues and Yannitell.

This had a poor convergeuce rate in all tests of the method.
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TABLE 3.1

CONVERGENCE PARAMETERS FOR FRANQUES AND YANNITELL'S METHOD

Test 1 With Initial Model Test 2 With Final Model

Iteration Stream Depth Stream Depth
Function Function
1 0.182 0.0229 1.40 0.304
2 0.177 0.0217 1.29 0.257
3 0.171 0.0202 1.26 0.172
4 0.163 0.0179 1.13 0.126
5 0.156 0.0177 1.09 0.0963
6 0.149 0.0161 0.952 0.110
7 0.143 0.0158 0.907 0.0847
8 0.136 0.0142 0.787 0.0934
9 0.130 0.0148 0.714 0.0754
10 0.124 0.0141 - -
average rate 0.96 0.95 0.92 0.84
asymptotic 0.96 0.97 0.90 0.94
rate

Note: The average convergence rate shown has been calculated from all
the iterations. The asymptotic rate 1s for the last four

only.
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The convergence parameter, g, for stream function and depth at

the nodes both satisfied the approximate relationship:

The convergence rate r for stream function lay between 0.9 and
0.97 indicating that at least 20 interactions would be required
to achieve each decimal digit of precision. The convergence
parameter for the stream function was always an order of

magnitude larger than that for the water depth, see Table 3.1.

That the convergence rate was near 1 suggested that the values
of the solution were oscillating and this was coafirmed by
plotting the values of stream function at two nodes either side
of a bank against one another, see Fig 3.3. Thus the flow was

tipping between the channel and flood plain.

The performance of the iteration method can be analysed
approximately assuming that the conveyance function K is
constant. Hence we consider the model equation:

¥ {| vl ye} =0 (3.29)
and suppose that the Galerkin equations have a solution {Tg} of

nodal values. That is, for all test functions Nj’

* *
< v | W ¥, W>=0 (3.30)

where we have used summation convention on repeated suffices.
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*
Now let the nth 1lterate ?E for Tk be:

* n
q{:= ¥+ Eg (3.31)

where EE Is the nodal error. The weak form of equation (3.26)

for the updating function § then becomes:

* 0 ¥ n
W RO [ W (FH+R) + £, B> =0 (3.32)

n

Expanding to first order only 1n terms of Ek

and gi we have:

* *
I g | W g, wWy>=- <| v 5 | BUET, Wi (3.33)

* * n *
- <|mkuyk|~l (W ¥ - NEDW, ¥, ;Nj>+ (2nd order terms) .

To simplify equation (3.33) further we recall that ij is
constant in each element and that all the inner products are
evaluated using centreid quadrature. In each element e we can
write:

n n n
VB =F e + G e
- e -s e =

. (3.34)

where the orthogonal unlt vectors e, and e, are in the
*

directions of the approximate streamline and V¥ respectively.

Thus the two lnner products at the right hand side of (3.33)

can be combined and written as:

*
- Te vl feel e +Fl e ) Wy (3.35)

Using the updating procedure (3.27) we deduce that En+1
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satisfies the following Galerkin equations (to first order).

L V‘FZ‘_EEID+1, > =

L < vr| (1206 e, + (1-0F2 e}, W.» (3.36)
e e =t e =g 7 273
By examining the form of equation (3.36) we see that the finite
+1
element equations for yEn will produce the weighted best fit
for
(1-206" e, + (1-0F" 3.37
e St ) e S5 (3.37)
However, the piecewise constant function represented by (3.37)
does not in general lie in the image under grad of the
piecewise linear approximation space used for the stream

function.

n n n .,
Suppose the error E is such that Ge > Fe in a patch of
elements, ie the stream direction is correct but the unit flows

are inaccurate. 1In this case we would expect

+
™ L -2 n6” (3.38)
and hence if A = 1, as suggested by Franques and Yannitell, we

ntl n . .
have G == G and thus the successive iterates oscillate

about the true solution. This explains the behaviour exhibited
in the early tests and demonstrated by Fig 3.3. 1f, however,

GZ << FZ we might take A = 1 and

n+l n
Fe = (1 A)Fe (3.39)

¥

that is the error in the stream direction is eliminated.
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Suppose now A = % then, from equation (3.38), we see that the
error in the cross stream error is likely to be eliminated,
should this domirate. However, from equation (3.39) the error
in the stream direction 1s only halved where it is dominant.
This suggests that for A = % the convergence rate r should be

approximately 0.5.

The cobservation that the streamwlse error 1s approximately

1 and the cross stream direction error

eliminated by \

eliminated by A = % suggests that an iterative method based
upon taking the relaxation parameter as A= %, A =1 1in

alternate iterations should out-perform the algorithm obtained

by taking elther of these values for all iterations.

Several tests were carried out which confirm the main points of
the analysis above. These tests are summarized in Table 3.2
{along with others) and the convergence parameters given in

Tables 3.3 and 3.4.

The convergence rates obtained 1In all these tests are a marked
improvement upon the performance of the Franques-Yannitell
iteration procedure (see Table 3.1). The asymptotic rates
indicate the performance of the schemes after differences in
the initialization have been removed, and lie mostly in the
range 0.39 to 0.32. Thus approximately one digit of precision
1s obtained for every two 1lterations. The rates have been
based upon the number of iteratiouns for the stream function,
since the calculation of water levels is explicit and does not

require the solution of any sets of linear equations.
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TABLE 3.2

TESTS OF THE STREAM FUNCTION FORMULATION

Test Model Mesh Relaxation Gradient Iterations Results

parameters parameter For Stream Table

A W Function
1 Initial 1 1.0 1.0 0.0 1 3.1
2 Final 4 1.0 1.0 0.0 1 3.1
3 Initial 1 0.5 0.5 0.0 1 3.3
4 Initial 1 0.5 1.0 0.0 1 3.3
5 Initial 1 0.5 1.0 0.0 2 3.3
6 Final 4 0.5 1.0 0.0 1 3.4
7 Final 4 0.5 1.0 0.0 2 3.4
8 Final 4 1.0 1.0 1.0 L 3.5
9 Final 4 1.0 1.0 1.0 2 3.5

Note: The differences between the initial and final models are

described in section 3.4.1.
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Notes:

TABLE 3.3

CONVERGENCE PARAMETERS FOR TESTS 3, 4 AND 5 WITH THE INITIAL MODEL

Iterations Test 3 Test 4 Test 5
for Stream Stream  Water Stream  Water Stream  Water
Function Function Level Function Level Function Level
1 4.84(-1) 1.12(-1) 4.61(-1) 9.74(-1) 4.6L(-1) -
2 1.06(-1) 1.21(-2) 7.47(-2) 5.64(-3) *B8.51(-2) 9.41(-2)
3 1.53(~2) 3.47(-3) 2.46(-2) 2.16(-3) 8.77(-2) -
4 3.84(~3) 1.36(-3) 5.73(-3) 3.56(-4) *L.11(-2) 7.89(-3)
b 1.41(-3) 5.71(=4) 1.75(-3) 1.52(-4) 4.00(-3) -
6 5.10(-4) 2.31(-4) 4.61(~4) 2.27(-5) *4.19(~4) 4.l8(-4)
7 1.90(~4) 9.16(-5) 1.47(=4) 1.02(-5) 3.8L1(-4) -
8 7.27(-5) 3.60(-5) A4.58(-5) 1.86(-6) *6.65(-5) 3.03(-5)
9 2.82(-5) 1.40(-5) 1.15(-5) 6.32(-7) 2.59(-5) -

10 1.10(~5) 5.46(-6) 4.78(-6) 2.42(-7) *6.86(-6) 1.40(~6)

11 Ga34(-6) 2.12(-6) 1.30(-6) 6.40{-8) 3.27(-b) -

12 1.72(-6) 8.62(-7) 4.68(-7) 2.91(-8) *9.17(-7) 1.20(-7)
average 0.32 0.34 0.29 0.26 0.31 0.26
rate
asyamptotic 0.39 0.39 0.32 0.35 0.34 0.25
rate

(a) 1.72(-6) = 1.72 x 10~

{b) the averate rates have all been based upon the number of

iterations for stream function which is a measure of work

involved

{¢) * denotes change from previous iteration without a

recalculation of water level.
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TABLE 3.4

CONVERGENCE PARAMETERS FOR TESTS 6 AND 7 WITH THE FINAL MODEL

Iteration Test 6 Test 7
For Strean Stream Water Stream Water
Function Function Depth Function Depth
1 2.15(0) 1.49(-1) 2.15(0) -
2 2.44(-1) 3.16(-2) *1.87(-1) 1.27(-1)
3 1.53(-1) 1.19(-2) 3.78(-1) -
4 3.46(-2) 4.15(-3) *1.57(-2) 3.38(~2)
5 2.42(=-2) 1.65(-3) 6.10(-2) -
b 3.77(-3) 3.96(-4) *1.21(-3) 5.14(-3)
7 2.72(-3) 1.75(-4) 8.77(-3) -
8 3.93(-4) 3.,21(=-5) *4.28(~4) 7.29(-4)
9 2.96(-4) 1.73(-5) 1.08(-~3) -

10 - - *4.07(-5) 9.93(-5)
Average rate 0.33 0.32 0.41 0.41
Asymptotic 0.33 0.32 0.36 0.37
rate

Notes: (a) all sites based upon numbers of iterations for stream function

(b) * denotes changes from the previous iteration of stream function

without a recalculation of water levels.
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3.4.3

Comparing the asymptotlc rates achleved for tests 3 and 4
(L=%and h= %, | alternately) the two parameter algorithm
seems to offer a small advantage In 1its speed of convergence.
In tests 5 and 7 two lterations of stream function were carried
out for each 1lteration of water level, the reasoning behind
this beling that since the proportionate changes in water depth
were in general somewhat smaller than the changes 1n stream
function, the total effort might be reduced by obtalning these
more accurate values of stream function. Although the
convergence rates obtained In test 5 are comparable with those
for test 4 with the initial model, the rates obtalned in test 7
seem Inferior to those of test 6 with the final model. These

results indicate that the two parameter algorithms A = 0.5,

A= 1, in alternate iterations, for the stream function is
probably the best of the successive substitution methods.

There is no clear advantage in not re—evaluating water levels
each tlme the stream function is updated. The method takes
about 12 or 13 1terations to achleve an accuracy of 1 part in
106, Having obtained a solution for the numerical model of the
flow it is reasonable then to look at the relatlonship between

the model results and what 1s observed in the prototype. This

is done in section 3.4.4 below.

First order variation method

The idea of the first order variation method came from work on
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the potential formulation discussed in chapters 4 and 5 below.
The method includes to first order the change in Iy?1 at the
new lteration level. The Galerkin equations for the method are
given by equatlons (3.12) to (3.15) taking the gradient

parameter uas 1.0.

Tests were done with the final version of the model only on the
geometry of mesh 4 with the ground (or bed) being a piecewise
constant function. Table 3.5 gives the convergence parameters
for two tests of the method. 1In the first of these tests,
(number 8 of Table 3.3), the water level was recalculated after
each iteration for the stream function. 1In the other test two
iterations of stream function were done before the water levels

were recalculated.

The results clearly show that, for the flume geometry used, the
parameters for test 8 give the optimum performance in terms of
convergence rate. Convergence to machine precision (6 decimal
dizits) occurred in about 6 to 7 iterations. The fact that the
changes tc water levels made for each invocation of the streanm
line integration procedure were nearly the same in tests 8 and
9 indicates that the extra iteratlon for stream function in
test 9 produced no benefit. It is interesting to note that the
additional (even) iteration for stream function in test 9
produced changes of the order of the square of the preceding
(odd) ireration (of the starred and unstarred values in Table
3.6). This indicates that in the absence of changes to water
level (and hence the conveyance function K) the first order

variation method achieves an almost quadratic convergence.
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TABLE 3.5

CONVERGENCE PARAMETERS FOR FIRST ORDER VARIATION METHOD

Iteration Test 8 Test 9
For Stream Stream Water Stream Water
Function Function Depth Function Depth
1 1.07(0) 1.48(-1) 1.07(0) -
2 1.38(-1) 1.63(-2) *9.01(-2) 1.38(-1)
3 1.25(-2) 1.71(~3) 1.67(-1) -
4 1.44(-3) 1.77(-4) *5.53(-3) 2.50(=2)
5 2.14(-4) 2.34(-5) 2.35(-2) -
6 2.73(-5) 2.89(-6) *1.17(-4) 3.31(-3)
7 3.10(-6) 1.65(-6) 3.06(-3) -
8 Converged to machine *2,39(-6) 4.01(=4)
9 precision - 3.66(-4) -
10 - - *1.40(-6) 4.16(-5)
11 - - 3.78(-5) -
12 - - *7.03(~7) 4.12(-6)
Averape rate 0.12 0.11 0.36 0.35
for iterations 1 to 7 1l to 6 1 to 11 2 to 12

Notes: * denotes changes from the previous iteration of stream function

without a recalculation of water levels.
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3.4.4 Comparison with the prototype

In this section we consider the relationship between the
numerical solution for meshes 1 and 4, with the stream function
formulation, and Sooky's {1964) experimental results (Geometry
4) upon which the meshes were based. The meshes have an
identical description of the geometry of a single meander wave,
apart from the areas affected by making the mesh regular (see
Appendix 2). No tests have been done to look at the
convergence (in space) as the characteristic mesh dimension is
reduced. In engineering practice the quality of the fit
between the model and the preototype will depend upon the
availability of calibration data, and the calibration process
will result in roughness values (and possibly other physical
parameters included in the model) which match the simulations
to the prototype. The very process of calibration will
implicitly include many phenomena such as:
1. physical processes not included in the mathematical model,
2. numerical errors such as:

(a) truncation error

(b) rounding error

{c) gquadrature error,

3. approximation to natural geometry.

The stream function formulation is based upon the assumption

that in the dynamics of the flow the bed friction is dominant.
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Hence certain aspects of Sooky's observations cannot be

reproduced. These include:

1. the boundary layer at the edge of the flume,

2. secondary flow cells in the main channel,

3. water level variations due to the centripetal force around
the meanders,

4. the shear layer between the channel and the flood plain.

Sooky's thesis (1964) contalns detailed measurements of the
flow structure with depth. However, in Table 1l he presents an
integration throughout the depth giving the discharge in
varlous sub-sections of the flume at wvarious locations. Table
3.6 presents a comparison of Sooky's experimental results with
the simulations in tests 4 and 8 (with the initial and final
models respectively). No attempt was made to calibrate the
computational model against the flume experiments. In test &
the discharge was 0.00814m3/s (0.29cfs), the Chezy roughness
coefficient C was set to 38.35 and the water level was
horizontal on the outflow boundary. In test 8 the discharge
was 0.01017m3/s (0.36cfs), a roughness size (ks) of 3.6mm was
used Iin the Colebrook-White equation and the water level was
horizontal on the outlow boundary. (These discharge and
roughness flgures take account of the linear scaling factor of
100 applied to Mesh 4, see Appendix 2.) In Sooky's test the
discharge was 0.28cfs and Sooky quotes a Manning value of 0.017
as belng approprlate. The downstream depths in the

computations were set to the mean value obtained by Sooky.
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TABLE 3.6

COMPARISON OF DISCHARGE DISTRIBUTION

Percentage of Flow

Value X/L Test Position Left Main Right
from Sooky Channel
0.5 Sooky Meander 27.2 44.9 27.9
Crosses
4 the centre 25.2 49.4 25.4
line of
8 the flume 23.0 53.6 23.4
0.598 Sooky Meander 22.1 43.8 34,2
moving
4 to left 22.2 49.5 28.3
8 hand edge 20.5 53.6 25.9
0.75 Sooky Meander at 18.9 44.3 37.9
left hand
edge
4 Downstream 19.6 47.7 32.7
end
*Centre 19.5 48.0 32.5
Upstream 19.4 48.4 32.2
end
8 Downstreau 18,2 52.7 29.1
end
8 *Centre 17.8 52.2 30.0
8 Upstrean 18.3 52.7 29.0
end
- 8 d/s limit 18.6 53.0 28.4
- 8 u/s limit 18.6 53.0 28.4

Note: * denotes left and right hand values transposed to facilitate

comparison.
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The computations and exXxperiment agree in the overall picture;
the flow is concentrated in the main channel and the main
channel discharge remains more or less constant along the
length of the meander. The calculations, however, do not give
the same split of discharge between the channel and flood plain
sub-sections as observed in Sooky's flume. In Sooky's
experiment the channel accounted for 44 to 45% of the total
flow, whereas in test 4 with the initial model it carried 48 to
50% and in test 8 this increased to 52 to 54%. The differences
between tests 4 and 8 can be attributed to the difference in
the roughness laws. For a constant value of ks’ the value of
Chezy C should be higher in the deeper part of the flow. The
differences between the calculation and experiment however are
significant, as in test 8 the main channel carried 20% more
discharge than observed, and the most likely cause of this
difference is the inabllity of the mathematical model to
represent the shear layers at the boundary between the main
channel and flood plain and at the edge of the flood plain.
This is discussed in section 2.4.2 above and by Vreugdenhil and
Wijbenga (1982) who predict changes of this order of magnitude

attributable to the treatment of the shear layer.

A second check on the quality of the model results is the water
level variation predicted at the upstream boundary. The water
level should be horizontal since this boundary is normal to the
flow direction. 1In both tests 4 and 8 a varilation of level was
produced on the boundary. In test 4 the variation was

approximately 0.07% of the depth of flow in the channel and in
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3.5

test 8 it was 0.1% of the depth of flow in the main channel.
Fig 3.4 shows the water level varlation on the upstream

boundary from test 8.

Tests with the Tallahala Creek data

Having concluded that the first order variation method provided
a satisfactory solution procedure for the meandering river
channel type of geometry, the final version of the model was
tested on the Tallahala Creek data from Tseng (1975}). This
presents a different type of geometric irregularity in that the
data contains no specific representation of a river channel but
the lateral (solid} boundaries of the flow domain show a severe
constriction at the embankment leading to a clear span road
bridge, see Fig A2.6. Tseng's report includes values for the
Chezy roughness coefficient, the ground level and the boundary

conditions on water level and discharge.

The results of the computations were disappointing in that the
convergence rate of the iterative method was poor and that the
end solution was unacceptable. 1In all, three tests were done
and the same general performance was obtained in each, see
Table 3.7 and Fig 3.5. 1In test 1 the first order variation
method was used, see section 3.4.3. Test 2 used the two
parameter updating method with parameters 0.3 and 1.0 being
used in alternate iterations, see section 3.4.2. In test 3 the
first order variation method was again used but the streamline

integration procedure was modified. Tests 1 and 2 achieved in
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TABLE 3.7

CONVERGENCE PARAMETERS FOR TESTS WITH MESH FOR TALLAHALA CREEK

Iteration

Number

Test 1

Stream

Function

3.50(~1)
9.21(-2)
4.40(=2)
2.29(~2)
1.34(=2)
5.43(-3)
2.31(-3)
3.27(-3)

3.63(-3)

Water

Level

1.20(-1)
8.61(-2)
4.48(-2)
1.83(=2)
6.70(-3)
2.60(-3)
1.32(-2)
1.25(-2)

1.25(=2)

Test
Stream

Function

6.29(-1)
1.86(-1)
6.83(-2)
1.79(-2)
2.10(-2)
6.98(-3)
1.08(~2)
5.12(-3)

9.99(-3)
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2
Water

Level

1.23(-1)
1.79¢-1)
1.33(~2)
1.46(-2)
2.82(~3)
1.24(-2)
1.21(~2)
1.19(-2)

1.19(-2)

Test 3

Stream

Function

3.17(~1)
6.68(~2)
2.01(~2)
7.91(-3}
3.77(-3)
2.52(-3)
1.40(-3)
6.83(-4)

3.05(-4)

1

5.

2.

Water

Level

.32(-1)
69(-2)
56(~2)
.79(-2)
.76(=3)
.52(=3)
L49(-4)
.95(=4)

.27 (~4)



practice the same convergence rate (see Table 3.7) and the
water level profile on the upstream boundary was identical when
plotted (see Fig 3.8). This suggested that the problem lay in
the calculation algorithm for water level. The water level on
the upstream boundary should of course be horizontal since the
flow is assumed normal to the mesh boundary. Possible
deficiencies of the streamline integration procedure of section
3.2.4 are that it is only based upon about half of the elements
in the mesh (all those in class C, Fig 3.2, are excluded) and
that it does not define the cross-stream gradient of water
level. Test 3 included an allowance for the direction of the
gradient of the water surface and was again based upon the
first order variation method for stream function. The equation

used for integration in each element was:

(1~ < L(h). curl g, xk> + n < .V, th =0 (3.40)

The first term in equation (3.40) is identical (except for the
pre—multiplier) to the left hand side of equation (3.22) in
section 3.2.4. The second term, with the penalty parameter r,
expresses the condition that the surface gradient should be
normal to the gradient of the stream function. The original
algorithm corresponds to taking n as 0.0: in a test with 7 =1
the calculation procedure failed with negative water depths.

In test 3 7 was set to 0.1. The convergence rate improved from
tests 1 and 2, see Table 3.7 and the distribution of water
levels on the inflow boundary changed, see Fig 3.5. The

transverse water surface slopes, however, were still of the
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3.6

same order as the streamwise water surface slope which 1s not
acceptable. The cause for thils poor performance of the method
has not been identified but 1s probably related to the large
changes of gradient of stream function around the contracted
and the selective nature of the stream line integratiocn

procedure discussed above.

Concluding remarks

This chapter has considered the application of the stream
function formulation to two test problems. The first of these
related to the experimental work of Sooky (1964) and the
numerical method achleved a satisfactory performance. The
second problem was based upon a field application froam Tseng
(1975) and here the stream function model performed badly. The
area where the method needs to be improved most is probably in
the streawmline integratlon procedure. The model produces a
water level variation on the upstream boundary which is normal
to the stream direction, and hence a line on which water level
should be horizontal. The inclusion of an orthogonality
condition via a penalty parameter in the streamline integration
procedure equation (3.40) did not solve the problem. Further
work is required on this topic before the method can be used in

englneering practice.

The stream function formulation tested was based upon the

lowest order of approximatican possible: piecewise linear basis

functions. The use of higher order approximations should
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improve the description of the flow field but at the cost of
more computational effort and possibly more rigorous
topographic data requirements. The stream function formulation
cannot include the diffusion or convection terms in the flow
equations without using ¢! inter-element continuity. The use
of such elements is known to pose difficulties particularly
where the material properties - in ocur case conveyance K - is
discontinuous between elements, see Zienkiewicz {1977) chapter
10. The use of higher order elements for the stream function
will complicate the streamline integration procedure. The
division of these elements into the three classes of section
3.2.1 will not be possible, since the streamlines will not in
general be straight lines and hence the streamline through a
node may intersect one of the sides connected to that node.
This will produce an algorithie that will link the water level
at several nodes and so will not be solvable by the simple
marching algorithm. This will be computationally more coumplex
and expensive but so would any algorithm based upon the linear
triangular elements which includes those elements in class C in

determining the water levels.
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4.1

4.2

CHAPTER 4

USING THE PRIMITIVE VARIABLES

Introduction

In this chapter we examine two possible formulations of the
stea@y friction controlled flow equations in terms of the
primitive variables. These are the unit flow vector q and the
water surface level h. The flow equations themselves are
discussed in Chapter 2 and some general materlal in Chapter 3
is pertinent, specifically the remarks on basis functlons, bed
approximations and numerical quadrature in Section 3.2 and the

software techniques in Section 3.3.

The two methods both achleve a reduction of the order of the
system of linear equations to be solved. First we discuss the
use of approximately divergence free spaces for the trial
functions, see Temam (1977) and Griffiths (1977). The second
approach 1s to use the potential formulation in which the unit
flow vector is eliminated from the model equations by formal

manipulation.

Approximately Divergence Free Elements

Introduction

Here we demonstrate the failure of Temam's approximation APX5

for the flood plain flow equations, which produces satisfactory
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4,2.2

results for the Navier Stokes (NS) equations. The
approximation for the unit flow vector is non-~conforming being
spanned by plecewise linear discontinuous basis functions, see
Fig 4.1. The use of the method is covered neither by the
analysis of Temam (1977) for the NS equations nor by the work
of Girault and Raviart (1979). Temam considers both the Stokes
and the NS equations but in each case the physical dissipation
is related to jf_g whereas for flood plain flow the dissipation

is of a lower order i.e. Eli

» and requires different boundary

data. An appropriate linear wodel for the flood plain flow
equations is a mixed method for the Laplace equation. Girault
and Raviart discuss mixed methods for the Laplace equation but
their analysis is restricted to conforming approximations. The
approximation APX5 is the lowest order scheme that Temam shows
can be applied to the NS equations. Including the convection
and turbulent stress terms in the flood plain flow equations
leads to a system similar to the NS equations and this
motivated the study of Temam's approximation APX5 of the more

simple case of friction controlled flow.

Approximation spaces

The key idea in this approach is that instead of searching for

. . 1 i
q in domain of over the whole product space HE(Q)X HE(SD the

choice is restricted to the divergence free subspace D(Q)

defined by
. 1 1 .
D(R) = q in HE(Q)X HE(Q) with V.q = 0 (4.1)

Here the suffix E denotes functions which satisfy any Dirichlet
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4.2.3

boundary data glven. Following Griffiths (1977) we may
characterise the approximaticn to D(Q) by values of the
tangential component at the mid-polint of each element side,
together with a stream function based upon the vertices to give
the normal component at the mid side nodes. The basis function
for a midside node X and the area coordinate Nv for the
opposite vertex are related by

¥ = 1- ZNV, (4.2)
see Fig 5.1. The divergence free conditlon is satisfied
weakly, in the sense that in each element we have

<V.q, ¢.>=0 (4.3)
Here Q is described by the stream function and tangential
components as above, and ¢e is the piecewise constant basils

function used in the approximation for water level in the

element.

Application to the Laplace equation

Taking the equations of frictlion controlled flow and setting
|g|/K2 to 1 we have:

V.q =0 (4.4)
g+t % =0 (4.5)
which 1lmply a Laplace equation for the water level h.
Approprilate data are

3.2 =0 (4.6a)
h = constant (4.6Db)
On no flow and normal flow boundaries respectively. We
introduce a weak form of (4.4) and (4.53), thus

< v.gq, ¢»=0 (4.7)
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<g, ¢+ <%, ¢>=0 (4.8)

Using Green's theorem for suitably smooth ¢ equation (4.8)

becomes
<g, $»+ [(h gn) dT = < V. ¢, h> (4.9)
T

where T is the boundary of the domain. If now we restrict g
and ¢ to D(Q), equation (4.7) is satisfied by definition and

the right hand side of equation (4.9) is zero.

The Galerkin equations based upon (4.9) are therefore
<Qk X g 1j>= - {,(Hed)e xj.r_l) dT (4.10)

Here Q = lk and H = H ¢ (with summation convention on k and
- k e'e

e) and j ranges over the basls functions where Dirichlet data

are not supplied. The direction of % is that of the unit

vector assoclated with Qk’ ie the unit normal or tangent

vectors at the mid-sides of the triangle. We note that if the

l% were to provide a conforming approximation, then the right

hand side of equation (4.10) would be zero.

Now consider the mesh shown in Fig 4.2 with two right triangles
joined to form a unit syuare. We apply boundary data

consistent with Q = (1,0) to the Galerkin system (4.10);

Stream function = 1 vertices 1 and 2
= 0 vertices 3 and 4
Tangential velocity = 1 mid-side nodes 5 and 7

= Q0 mid-side nodes 6 and 8
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The sole variable not specified by this boundary data is the
tangential velocity at the interior mid-side node 9 which

should have magnitude 1/v2. The sole Galerkin equation is

Q <X-dg »= g(Heq)e Xy-n) dT (4.11)

Since the basis functions ¢e are constant in each element the
right hand side of equation (4.11) is identically zero taking
account of the definition of y in equation (4.2). Hence we
obtain:

1/3 Qg =0, (4.12)
whereas the true solution is Qg = 1/v¥2., However, we can
include the true solution for water level in the boundary
integrals of equation (4.11). On inflow and outflow boundaries
the water level is constant so the boundary integrals remain
zero, but on the no flow boundaries the water surface has unit
gradient. Calculating the integrals along the no flow
boundaries gives:

1/3 Qg = v2/6, (4.13)

that is the exact solution.

The above example 1s a form of patch test for this particular
mixed finite element wethod since the numerical values obtained
are independent of the element size; see Zienklewicz (1977).
Since the failure of the patch test is related to the poor

representation of integrals around the boundaries it is obvious
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4.3

4.3.1

to consider raising the order of the element. This leads to
more complex basis functions for the flow field Q to be
approximately divergence-free, see Griffiths (1977). In fact
the higher order elements all provide conforming approximations
and so the problem calculating of the boundary integrals

disappears.

This approach has not been pursued further since one aim of the
research was to investigate the low orders of approximation
that were assumed to be consistent the quality of data
available for practical calculations. The compatibility
conditions between the orders of approximation of the unit flow
vector and the water level for these higher order methods may
be examined using the theoretical framework of Girault and
Raviart (1979). Since these methods are not tested here this
analysis has not yet been done but should precede any further

work on the approximately divergence-free formulations.

The potential formulation

Introduction

The discussion here concentrates on four features of the

method:

1. the convergence rate of the successive substitution
algorithms used,

2. the effects of numerical quadrature,

3. the representation of boundary flux,
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4. a comparison with the results of the stream function

formulation.

All the calculations were based upon a representation of
Sooky's experimental geometry, see Mesh 1 in Appendix 2. The
water level was approximated, as In the stream function
formulation, by a piecewise linear continuous function using
the basis functions set out in Section 3.2.1. The ground level
was taken as plecewise constant within each element, as in the
final tests of the stream function formulation. Two frictiocn
formulae were tested, Chezy's law and the Colebrook-White

equation.

The calculations are based upon the mathematical model
equations laid out in Section 2.5.1. The dynamic equation
(2.56) 1is rearranged to give

- - % 4
a=-K®m|* wn (4.16)
and setting div ¢ to zero we obtain

-k _

V&|m| * W)y =0 . (4.15)
With appropriate boundary data on the water level h this

equation possesses a unique solution, see Section 2.6.1.

The finite element approximation to the solution of equation
(4.15) may be generated using successive substitutions thus:
<c )Y @, W+ b‘JT (4.16)

Here H" is the approximation to the water level at iteration
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numnber n and b? is determined by the boundary data. These
Galerkin equations are solved for the updating vector 7 and the
water level vector at the new iteration is defined by

L L (4.17)
where X 1s a relaxgation parameter. The unit flow vector in
each element way be defined as

Q" - - " m (4.18)
Here K is the average value of the conveyance function defined
by the quadrature rule thus,

K= Jw k@ (x,)) (4.19)
where the sums runs over all the quadrature points 1 for the
element. The friction parameter Cf in equation {(4.16) may then

be expressed as

ceu”y = K2 ¢° (4.20)
A key distinction between the stream function formulation and
the potential formulation is the way the continuity equation is
represented. By definition, a stream function satisfies the
continuity equation locally and globally over the whole flow
domain. In the potential formulation, however, the continuity
equation is only satisfied as a weighted average, thus, from
equation (4.16)

<@, ¥YN.>=0 (4.21)
where gf is limit of the sequence of values {QP} from equation
{(4.18) and j ranges over all the interior nodes of the finite

element mesh.
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4.3.2

Convergence of the iterative method

The convergence of the successive substitution algorithm

defined by equations (4.16) to (4.20) may be studied in a

similar way to the analysis in Section 3.4.2. Define as before
*

Hk as the nodal values of the solution of the Galerkin

equations and the error EE at iteration n by

o - H.: + ED (4.22)

The approximations to the stream and normal vectors, ey and e
*
in each element are parallel and normal to YV H respectively.
We define in each element streamwise and normal components of
. n
the gradient of E° by

vE" =Fle +¢G" (4.23)
_— e —s e

Ze
n+l : ]
Then we deduce that the error {Ek } at the new iteration
satisfies the following Galerkin equations to first order
—* 1
le<¥elTH

|17 v En+ YN, > =
— ’ | V
_* * L _ . *
Je< Kel TH | 7 leg [ - &0 F - dom | E/p ]+

e =7

e, (- NGl N> (h.24)

On the right hand side of equation (4.24) the term

*
w9y He|E2/D comes from the variation of the conveyance
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function which 1s assumed to be of the form
K(D) = cpP (4.25)
where D 1s the mean depth in the element defined by the

quadrature rule.

Assuming that this term is small compared with Fi and GE thea
we deduce that a two parameter updating algorithm will be
effective In solving the non-linear finite element equatlons.
The relaxation parameters should be 1l and 2 in alternate
iterations giving the approximate elimination of the normal and
streamwise components of V E respectively. We may estimate
when the term from the variation of the conveyance function i1s
likely to be small. Let us examine the coefficient of e, in
the right hand side of equation (4.24). Thils is approximately
(L - %M Fo = Jos EL/D (4.25)
where s 1s the mean surface slope. Setting FZ as EZ/A
approximately where A is the mean length of the element in the

stream direction, the expression (4.25) becomes

(1 - %A= dos&/D) F (4.26)

Hence the importance of the variation of conveyance depends
upon the magnitude of psA/D. For the test geometry, Mesh 1, we
have D = 0.02m,s =~ 0.002,p = 1.8 and A =~ 0.08m. Hence the
expression (4.26) becomes approximately (1 - %A = 0.02R) F: and
it should be appropriate to use parameter values 1 and 2 in

alternate iteratlons for this geometry.
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The value of the parameter psA/D should, however, be examined
for each application of the method. It is easy to forsee
examples where the variation of the conveyance may not be
negligible. Suppose we are calculating flow over a flood plain
using a mesh with the following typical physical parameters:

s = 0.001, p=1.7, A= 100m, D = 1l.0Om. The expression (4.26)
now has the value (1 - 0.67})Fz and relaxation parameters of 1
and 1.5 would be appropriate. These estimates assume of course
that the nodal error En is essentially random rather than

k

systematic.

Three pairs of relaxation parameters were tested and the
convergence rates are shown in Table 4.1. (The convergence
parameters are defined in Section 3.3.5). The results shown in
Table 4.1 indicate that increasing the relaxation parameter to
1.5 or 2.0 1in alternate iterations (tests 2 and 3) improves the
convergence rate froa using a value of 1.0 for all iterations.
The convergence rate of 0.5 achleved in test 1 is the same as
would be inferred from equation (4.24). The asymptotic rates
for tests 2 and 3 are close to those found for the two
parameter updating method applied to the stream function

formulation, see Tables 3.3 and 3.4.
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CONVERGENCE PARAMETERS FOR THE POTENTIAL FORMULATION

Test 1
Iteration Water Discharge
Level
L 1.42(=2) 1.72(0)
2 1.49(-2) 8.77(-1)
3 9.46(-3) 3.37(-1)
4 4.29(-3) 11.69(-1)
5 1.97(-3) 9.42(~-2)
6 9.32(-4) 4.96(-2)
7 4.50(-4) 2.54(-2)
8 2.20(-4) 1.29(-2)
9 1.08(-4) 6.45(-3)
10 5.36(~5) 3.23(-3)
11 2.67(=5) 1l.61(-3)
12 1.32(-5) 8.09(-4)
Average
rate 0.53 0.50
Asymptotic
rate 0.49 0.50
Relaxation odd 1.0
parametcers even 1.0

TABLE 4.1

Test

Water Discharge

Level

1.42(-2)
2.25(-2)
5.47(~3)
3.99(-3)
6.06(~4)
4.41(~4)
7.00(-5)
5.21(=5)
8.54(~6)
6.36(=6)
1.04(-6)

7.82(~7)

odd 1.

even l.
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2

1.72(0)

1.02(0)

2.42(-1)
1.80(-1)
2.88(-2)
2.21(-2)
3.71(-3)
2.79(-3)
4.62(~4)
3.46(-4)
5.75(=5)

4.32(=5)

0.36

0.35

1

3

3

3

I

9.

Test

3

Water Discharge

Level

Lhh(=2)
L07(-2)
.20(~3)
.11(-3)
42(-4)
22(-5)
.59(=5)
.72(-6)
.01(~6)
.93(-7)
.51(-7)

12(=7)

-33

«35
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4.3.3

The subsequent tests reported In thils Chapter all used the
relaxation parameters 1.0 and 2.0 alternately since this gave
marginally the best rate of convergence in the first three

tests.

Numerical Quadrature

The three quadrature rules of Section 3.2.5 were tested with
the potential formulation. The convergence rates for the
iteration and values of water level were found to be
insensitive to the degree of the quadrature rule. The maximum
difference in water level after 10 iterations between the rules
was only 6 x 10~ ’mm compared with a flood plain depth of 20mm.
The variaticn in the magnitude of the unit flow vector
calculated from equations (4.18) and (4.19) was somewhat
larger. For example in element number 148 at the downstream

end of the flow domaln (see Fig 4.3) the following values were

obtained.
Degree of quadrature Unit flow magnitude Convergence
(m3/s) parameters
1 5.2153760348(-3) 2.657({-5)
2 5.2154292675(-3) 2.653(-5)
) 5.2154292736(-3) 2.666(~5)

The convergence parameter indicates that changes of the order

of 2 parts in 10> were occurring in ‘the magnitude of the unit
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4.3.4

flow and that the difference in the results obtalned with the
rules of degree 2 and 5 are not significant. The effect of
using centroid quadrature rather than the higher degree rules
is also barely significant in numerical terms. 1In practice the
lowest degree of quadrature may be used since typical
calibration criteria for models of flood flow rarely comnsider
differences in velocity of the order of one percent

significant.

Boundary flux

One of the measures of the quality of the solution for the
stream function formulation was whether the water level was
uniform along each inflow boundary, see Section 3.4.4. However
this condition is imposed as data on the potential formulation
and we use instead a complementary measure of the quality of
the results of this method, nanely whether the inflow and
outflow to the region agree. 1la each element the program
conputed the magnitude of the approximation to the unit flow
vector Ig‘ using equation (4.18). TFor elements lying on a flow
boundary Q is normal to the element side on the boundary since
the water level is specified as uniform there. Hence an
estimate of the total discharge QT on a flow boundary could be
built up as

o = Q6 (4.27)
where the sum runs over all the elements with a side on the
flow boundary and EE is the length of the side on the flow
boundary. Although the inflow and outflows were found to match
to better than 1 part in 10° for a test based on Mesh 1 but
with no channel, when the channel with its depth discontinuity
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was reintroduced the disc¢repancy between inflow and outflow

rose to about 3 percent.

The cause of thils supposed error is simply that equation
(4.27) 1is not a true statement of the Galerkin equations used
to define the weak form of the continulty equation. The
proper representation of the boundary flux is set out below,.
The continuity equation is

<V.q, m>»=- <q, Vn >+ [nq.ndrl (4.28)
Hence for an inflow or outflow boundary I}
Qp= [rqndl = <gq, Vn> (4.29)
1f = is defined such that it 1s zero on all other flow

boundaries. One suitable definition for =« is

n=1 for all nodes on I}

w=0 at all other nodes.
With this definition for the test function 7 we have the
following approximation to the boundary flux:
e e
QT=E<Q’_VTC >
where the sum runs over all the elements lying on or touching

the flow boundary.

This definition of QT was Included in the computer code and
after ten iterations (using relaxation coefficlents of 1.0 and
2.0 alternately) the inflow and outflow only differed by

3 parts in 107. The convergence parameter for the unit flow
magnitude was 2.6(-5) after ten iterations indicating that the
boundary flux converged faster than the interior solution. The

convergence of the boundary flux was checked in subsequent
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tests by evaluating the inflow and outflow for each iteration.
Table 4.2 shows the boundary fluxes for a test based upon
Mesh 1, which clearly shows a more rapld convergence for the

flux compared to the solution as a whole.

This observation iIs of practical importance since it means that
relatively few iterations need to be done to achieve a good
estimate of the discharge in or out of the region. The total
discharge will be a calibration parameter in the case where a
roughness value is assumed and water levels are given on the
flow boundaries. Hence the roughness can be adjusted (manually
or automatically) after a few iterations of the algorithm. The
same 1s the case 1in the typical design situation where the
total flow and the roughnesses are known but the upstream water
level is unknown. Only a few lteratlons need to be done for

each trial water level.
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TABLE 4.2

CONVERGENCE OF BOUNDARY FLUX

Iteration Inflow (m3/s) Outflow (m3/s) cq
1 1.0626621705(-2) 9.3109511870(-3) 7.63(-1)
2 1.0151291473(-2) 1.0136650849(-2) 3.75¢-1)
3 1.0169421465(~2) 1.0159376462(~2) 3.34(-2)
4 1.0181041130(-2) 1.0179807619(-2) 1.71(-2)
5 1.0179989047(-2) 1.0179846938(-2) 3.73(-3)
6 1.0179623826(-2) 1.0179808975(~2) 2.07(-3)
7 1.0179750718(-2) 1.0179785272(-2) 4.21(-4)
8 1.0179797728(-2) 1.0179776281(-2) 2.36(-4)
9 1.0179783408(-2) 1.0179779280(-2) 4.80(-5)
10 1.0179778296(-2) 1.0179779495(~-2) 2.71(-5)

Results for a test of Mesh 1 using relaxation parameters of 1.0 and

2.0 alternately and a roughness size of kS = 3.6mm in the
Colebrook—White resistance equation. Eq is the convergence parameter

for the magnitude of the unit flow vector.

4.3.5 Comparison with prototype and stream function model

The results from the potential formulation may be compared with
the flume data of Sooky (1964) in a similar fashion to the
results in Section 3.4.4. The physical basls of the

mathematical model of the flow 1s the same in each case, hence

the limitations of the stream function model are pertinent
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here. Table 4.3 glves a comparison of the flow division for
the two formulations and the flume data. The discharges for
each subsection in the potential formulation were calculated by
hand using equation (4.27) and so may be subject to a small
error.

The test of the potential formulation using Chezy's friction
law had the upstream level set to the average water level on
the upstream boundary from test 4 of the stream function model.
The discharge was 8.13801(-3)m3/s compared with 8.14109(-3)m¥/s
for the stream function formulation. This difference although
of numerical significance 1s of little practical importance.
For the tests using the Colebrook-White roughness the upstream
level was set to achleve a surface slope equal to the bed slope
of the flume, ie 0.00160 compared with the surface slope of
0.00107 for the test using the Chezy law. The discharges for
the potentlal and stream functlon for a roughness size of 3.6mm
were both set to 1.017978(-2), and for a roughness value of

l.6ma the total discharge was 1.18256(-2)m3/s.

The results shown in Table 4.3 show that, for the same friction
law, the two formulations agree wore closely with each other in
terms of the division of the flow between the channel and flood
plains than they do with the flume data of Sooky (1964). The
principal cause of the discrepancles is the omissilon of
turbulents stresses from the mathematical model (see Section

3.4.4).

Further comparison of the two formulations, is possible,

Table 4.4 gives the water levels across the centre of the mesh
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Position

Left limit

of meander

Downstream

end

Centre (Left
and Right

transposed)

TABLE 4.3

FLOW DIVISION.

Formulation

Sooky's

experiments

SF 1nital

Potential

SF final

Potential

Potential

SF initial

Potential

SF final

Potential

Potential

Friction

law

Chezy
(38.35)
Chezy
(38.35)
Colebrook
(3.6}
Colebrook
(3.6)
Colebrook

(L.6)

Chezy
(38.35)
Chezy
(38.35)
Colebrook
(3.6)
Colebrook
(3.6)
Colebrook

(1.6)
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COMPARISON

Percentage of flow

Left

18'9

19.6

19.3

18.2

17.5

17.8

19.5

20.0

17.8

18.2

18.5

Channel

44.3

47.7

48.9

52.7

53.6

52.9

48.0

47.3

52.2

51.7

51.0

Right

37.9

32.7

31.8

29.1

28.9

29.3

32.5

32.7

30.0

30.1

30.5



TABLE 4.3

FLOW DIVISION. COMPARISON (CONT'D)

Upstream SF initial Chezy
end {38.35) 19.4 48.4 32.2
Potential Chezy
(38.35) 19.9 47.3 32.8
SF final Colebrook
(3.8) 18.3 52.7 29.0
Potential Colebrook
(3.6) 18.3 51.6 30.1
Potential Colebrook
(3.6) 18.5 51.0 30.5
Notes

1 Results for stream function (SF) initial model are for test 4 in

Table 3.6, and for the final model for test 8.

2 The value in ( ) after the name of the friction law denotes the

coefficient value with units mm for Colebrook-White.
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for the two tests using the Chezy friction law. Two features
are apparent. Firstly, the water level on the left flcod plain
tends to be higher than on the right flood plain. It is not
clear whether this difference is a feature of the solution of
the flow equation, as no tests have been done on reduced mesh
sizes. Secondly, there is considerably more variation in the
transverse water surface profile from the stream function
formulation, confirming the criticism of the streamline

integration algorithm in Section 3.6.

TABLE 4.4

WATER LEVELS ACROSS CENTRE OF MESH 1

Node Position Stream function Potential
formulation formulation
(mm) {mm)
42 R H edge of flow 21.616 21.673
43 21.595 21.673
44 21.592 21.674
45 edge of channel 21.613 21.674
46 edge of channel 21.593 21.675
47 edge of channel 21.607 21.675
48 21.618 21.675
49 21.602 21.674
50 21.620 21.674
51 LH edge of flow 21.619 21.675
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4.4

Concluding Remarks

0f the two approaches discussed 1n this chapter the divergence
free formulation has been shown to require a higher order
approximation than the potentlal formulation. Hence in line
with the philosophy outlined in chapter one concentration has
been centred on the potential formulation. This method 1s in a
sense complementary to the stream function formulation. The
potential formulation performed satisfactorily on tests of a
discretization of Sooky's experimental geometry. This method
has been developed further by the Introduction of the
convection term into the mathematical model and by an improved
iteration scheme similar to the first order variation method

the stream function model.

These points form the subject of Chapter 5 which alsc includes

a discussion of the application of the potential formulation

for the Tallahala Greek data.

113



5.1

CHAPTER 5

MODELLING THE CONVECTIQON TERM

Introduction

This chapter conslders the extension of the potentlal
formulation to include the convection term which 1s defined in
section 2.5.2. In the iterative sequence the convection term
1s always based upon known values of water level and unit flow
rate. The convection term 1tself 1s recovered by estimating
spatlal derivatives of the representation of mean flow velocity
implied by the approximations used for the principal flow
variables and the ground topegraphy. The algorithm used to
calculate these derlvatives is new. The iterative sequence is
only conditionally convergent depending upon the magnitude of a
mesh Froude number which is discussed in Sections 5.4 and 5.5.
When the iteration method was changed to one motivated by time

stepping to a steady state, stable calculations were obtained.

The initlalisation of the lterative method requires the
calculation of the flow fleld without convection and this is a
stralghtforward application of the potential formulation of
Section 4.3. The iteratlive method has been refined producing
an improved method for the potential formulation based upon
first order variations similar to that discussed in Section

3.4.3.
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5.2

5.2.1

Some of the general discussion in Chapter 3 1s relevant here,
particularly the basis functlons and topographic discretization
in Section 3.2 and software techniques Iin Section 3.3. The
method was applied to several of the mesh geometries described

in Appendix 2.

The computations are based upon the following model equations.

Steady flow

¥.qg = 0 (5.1)
(U.DU/g + T + algf/KZ2=0 (5.2)

Unsteady flow

v.q + ath =9 (5.3)
(1/gD)d.a + (U-DU/g + T + DAfy|/k2 =0 (5.4)
The convection term ¢ 1s the dimensionless vector quantity
defined by

c = (U.NU/g {5.5)

Calculating the convection term

The basic method

The potential formulation of Chapter 4 used the following
orders of approximation in each element:
Water level : plecewise linear
Bed level : pilecewlse constant
unit flow vector : plecewilse constant

Formally then, the representation of the depth D is piecewlse
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linear discontinuous and the flow velocity is a discontinuous

rational functlon. However, 1n the calculations the depth and

discharge are only ever sampled at the element centrolds when
the one point integration rule 1s used. An approximation to
the convection term c(U) of equation (5.5) may therefore be
defined by the following steps:

1 calculate the mean velocity Ek = g_k/Dk in each element k
with all values notionally at the centroid

2 For each element k define a set o of nelghbouring
elements, with at least two distinct elements in D -
These will usually share a common side with element k but
the definition of o is discussed at greater length in
Section 5.2.2.

3 carry out a least squares best fit to the mean velocity
vector assuming that it varles linearly and continuously
over all the elements in n: defined as the union of o and
k.

4 calculate the convection term from the wvelocity and its

derivatives found in step 3.

The least squares fitting procedure in step 3 is as follows.

+
For each 2 in nk let

R_ ot ~ ot
= -0, - - g .
Eu U’Q 2 cJt/anUk slay K (5.6a)
R_ - - _ -~ ~
Ev V£ Vk alaka ﬁiaka {5.6b)
where y£ = (Uk’vﬁ) and the best fit velocity components and

~

derivatives are Uk’ axuk, etc. The coefficients ai and 51 are
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the components of the position vecter
(al’B/Q.) =§£_}_(k (5‘7)
with X, being the centroid of element f£. The parameters (I ,

d 0 etc are then obtained by minimisation of

X k

B2 = JEH? (5.8a)
u u

2 _ 2.2

E, = Z(Ev) (5.8b)

with respect to these parameters where the sums run over the
+ r - a

set o . By definition this set contalns at least three

distinct elements and the fitting procedure is only 1ill

conditioned when the position vectors (al’Bﬂ? are nearly

collinear.

Having carried out the least squares fitting the approximate

value of the convection term In element k is defined as

= (0 a0 +\'J“katT 0T av

e A
vk’ Tk ka ka%vk)

(5-9)
Some tests of the method included a condition on accepting the

approximation C, based upon the size of the residual square

k
error from the fitting procedure, relative to the residual

+
based upon assuming the velocity is constant in n at its mean
value. Where the fitting procedure did not produce a

significantly better result than using the mean velocity £ was

k
set to zero. This refinement, however, did not have much
effect in practice except in the case where the calculations

were diverging and the mean velocity was not coherently

structured.

Where the set of elements nk contains the three elements with
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a common slde with k, see Fig 5.1, the least squares fitting
procedure gives what can be considered as a generalised central
different approximation to the veloclty gradients. The set .

does not in this case take any account of the actual stream

direction or an a priori estimate of it.

Consider the case where the actual flow velocity varies
linearly with x and y. It is easy to show that the piecewise
constant best fit to this velocity field 1s obtained by taking
the actual flow velocity at the centroid of each triangular
element. The least squares recovery procedure above returns
the exact values of the velocity and its derivatives, and the

convection term C, defined by equation (5.9) is exact at the

k
element centrold and also gives the exact integral over the
element area when combined with one point quadrature. These
are attractive properties of the recovery procedure. Finally
we note that linear varlation of velocity implies a quadratic
variation of stream function and thus we recover in some cases
the exact point values of convection term and its integral over
an element for flows with curved streamlines. TFor exaample,
inviscid, irrotational flow into the corner bounded by the x

and y axes is glven by the stream function xy, see Batchelor

(1967), phll.

During the development of the model of steady flow with
convection, several variants of the least squares recovery
procedure for the convectlon term were tested. One variant

fitted the values of the velocity derivations alone from data
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5.2.2

in the patch of neighbouring elements. The convectlon term was
evaluated from these derivatives and the approximation to the
velocity calculated from the water surface in the target
element. The numerical results quoted in Section 5.3 were
obtained using thls variant. The algorithm as described 1in
steps (1} to (4) above, however, gave a better fit (measured by
the sum of squares of the residual veloclity error at each
element centroid) and this foras the basis of the computations

of Section 5.6.

Neighbouring element sets

The computations presented later in this chapter use four
different definitions of the set of neighbouring elements n .
These are the standard and upwind sets, each of which may
recognise (or not) the presence of the edges of a main channel,
across which there 1s a large varlation in velocity. Some
variation of the definitions was necessary for elements at the
boundary of the flow domain.

1 The standard set

In this case the neighbour set o of an element k in the
interior of the flow domain contains the three elements which
share a common side with k, see Fig 5.1. This definition 1s
also sultable for elements with only one node on the mesh
boundary. Elements with one or two sides along the mesh
boundary require speclal action since they have a reduced
number of interior mnelghbours. Where the element k has only
one side on the boundary, the basic neighbour set comprises the

two elements which share a common side with element k.
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A third element which shares a common no&e with k is added to
the basic set. All elements sharing a common node are
considered in order of distance, centroid to centroid, from k.
The closest element is chosen which satisfies a test on the
slze of the determinant the coefficients of the equations in
the least squares fitting procedure. This ensures the fitting
procedure is well conditioned. For an element k with two sides
on the boundary and hence only one neighbour n with a common
side, the neighbour set for element k is taken as the neighbour
set for element n. Fig 5.1 also shows typical cases at the
boundary.

Using the definition of the coefficients a«_ and BR? equations

b}
(5.7), we set

2 2
Sp = ldys Sy = 1By Sy = Jugs, = (By; S5 = Jaub,
with the sums running over the elements in the neighbour set.

Now define

[

dy

d

48182 + 2838485

4 + +

2 SSSS 8184 8283

and the determinant of the matrix from the least squares
fitting procedure is

Det = dl - d2

The test employed for elements near the boundary is that the
ratio d,/d , must not lie in the interval (0.%95, 1.05). The

choice of this interval was arbitrary and no adjustments were

tested since the calculations were acceptable.
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Standard set with banks

The definition is identical to the standard set with the
exception of the strings of element sides along the depth
discontinuities at the edges of the channel. Thesge are
treated in the same way as the exterior boundary of the

flow domain.

A priorl vpwinding

The iterative procedure starts with a solution of the
problem with zero convection. This solution can be used
to define the velocity Ek in each element and hence
introduce a degree of upwinding in the calculation of the

convection term. In practice the set n, in this case only

k
contalned two elements for every k and hence the least
squares fitting procedure reduced to an exact fit for the
velocity and its derivatives based on the three elements
{ie, k and those in nk). The set 0 was defined firstly
from elements X with a common side to k or a common node
with k which satisfy the upwind condition

(x, - %08, <0 (5.10)

where x , and x, are the position vectors of the centroilds

1
of elements £ and k respectively. From this set of
elements the two closest to k (centroid to centrold) were
retained in n - At the boundary of the mesh where no
upwind nelghbours could be found, a downwind approximation

must be taken. Fig 5.2 shows typically neighbours for

this case.
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5.3

5.3.1

4 Upwinding with banks

The definition is the same as for the upwinded set of
elements with the edges of the incised channel being
treated in the same manner as the exterior boundary. The

neighbour set n, is not allowed to straddle the edge

k

channel for any element.

Iteration for steady flow

The finite element equations

First of all we examine the following three stage iterative

procedure

1 Calculate the water level approximation Hn+l given Kn,
lgél and EF, the approximations to conveyance, unit flow

magnitude and convection term, from the Galerkin

equations
<((K“)2/|Qn| (_QH“H + g“),S.NJ.> =0 (5.11)
2 Calculate QE+1 in each element k, given Hn+1 and En, from
9E+1 - _Kn+l (yHn+l + gn)/l_VHD.+1 + gn|% (5.12)
ntl nt+l

+1
in each element k from H" and Q

3 Calculate gk 9

using

the least squares fitting procedure.

At each stage of the iteration the Galerkin equations (5.11)
o+l .. ,
for water level H represent an elliptic problem since the
remaining coefficients are all evaluated at the previous
iteration level and we may specify Dirichlet or Neumann data
+1
for A"~ around the mesh boundary. For sufficiently slow flows

the iteration sequence 1,2,3; 1,2,3.... was found to converge.
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5.3.2

The nature of the limit on velocity for convergence is
discussed 1n Section 5.4. The results described in this
section are for flows which meet this condition, with the
veloclty being adjusted by altering the frictional resistance
to the fluld motion. In an attempt to extend the limit for
convergence the lteration sequence based upon
1,(2,33(2,3),(2,3)00a001,(2,3),(2,3)+....1, etc, was tested but
no advantage was ocbtained in iterating on equations (2,3) to
convergence before re-calculating the water level. The overall
rate of convergence was slower and so the original iteration
sequence was retained for the comparative tests reported below.
The comparison for these two iterative sequences was carried

out on the geometry of Mesh 1 of Appendix 2.

Boundary conditions

At a "solld” boundary across which there is no flow we have the
condition

q-n =0 (5.13)
From equation (5.2) we see that this is equivalent to

{h +c@hr=0 (5.19)
which is the natural boundary condition on the Galerkin

equations (5.11).

On the flow boundaries we impose the condition that

q.t =0 (5.20)
where t is the unit vector tangentlal to the boundary. Taking
the dot product of equation (5.2) with t we obtain the ordinary

differential equation for the boundary variation of water
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5.3.3

level:

.t + c.t =0 . (5.21)
lence given C we may calculate the tangential variation of
water level across the boundary. This can be viewed as part of
lteratlve process carrled out before step 1 of the algorithm
laid out in Secticn 5.3.1. The water levels at adjacent nodes
i and j in element k along the boundary are related by

n+l ntl n

Hy - H; = A G (5.22)

where ﬂk is the length of the boundary segment for element k.

As for the potential formulation of friction controlled flow,
one measure of the quality of the numerical results 1is the
agreement in the flux across the inflow and outflow boundaries.
The boundary flux 1s calculated from equation {(4.30) with the
unlt flow vector in each element given by equation (5.12)

except that all terms are evaluated at the same iteration.

The U-shaped channel

Some tests were carried out using Mesh 8 (see Appendix 3) which
represents a U-shaped rectangular channel without flood plain.
The floor of the channel sloped longitudinally by O.lm from the
Inflow to the outflow boundary and a constant depth of flow of
0.18m was applied at each end. These test conditions should
generate a flow for which the first order analytic solution
given in Section 2.7 is valid, since for sufficiently slow
veloelty the streamlines in the absence of secondary flows

should form circular arcs around the 180% bend. The



approximate solutlon gives
U « r—%
lgf
h = r-1

where r 1s the radius of curvature of the streamline. The
three stage iteration converged only for the lowest velocity
condition tested. The mean veloclty was approximately
0.043m/s, which corresponded to a roughness (ks) size of 30.0m.
The flow conditions are not of any physical consequence since
the roughness 18 unrealistically large. However, the results

merit some discussion as the approximate analytic form of the

solution is known.

The convergence of the iteratlve sequence was quite slow, see
Table 5.1. It appears that the Initialisation of the solution
was poor, since the relative changes in depth are 0.66 for the
first iteration. The calculations stopped (intentionally)
after 10 iterations; in the last iteration the changes 1in
depth, inferred from the convergence parameter for depth, were
of the order of 7 x 10~ %m. Hence the iteration has not been
taken sufficiently far to give reliable values of water surface
slope. In contrast to the potential formulation without
convection the total discharge only converged at the same rate

at the main solution.
We may check the quality of the results after 10 iteratlons by

examining the solution at 900 and 1200 from the upstream end of

the bend.
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TABLE 5.1

CONVERGENCE RATES FOR U-SHAPED CHANNEL

Iteration Convergence parameters for OQutflow
depth unit flow less inflow

1 6.64(=1) 1.64(0) -1.56(-2)
2 1.24(-1) 9.85(-1) -1.05(-3)
3 5.72(-2) 5.08(-1) 4.83(-4)
4 3.08(-2) 2.88(-1) 7.38(-4)
5 1.70(-2) 1.58(-1) 6.42(-4)
6 8.77(-3) 8.50(-2) 4.67(-4)
7 4.23(-3) 4.,50(-2) 3.11(-4)
8 1.99(-3) 2.31(-2) 1.86(-4)
9 9.06(-4) 1.15(~-2) 1.18(-4)
10 3.72(-4) 5.49(-3) 6.93(-5)

Asymptotic rate
(last 4

lterations) 0.45 0.50 0.62

The mesh, which is predominantly composed of equilateral
triangles, is aligned at convenient angles to the expected flow
direction in each case, see Fig 5.3. The values of mean
velocity and convection tera in carteslan axes are given in
Table 5.2. The streamwise velocity component and radial
component of the convection term are summarised in Table 5.3.
Some of the values in Table 5.3 are arithmetic averages for two

or three contiguous elements (see Fig 5.3); these results are
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TABLE 5.2

COMPUTED VELOCITY AND CONVECTION TERM COMPONENTS

Velocity Convectlion term
Element X component y component X component y component
207 -3.44(-2) -2.11(-2) 2.02(-5) —2.56(—5)-
209 =-3.59(-2) —2.24(-2) 2.31(-5) -3.47(-5)
211 -3.76(-2) -2.40(-2) 2.95(-5) -3.96(-5)
216 -3.81(-2) -2.42(-2) 3.25(-5) -4.78(-5)
218 ~3.62(-2) -2.25(~2) 2.29(-5) =3.47(-5)
220 -3.48(-2) ~2.12(-2) 1.56(-5) -3.38(-5)
248 -4.72(-2) -2.65(-3) 7.53(-7) -6.94(=5)
259 -4.10(-2) -7.25(-4) 9.89(-9) ~3.50(-5)
260 -4.10(-2) -9.52(-4) 1.27(-7) -3.64(-5)
264 =4.50(-2) -8.57("4) 5.54(-8) =-5.34(-5)
265 -4.50(-2) -1.14(-3) ~4.66(-6) -3.64(-5)
266 -4.68(-2) 7.99(-3) 6.12(-7) -6.99(-5)
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TABLE 5.3

SOLUTION VALUES AT 120° AND 90° AROUND THE BEND

Element Stream Radial - Radius
numbers velocity convection
term
120° i C r .
207, 220 4.05(-2) 3.47(-5) 4.88 0.452
209, 218 4.24(-2) 4.16(-5) 4.39 0.477
211, 216 4.47(-2) 5.12(-5) 3.94 0.503
90°
259 4.10(-2) 3.50(=5) 4.84 0.454
260 4.,10(-2) 3.62(~-5) 4.57 0.468
264 4.50(-2) 5.34¢(-5) 4.01 0.499
265 4.50(-2) 3.64(~=5) 3.71 0.519
259, 260 4.10(-2) 3.57¢-5) 4.70 0.461
264, 265 4.50(-2) 4.49(-5) 3.488 0.508
246, 265,
266 4.63(-2) 5.85(-5) 3.64 0.524
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5.3.4

plotted on Figs 5.4 and 5.5. The figures also show the line
for the first order analytical solution of equations (2.96) and
(2.98) using the values of 0.18 for D; 0.0168 for acp; 0.1238

for K, giving 0.0891 for C; and 8.09(-4) for C,.

Even though the numerical solution has not converged fully we
see that it reproduces quite well the analytical veloclty
variation. Averaged velocity values over 2 or 3 elements are
no more than 1% in error, individual element values are in
error by up to 3%4. The magnltude of the convection term shows
more scatter, with the value in element 265 having an error of
40%; again the values averaged over 2 or 3 elements lie closer
to the analytical solution. The tests used only four or five
elements to span the width of the channel but no computations
have been done with a finer grid. Thus 1t is not clear whether
the errors in the convection term are due to Insufficient
convergence of the main flow field or to the coarse grid.
Having obtained a method which is stable for all discharges
(see Section 5.6) more tests should be carried out on this
geometry, comparing the results with the first (and possibly

higher) order analytic solution.

The meandering channel

This section describes tests using a series of meshes based
upon flume geometry of Sooky (1964). The meshes represent a
slngle meander wave (Mesh l1); a single meander wave with
straight entry and exit reaches of three different equal

lengths (Meshes 2, 5 and 6); and finally six repetitions of the
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meander wave (Mesh 7). (The mesh numbers refer to Table A2.1
of Appendix 2). These tests were deslgned primarily to look at
the effects of boundary data on the calculated flow conditions.
In practice the variation of water level on a flow boundary
will not be known precisely. It is important that the flow
conditions in the area of interest Is not unduly affected by

errors in the boundary data.

The iteration only converged for the lowest veloclty tested,

and then the asymptotic state of convergence was similar in all
tests, being about (0.5)n see Table 5.4. Thils rate agrees with
the analysis in Sectlon 5.4.2. At the end of 10 iterations the
water depths were changing by about 1 part in ].05 and the depth

of flow in the main channel was about 60mm.

In some tests the water level across the flow boundaries was
taken from equation (5.21) and for others the water level was
specified as horizontal. Thils change did not affect the
convergence of the iteration. The roughness size for the tests
that converged was 36m, this belng a factor of about 104
greater than the prototype value. The iteration diverged for
tests with roughness sizes of 0.36m and 3.6mm. The water
surface and bed slopes were set to 0.0016, with the intention

that the flow rate should be similar for all tests.
For Mesh 1, the single meander wave, the transverse water

surface profile across the centre of the mesh was markedly

different from the boundary variation of water level from
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TABLE 5.4

CONVERGENCE RATES FOR DIFFERENT MESHES

Mesh Convergence parameter Convergence parameter

for water depth for unit flow

Iteration Iteration Asymptotic Iteration Iteration Asymptotic

6 10 rate 6 10 rate

with variable water level on the flow boundaries

1 1.37(~4) 8.43(-6)  0.498 7.68(-3) 4.36(-4)  0.488
2 1.49(~4) 8.67(=6)  0.491 8.72(=3) 4.62(=4)  0.480
5 5.59(-4) 4.15(-5)  0.522 6.25(-3) 3.94(-4)  0.501
6 9.69(=4) 7.26(-5)  0.523 6.96(=3) 4.98(-4)  0.517
7 7.06(-5) 3.78(~6)  0.481 3.18(-3) 2.11(-4)  0.508

with horizontal water level on the flow boundaries
1 1.36(-4) 8.25(-6) 0.496 7.70(-3) 4.37(-6) 0.488

7 6.95(=5) 3.72(-6) 0.481 3.19¢~3) 2.07(-4) 0.504
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equation (5.21). Using a horlzontal water level on the
boundaries, however, did not affect the nature of the surface
profile in the centre of the mesh except to shift 1t down
vertically by the change in mean depth at the two boundaries,
see Fig 5.6. This indicates that 1n the interior of the domain
the transverse water surface slope 1s insensitive to the

boundary water level.

The uniform stralight extensions on elther end of the single
meander (Meshes 2, 5 and 6) also did not affect the transverse
water surface slopes at the centre of the mesh, see Fig 5.7.
The longest extension used, Mesh 6, showed the slowest
convergence rate, Table 5.4. Plotting the transverse profiles
for the two final iterations shows the surface slope is well
established with the whole profile being lowered in the final
iteration. The water levels at the upstream end of the meander
show a similar varlation to the levels for Mesh 1 with the
boundary conditions from equation {(5.21), see Fig 5.8. The
water levels across the downstream end of the meander, however,
are completely different with the surface slope across the
channel belng of the opposite sign, see Fig 5.9. These results
were not affected by the length of the mesh extension and no
simple explanation for this behaviour can be given. Again for
the tests of Mesh 6 the results of the last two iterations show
only a bulk movement of the water surface, malntaining the
transverse slopes. The differences in water level at the same
location in these three tests 1s explalned by the changed
length of the mesh. The absolute values of the river bed and

the water level at the downstream end of the mesh were
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identical in all tests.

The two tests of the repeated meander, Mesh 7, give conditions
similar to Sooky's experiments which covered several meander
waves. Figure 5.10 Is taken ffom Figure 30 of Sooky's thesis
(1964) and shows the experimental transverse water levels where
the meander is at 1ts closest to one wall of the flume. The
difference in scale of the water level varlations between the
flume and the numerical tests was due to the large difference
in discharge, 7.89(-3)u3/s for the flume and 1.88(-4)m3¥s for
the computations. The computed results for the centre of the
meander wave Fig 5.11 show transverse water level variations
which are similar for each meander, and are also similar to the
results of the centre of the single meander, Figs 5.6 and 5.7.
The transverse slopes at the full meander wave (le where the
channel is on the opposite side of the flume to the centre
meander case) show transverse slopes which are consistently
larger, see Fig 5.12, but are similar in shape to Sooky's
experiments. Changing the water level variation on the inflow
and outflow boundaries did not affect this, see Fig 5.13; it
only produced a gross lowering of the surface profile as found
in the tests of Mesh 1 (Fig 5.6). The numerical values of
velocity and convection term were found to be identical to the
lteration precision In these two cases, for successive meander
waves. Table 5.5 provides a comparison for corresponding
elements in the incised channel approximately oue quarter of
the distance along each meander. Scaling the water level rise

across the channel from the computations [3(—6) to 6(—6)m] by
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Water level

variable

on flow

boundaries

Water level

constant

on flow

boundaries

TABLE 5.5

RESULTS FOR SUCCESSIVE MEANDER WAVES (MESH 7)

Element

46

194

342

490

638

786

46

194

342

490

638

788

Velocity Components

X

7.913(-3)
7.913(-3)
7.912(-3)
7.913(-3)
7.913(-3)

7.912(-3)

7.913(-3)
7.912(-3)
7.912(-3)
7.912(-3)
7.912(-3)

7.912(-3)

y

~2.651(~3)
~2.643(-3)
-2.642(-3)
~2.643(-3)
~2.643(~3)

-2.643(-3)

-2.647(=3)
-2.643(-3)
-2.642(~3)
~2.643(-3)
~2.643(~3)

-2.643(-3)

134

L161(=7)
. 348(~7)
.355(-7)
.292(-7)
294 (=7)

£ 266(-7)

.259(-7)
J347(~7)
.355(~7)
.292(-7)
.294(=7)

270(-7)

Convection term

.306(-6)
. 287(~6)
.287(=6)
.285(-6)
-285(~6)

.281(-6)

.298(~6)
.286(-6)
.287(=6)
. 284(-6)
.284(-6)

.282(-6)



5.3.5

the square of the discharge ratio between the computation and
Sooky's experiments gives values, 5 to lUmm. These are larger
than Sooky observed (approx 4mm) and this discrepancy may be
explained by:

(i) changes in conveyence across the channel produced by
the larger experimental wvariation of depth than
computed [0(10'1) rather than 0(10‘”))

(ii) the different distribution of discharge between channel
and flood plain caused by terms omitted from the
mathematical model, principally the turbulent

stresses.

Overall the results of the trial computations show consistent,
albeit occasionally unexpected, behaviour. The results on the
meandering channel, taken with the test on the U~shaped channel,
show that the recovery procedure used to obtain the convection
term produces acceptable results when the calculation

converges.

The first order variation method

During the development of the time stepping approach, Section

5.6, an improvement was made to the 1lterative procedure for the

steady flow. Equation (5.12) for the discharge in each element

1s explicit. Thus the term QP in equation (5.11) can be

replaced by this relationship and a non-linear equation

produced for water level at the new iteration n + 1. The water
mtl n

level may be expressed as H. = Hj

variation equations are in fact mereiy a special case (the

+ B—[J. and the first order
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limit as the time step becomes large) of the unsteady equations
given in Section 5.6.1. When implemented, the steady flow
version had the same limit on roughness size for convergence,
but convergence was much more rapld than for the simple
successive substitution method. Table 5.6 presents the
converge rates for a test using mesh 2. The computed results,
however, showed the same behaviour as that discussed in Section

5.3.4 and so are not described further.

Even when the overall iteration diverged, the inner iteration
for water level, given bad values for the convection tern,
converged nearly quadratically. The divergence of the
iteration was clearly linked to the number of times the

recovery procedure was used to calculate the convection term.
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TABLE 5.6
CONVERGENCE PARAMETERS OF FIRST ORDER VARIATIQN METHOD

Quter iteration

Inner 1 2 3 4 5

Iteration
for 1 1.40(-2) 3.68(-5) 3.10(-7) 5.25(-9) 1.38(-10)
water 2 5.05(-3) 9.61(-8) 1.52(-11)

level 3 [1.05(-3) 1.04(-11)

4 1.80(-5)

5 6.21(-9)
Unict 7.26(-1) 1.78(-3) 2.90(-5) 1.10(-6) 4.64(-8)
flow l
Convection
term 1.0(0) 1.06(-1) 7.93(-3) 1.99(-4) 4.92(-6)
components

5.4

5.4.1

Convergence of the lterative sequence

Introduction

We examine here the conditions under which the iteration on the
steady flow equations will converge to some limit. As in the
discussion of Sections 3 and 4, we do not consider the
convergence of the finite element approximation to the solution
of the flow equations as the mesh size is reduced. However, in
contrast to the previous work we do not express all the

analysis in terms of the Galerkin equations satisfied to first
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order by the error at successive iterations. Instead, we
examlne first order expanslons of the flow equations on the
assumption that a consistent finite element approximation will

exhiblt the same behaviour.

The computaticns already described indlicated a practical limit
on the prototype flows that could be simulated with the steady
model incorporating convection. For geometrles based upon
Sooky's flume, Meshes 1 and 2, the calculations converged for a
roughness size of 36m but diverged for roughness sizes of 0.36m
and 0.0036m. The smallest roughness value produced a
spectacular growth of velocity in successive iterations (see

Fig 5.14).

Rather than being governed by some dimensionless parameter of
the physical flow, such as Froude unumber, the condition for
convergence of the iteration depends upon the mesh geometry and
the conveyance function. This condition is derived first from
an heuristic argument and is thea shown to apply to the growth
of an initlally small pointwise error on the exact numerical
solution for two regular mesh geometries. The same constraint
applies to a one—dimensional analogue of the 2-D equations and
the analysis of this simplified case in Section 5.5 suggests
that an iterative method based upon time steppling should
converge, conditional upon the time step. This provided the
motivation for the algorithms based upon semi-implicit time

stepping and 1s described in Section 5.6.
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5.4.2

Approximate analysis of the three stage procedure

Consider the iteration to find surface slope s, velocity u and

convection term ¢ with appropriate boundary data thus:

7 Fr™ T + M/ u| =0 : (5.23)
En+1 - _F(§n+1 + En)/|sn+l + cnl% (5.24)
En+1 - (gn+1.-“‘.,)Erﬁ-]L/g (5.25)

In the above the superscripts n etc denote the iteration level
and we assume depth D and frictlon function F to be uniform
with

F = K/D (5.26)
F has dimension of veloclty and may be interpreted as the
velocity of frictlon controlled flow with unit surface slope.

* x ok
Assume that the iteratlon converges to a triple (8 , u, ¢ )

and suppose that at each stage

*
gn =35 + QP (5.27a)
*
= o+ g (5.27b)
En = (_:* + Jn (5.27c)

where the variationslgy, jf and JP are small. Substituting the

relations (5.27) into equation (5.23) we have

T s + g*)/lg* +8]}=0

which becomes to first order, _

FEET | - R v e 0 (The
equation for iteration on gn+l is

Eﬂ+1+ g* _ —F(QP+1+39+§*+Q*)/|§*+§*+QP+1+JF\% (5.29)

Expanding this to first order and eliminating EP+1 and JP
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between equations (5.28) and (5.29) we obtain

= wtaouns o) (5.30)
In the elimination we have assumed that the expression in the
curly brackets in equation (5.28) is 1tself zero to first order
by application of the boundary conditions. Equation (5.30)
implies that the velocity error is eliminated 1a the
cross—stream direction and halved in the stream direction in
each iteratlon. This behaviour 1s the same as deduced from the
Galerkin equations for the case ¢ = o in Section 4.3.2 with the

relaxation parameter set to 1.0 for each iteration.

Having established that the ilteration for velocity should be
stable we examine the convection term. Consider the simple
case of the uniform flow 1n a straight sloping flume with no
incised channel, with the velocity, convectlon and surface
vectors given by:

*
u = (uono) s © T 0,8 = (5010)

Suppose that the computed velocity vector is

* *
u =u + ﬁl (5.31)

where ﬁl for example is generated by rounding error. The
iteration will provide a convectlon term El given by
el = (u /g) (3 B, 8B (5-32)
= o] x 'x* xFy

1l = (gl 1 .
where § (Bx , ﬁy)
If the magnitude of the rounding and other errors for this step

is E! and the grid size 1in the flow direction is A then

3 Bl ~(EY N 3 (5.33)
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where e = (sinol, cosel) is a unilt vector. Suppose that, as
*
observed in trial calculations, the surface slope vector s 1is
unaffected to first order by the error in the velocity and
convectlon vectors. We have for the second iteration
* 2, * 2 2, * 1
w +E)ly + ] ~-Fg +c) (5:34)
Expanding this to first order in B for each component we have:
2 = 2 1 1 2
2uoﬁx (F</gp) E!l cosa- + ES (5.35a)
u B2 = (F%gn) E! sinpl + EZ (5.35b)
o'y y
Hence we see that the original rounding error will be
multiplied by a factor of approximately (F2/gA), which clearly

implies a limit on the convergence of iterative method.

Three tests were carried out to test this criterion for
convergence. The topographic and boundary data were set up to
give a uniform flow In the x direction which was exact {to
rounding error) on the initilisation of the calculation. The
depth of flow was 0.05m, the streamwise space step was 0.158a
and three roughness sizes ks were tested: 0.010001m, 0.2m and
2.0m. Using the Colebrook-White equation with power law
extension as set out In Section 2.2.2 the values of the
parameter (F?/gp) may be calculated and are shown below with

the growth {or otherwise) of y component of the velocity, uy'
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5.4.3

Test 1 Test 2 Test 3
F2/ga 0.354 3.54 35.4
loglg(uy) initial 0(-10) 0(-10) 0(-10)
loglo(uy) final 0(-10) a(-=3) 0(-3)
number of iterations n 20 10 5
n log o (F%32) -9 5.5 7.7

The predicted and observed growth rates of the numerical error

are clearly consistent with one another.

The equilateral mesh

Consider the three step iteration procedure using equations
(5.11) and (5.12) applied to uniform velocity a in a domain
covered with equilateral triangles of altitude A. We take the
flow direction to be along the x axis, which coincides with one
of the element sides to simplify the algebra. Suppose that the
initial estimate for the water level is exact, except with an
error of e at one node, A in Figure 5.15. We may calculate the
flow velocities and values of the convection term for a patch
of elements around node A.

On the first iteration these have

the values below:

Element 1 2 3 4 5 6
u -v3/4 Q v3/4 3/4 0 -v3/4
v 1 1 ~% ~% 1 -4
.y 0 v3/2 0 0 v3/2 0
c 1 0 -1 1 0 -1
y

where all the velocity values are multiples of (¢ leuozw and
the convection term values are multiples of (V3 & F 2/2gA2).

Figure 5.16 shows the vectors with these components. The
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velocity errors are obviously weakly irrotational in the patch
gsince they are derived from the gradient of a scalar error, and
a hand calculation shows that the convection term from the
level error c to be weakly divergence free. We have

QA> = <¢g, ¥ ¢A> =0 (5.36)
where QA is the linear basis function with support over the
patch around node A. {owever, we note that 1in general

<c , ¥ ¢j> £0 (5.37)
when j # A and j is connected to A. Therefore on the second
iteration the fleld ¢ will not affect the Galerkin equations
for water level at node A but it will influence those for the
surrounding nodes. Neglecting this influence on the periphery
of the patch we may continue to calculate velocity and
convection term vectors for the second iteration. The new
velocity errors follow closely the pattern of the convection
term from the first iteration, see Fig 5.17. Calculating the
velocity derivatives and mean velocity in each element from the
least squares fitting procedure of Section 5.2.2 gives the
convectlon term pattern shown in the lower portion of Figure

5.17. The values of the components of these vectors are

Elenent 1 2 3 4 3 b
u 0 ¥3/4 0 0 v3/4 0
v -1 0 1 -1 0 1
Cy -/3/16 0 v3/16 v3/16 0 -/3/16
c 0 1 0 0 -1 0
y

where the velocity component values are multiples of

(f35F“]4gA2uo) and the convection term components are multiples
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of (3&F48g2A3). The second iterate c, for the convection term

is no longer weakly divergence free, a hand calculation gives
ey, Vo= (1973 eN4) (FHgh)? (5.38)
The consequent change in water level at node A €3 for the third
iteration is therefore

£3= (57/3/192) € (FYgp)? (5.39)
on the assumption that the water level remalns fixed arcund the
periphery of the patch. The vector Vej does not coincide with
—Cc 7 In each element and hence the velocity field in the third
iteration will have a slightly different character from that in

the first, see Fig 5.18. The velocity couponent values are

Element 1 2 3 4 5 6
u 13v3/58 0 -13/3/58 =-13v3/58 0 13v3/58
v -19/58 1 -19/58 19/58 -1 19/58

and are multiples of (87¢ F6/192g2A%%)). Hand calculation of
the various components of the error for more steps of the
iteration becomes tedious and does not further clarify the
situation. Setting the square of the mesh Froude number Fm as
Fon2 = Fé/ghs (5.40)
where #s is the length of the triangle sides (24 /3), we may

summarise the results as follows

Maximum Error Level Velocity Convection term
£ e F%u_a e/ A
Tteration 1 1 1 Fm 2
Iteration 2 0 0.5 Fm? 0.5 Fm'
Iteration 3 0.68 Fa* 0.6 Fm' 0(Fm &)

For the iteration to converge clearly a limit on the wagnitude

of Fm is implied. Each calculation of the convection term
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5.5

5.5.1

introduces a factor of sz, and numerical experiments showed
that it was the number of iteratiouns for the convection term
that determined the growth in error for two variants of the
successive substitution algorithm. These were firstly to
iterate for velocity and water level to convergence for a given
convection term, and secondly to iterate to convergence (or
divergence) for velocity and convection term for each iterate

of water level.

The above analysls of the evolution of error with iteration can
be repeated for other simple mesh geometries such as the
rectangular mesh divided along parallel diagonals. The sanme
pattern emerges with an irrotational velocity error and a
weakly divergence-free convection term error enterlng the

second stage of iteration, see Figure 5.18B.

The equivalent one dimensional case

Introduction

In order to justify the use of the tiwe stepping method of
Section 5.6 we examine the procedure applied to the
S5aint-Venant equations. For a uniform channel of width B,
depth D, with mean velocity U, and water level h, these
equations are:

ath + axDU =0 (5.41)
atU+Uaxh+g (Bxh+sf) =0 . {(5.42)
These equations are discussed, for example, by Cunge Holly and

Verwey (1980) and have formed the basis for many practical
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5.2.2

nodels. The frictlon slope s_ 1s quantified as

f
s; = Ulu|/F2 (5.43)
where the friction function F is the mean value over a cross

section of the function F 1in equation (5.26).

The least squares recovery algorithm for the convection term
requires the velocity field to be known. For simplicity, when
setting up the time stepping method the convection term was
always calculated at the old time level. This enabled velocity
to be eliminated from the system of Galerkin equations and
hence reduce the computational effort in each time step. 1In
order to assess the likely stability properties of this
procedure we conslder Fourler analysis for two simplified

cases.

Frictionless flow

Let h be perturbed by & and U by ¢ and set S¢ to zero in
equation (5.42). This gives the following perturbation
equations for an initially steady flow:

%5+D%5+U%6=0 (5.44)
ate-+ ua e+ gbxé =0 . (5.45)
These equatlons are a linear hyperbeolic system with

%

characterlstic speeds U * (gD)” and thus have the same
characteristics locally as the full St Venant equations. The
equivalent one-dimensional scheme involves taking & to be
piecewlse linear in each element, e plecewise constant, and

welghting (5.44) with the linear basis functions and (5.45)

with constant basis functions. 1In equation (5.45), to
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calculate axs in any element we take the difference over the

two adjacent elements. For an Infinite spatial grid jm and

between times nAr and (ntl)At we have

n+l n+l n+l n
M . - ., +D , =M .
L 5:] bW AOGJ ua, €y L 5.]
n+l n+l o+l n
+ = - .
Mc Ej—% Ve A__éj Mcsj_% ¥ W Aowj-g

The mesh ratio p is At/ Mx and the operators M,

(5.46)
(5.47)

etc are

defined with their transforms below. Take the Fourier

transforms of the discrete equations with wave number k,

defining ¢ and s to the cosine and sine of %k Ax respectively.

We have
Operator Origin
ML averaging for linear function with
linear weighting
MC averaging for constant function with
constant welghting
Ab central difference spanning two
elements
A, forwards difference over one
element
A backward difference over one
element

Summing over all grid points s and defining

k)

k) = ¥ e yexp (Lk(i+e) o)

{l

) éjexp (ikj Ax)

the transform equations are:

+
A (B, LR L (B

The coefficlent matrices A and B are

147

Transform

1 —(2/3)s?

4ics

21is(ctHis)

2is(c=is)

(5.48)



[ (1-2/3s2) + 21 ucs 2iDps |

A =l g s L (5.49)
[ (1-2/3s2) 0 ]

B =L 0 1-2i jues . (5.50)

Suppose at each step for some complex X

+1 +1 .t t
(%n ,?fn ) =}¥(8n)€n)

(5.51)
Then the eigenvalues A are determined by the condition
Det [B - Mm]=0 (5.52)
This gives a quadratic equation in X with the following
coefficients
A (at B +iy=a (5.53a)
A -[2a+ Y24+ iy~ ] = b (5.53b)
A0 a(l-iy) = ¢ (5.53¢)
a=1-2/3s2 (5.54a)
B2 = 4gDp%s? (5.54b)
y = 2Usc . (5.54c)

The conditions for the quadratic equations to have roots lying
in the unit disc, from Miller (1971), are:

Condition A |a| > lcl

Condition B (ba - be) £ |a|2 Nk

Expand first of all condition A, which implies

(a+ B2+ y2 5 o2+ a2y2

or 2apl+ B+ y2 3 o2y2 .

By definition o« lies in the interval [1/3, l] and 32 is
non-negative, hence condition A is satisfied without
restriction on p or the flow velocity. Condition B leads to
some tedious algebra; we may Ssquare each side and rearrange the

condition as
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B8 + 4ap®+ BYy2 (2-2a? - ba- YD) + B2y2 (ba - bal - @2 -1)

+ y* (1 - a?) 30 . (5.55)
Looking back to the definitions of a« B and y (5.54) we see
that condition (5.55) involves terms.of even powers up to 12 in

s, 8 In pand 4 in U and gD.

Firstly we observe that, in the limit of stationary flow, A is
zero and the condition 1s satisfied without restriction on the
time step. That 1s, the scheme 1s unconditionally stable for
the one-dimensional wave equation. Secondly the condition is
satisfied at the limits of 0 and ! for s? since y2is zero for
these values. Thirdly, examining the coefficient of BZY2’ we
see that the cublc 1s a positive for the lower limit 1/3 of q,
zero for the upper limit of « and has a single turning point in
the interval (1/3, 1). Hence the coefficlent of B2y2 is
non-negative for all relevant values of s2, The coefficients
of B8 g6 and BY in conmdition (5.55) are all non-negative by

definition.

The remaining term is of indeterminate sign and may be written

as

B2 (2 - 202 - 4a - y?) =

1024 Crb Fr=%s® (1-82) [(Cr2+ 4/3)s2-1 - (2/9 +Cr?) s*].
(5.56)

where the Courant nuwmber Gr 1s W and the Froude number Fr is

U/(gD)5- Obviously the magnitude of this term depends upon the

values of the Courant and Froude numbers of the case 1in

question and by ad justment of these parameters the condition B

may not be met.
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However we may derive sufficient (but not necessary conditions)
for the scheme to be stable by ignoring some terms in (5.55)
shown to be positive. For example, retaining only the terms in

B® and B“ we deduce the following sufficlent condition:

256 sbCrérc© (1-2/3 s2) +

1024Cr Fe % B(1-s 2) [(Cr2 + 4/3)s2 -1 - (2/9 + Cr9s™] »0
which, taking out a common factor of 256 s%r®Fc—% reduces to
(1-2/38 2)+ 4Fr A(1-s 2) [(Cr H4/3)s 2 -1-(2/9+exs™] 20 . (5.58)
Setting (1-2/3s2) to 1/3 and (1-s2) to 1l in order to minimise
the positive term and maximise the negative term in (5.58) we
deduce that a sufficient condition for (5.58) to hold 1s

Fr < (1/12)% =~ 0.29

without restriction oan the Courant number. Hence, a fortiori,
the condition B 1s met with this 1limit on Froude number for all
Courant numbers. Of course the true stability region may not

be so restrictive.

The rigid lid approximation

In this Section we consider the scheme applied to the dynamic
equation alone. This is analysed since we assume that the
depth D is uniform in space and time. In physical terms we
have suppressed the natural "compressibility” of the shallow
water equations. TIn general terms, no error in the calculation
can be transformed into potential energy by raising the surface
level but is restricted to altering the kinetic energy of the

flow. The stability constraints which this forces are thus
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likely to be more severe than for the method applied to the
full system of equations. Again we examine stability using
Fourier analysis. The model equation is

3 U + U2 U + gu|ul/F2 = gs (5.59)
where s is the surface slope. Introducing a perturbation ¢ to
the steady solution U we obtain

o,e+ Ud e+ 2g¢ sf/U =0 . (3.60)

The finite difference form of this equation is

o+l o+l n R
‘ - L . . 5.61

Hence using the transforms of the operaters given above we
have, assuming %ﬂ+1 = Xgn,

(1+2gAtsf/U) A=1- 2ics W

ie, A= (l-2icspl)/(l+2gin sf/U) . (5.62)
For stability we require |x{ not to exceed unity that is

1+ 451892 <1 + 4z s /U + 4g 20 2‘3f 2y 2 (5.63)
for s2 in the interval (0, 1). Defining the mesh Froude number
Fm by

Fm = F/(gm)% (3.64)
the coadition (5.63) may be rearranged as

Cr (1-4/Fm") < 4/Fm?2 . (5.65)
We have two cases, firstly if FPm £ 2 then there is no
restriction on Courant number. This condition ties up with the
analysis of the successive substitution scheme in Section
5.4.2. For larger values of Fm we require

Cr < 4Fm%/(Fm™ - 4) . (5.66)

Thus for any value of the mesh Froude number we may obtain a



5.5.4

5.6

5.6.1

stable calculation by chosing sufficiently small Courant number

{(or time step).

Concluding remarks

The stability analysis of the one dimensional analogue 1s
reassuring in that the explosive growth of error im the rigid
lid approximation for the steady flow equations can be
controlled by choosing a sultable time step. The analysis of
frictionless flow which has the same pattern of characteristics
as the St-Venant equations leads to the sufficient condition
that the Froude number is less than (.29, but this is likely to
be conservative. The full perturbation equations with friction
could be examined but the algebra would be extremely tedious.
The full St—-Venant equations also contain the physical
instabllity of the formation of roll waves which can induce
unstable numerical calculation for some schemes, See Samuels

(1985).

Semi implicit time stepping

The Galerkin equations

The approximation is based upcon the following wmathematical
model equations

bth-+ 9.q=0 (5.67)
Bu * u.Yu+g(wh +alg|/K2 =0 (5.68)
The water level approximation H 1is piecewise linear in each
element and the unit flow vector Q (DU) is piecewise constant.

We use a Hwelghting method in time and a Galerkin method
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in space. Suppose that CE and Ch are the time weighting

coefficlents for the continuity and dynamic equations

respectively. The Galerkin equations are

cu™l o y?, 05> -

n+1 _ n - .
afo < » T o2+ (170 <@, ¥ ¢j>} 0 (5.69)
(1/ga) <™ it - gt x>+ <", X+

ed [(E{IH'l — .4 < Qn+l'Qn+l|/(Kn+l)2 , 'X,k)’]

+ (1-9;) [< yﬂn RE <(_)‘11'|(_)_n|/(Kn)2 ) xk>]= 0 (5.70)
where ¢j is a plecewise linear basis function and % is
pliecewlse constant. The convection term ¢ is evaluated at the
old time level and is a constant in each element. This,
together with the local support of X » allows equation (5.70)

to be written as a vector equatlon in each element, thus

0 Q™ @ ¢y = 0 (5.71)
where

« = 1/(za ™)

5 - ed/(K“+l)2

4 - edSHn+l . 1"

™ = Mt (1-8y) {m" + (_f‘]_Q“[/(I(“)2 b - Q" (gad™ .

In the computations the tera Zn is calcuated and stored at the

beginning of each time step. From equation (5.71) we deduce

the quadratic for ,Qn+l|:

8 |9n+l|2 + Kl Qn+li _ ‘Il =0 . (5.73)
This has two roots and we take the positive one to give

o™ - e+ [w? + [a]eY (5.74)
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+
Thus In each element we have the value of g? 1 in terms of the
unknown water levels Hn+1 and the known conditions at the start
ntl

of the time step. We may substititue this value of Q into
the continuity equation (5.69) to give an equation in terms of
water level alone, thus achieving a reductlon of the aumber of
simultanegus equations that need be solved each time step.

Defining ¢(Hn+l) by

2 3
e=4%a+ [(50° + glv|] (5.75)
+1 +1 +1 +1.2
- 1/gao™h) + [1/gan™ )2 4o, g m™ ! + 17|/ ™) ]
we may write the Galerkin equations for Hn+1 as
ntl ntl n n

< H , ¢J.>-+ 0.4 <«(0M +T)/o, V¢j>— RJ. (5.76)
where the right hand side R? is

n n n
R, = & >+ A (1-9) < , Vo.> . 5.77

; » b (1-8)) <Q 99, ( )

Like the coefficient En in the definition {(5.72), Rg need only

be computed at the start of each time step. Equation (5.76) is
non-linear in Hn+1 and may be solved iteratively by setting at

each node i

H1:'1+1(m+]_)

ntl{m)
i ,

=H + M,
i i
where the index In parentheses (m) denotes iteration number.
n+l .
We expand all functions of H to first order M to get a

system of equations of the form:

iAij &H\= bj . (5.78)
The coefficient matrix {s in gemeral non—-syommetric and is

composed of the sum of element matrices Aij. The right hand

side bj is also formed by a sum of the elements thus

e n
. = - .+ R. 5.79
bJ febJ ; ( )
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g is gilven by equation (5.77) and b? by
e _ yotl > + o+l
y H . [OCAt/dJ(H )]

Lo, <m™ Jo, >+ a”, Vo, >] . (5.80)
The element matrices are defined by

AS . = <O ¢’j>+ [@cAt/@] {[ed < .?Hn+l ’ _Vd’j >

1]
+ a, 99.2] [-(c + )/ B+ 0, <V, Ye,>] (5.81)
= 2%y i CERRAERAY
with the parameters o and Ii determined in each element by
~ - +1 +1,2
& = -{/30} {i/(2gdae) + [3,|m™ + 1/ K™ +
1/(2g acD)% ] /
- - 2 +1 +1,2
[1/(2gD8e)" + Jgum" + 1T g, /(KT ) ]5} (5.82)

1 = 9 [C @d_‘?ﬁnﬂ + T_n)-E¢i] /{2(Kn+l)2‘9djﬁn+l + 77

A +1 +1 2
/gD’ + [om™ + 1Mo/ k™ HITF L (5.83)
In equation (5.82) the coefficient p is the power of the

conveyence depth relatlion as in Section 2.2.2.

The first order variation equations for steady flow with
convection are obtained by taking At arbitrarily large in
equations (5.78) to (5.83) and setting CL and ed to one. The
time index n now denotes the outer iteration on the convectilon
term and the index m denotes inner iterations to sclve for the
water level for a given value of the convection term. The
equations for the potential formulation for steady flow without
convection are obtalined with the additional simplification that

cn 1s zero which, 1n turn, leads to !n = 0.
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Although the Galerkin equations have been written in terms of

arbitrary values of the weighting coefficients Q: and ©,, the

0
actual computations discussed later in this section used the
value 1.0 for both. This gives the -two-dimenslonal version of
the situation discussed in Section 5.5. TFor all the
computations steady water levels were given on the inflow and
outflow boundaries. No attempt was made to devise

non-reflecting boundary conditions which allow free passage of

errors out of the flow domain.

The meandering channel

The time stepping approach was tested using the single meander
geometry with short straight reaches to the inflow and outflow
boundaries (see Meshes 2, 3 and 4 in Appendix 2). Firstly the
roughness size was set to 36m, the value that produced stable
calculation for the steady flow iteratlion. Since the method
should be unconditionally stable, the time step was set to 10°
seconds, ie, a Courant number, Cr, of about 8 x 103. The
computation converged to machine accuracy 1n five time steps,
mirroring the performance of the first order variation method

of Section 5.3.5, and producing the same solution.

The next set of tests established the limit on the time step
required for stabllity for higher velocities. The convergence
parameter for unit flow rate for tests with roughness size of
0.36m is shown in Figure 5.20. With a time step of 10 seconds,
Cr =~ 8, the calculations diverged quite rapidly. For a time

step of 2 geconds Cr = 1.6 the calculations diverge more
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slowly. For a time step of 1 second the calculations appeared
at first stable but, after falling for the first 10 iterations,
the convergence parameters began to rise slowly. Finally after
setting the time step to 0.5 seconds the model was stable, with
the convergence parameter for unit flow falling to a value of
0.0l (ie a 1% change each time step) at step 13 and remaining

around that wvalue till the computatlon was halted at step 30.

These first tests all used the standard set with banks to
define the neighbouring elements in the convection term
calculation, see Section 5.2.2. The definition was changed to
the standard set alone (allowlng the nelghbour set to straddle
the depth discontinuity) and the calculations repeated for the
1.0 and 0.5 second time steps. The calculations still began to
diverge for the 1.0 second step but at a lower rate, see Figure
5.20., The transverse water surface profiles for the two runs
with a 0.5 second time step are shown on Figure 5.21. The
profiles are similar in shape but the calculations without
banks show a general ralsing of water level and a shallower
surface slope. This method of calculating the convection term
can be expected to introduce a larger numerical diffusion into
the computations, and the comparison in the results supports
this, taking account of the effect of a diffusion term
modelling the turbulent stresses discussed in Section 2.4.2.
The use of the upwind nelghbour set (with banks) was also
tested; the results plotted for the centre of the meander in
Figure 5.2.2 are clearly different from the standard set and
Socky's experiments (Fig 5.10). The algorithm used to provide

an upwind approximation was therefore not tested further.
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At this point in the research the computer at HR Ltd was
changed and the new ICL 2972 machine had a lower precision of
single length arithmetic. This change from 11 digits to 7
digits precision had little effect on the calculations except
that the convergence parameters would not decrease below
0(10~ 7). Thus the numerical approximations are in practice

reasonably well conditioned.

The work of Levine (1985) shows that the error in sampling the
gradient of a plecewise linear function over a triangular mesh
1s related to the topology of the mesh connections see

Appendix 2. The topology of Mesh 2 1s irregular with 5, 6 or 7
nodes being connected to each interior node. The triangulation
was adjusted gilving Mesh 3 which was regular, having 6
connections to each interlor node. This revision, however,
produced no significant changes in the computed water levels,

with differences belng of the order of a few parts in 10°.

A roughness size of 0.36m as used in the tests above is still,
however, much greater than the physical roughness of an
experimental flume. The computations therefore were repeated
with a roughness of 0.003bm, which is about the prototype
value, and a time step of 0.1 seconds. The flow velocities
were about 0.4lm/s in the channel and 0.21m/s on the flood
plain, with a total discharge of 0.10lm3/s. These values are

about 20% higher than Socoky's experiments on his Geometry 4 on
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which the calculations are loosely based; No attempt has been
made to callbrate the computational model, the key point being
that the computations are no longer explosively unstable. The
tlme step of 0.1 second did, however, appear to be too large as
the convergence parameter for discharge was increasing slowly
whilst the parameter for depth (on the first inner iteration)

was falling slowly during the test, see Table 5.7.

TABLE 5.7

CONVERGENCE PARAMETERS (ROUGHNESS 3.6 MM TIME STEP 0.ls)

Time Depth at inner iteration Unit

step 1 2 3 £low
1 2.68(-2)  9.76(=5)  1.32(-6)  2.92(-2)
2 2.85(-2)  B8.48(-5)  1.89(-6)  3.39(~2)
3 1.95(=2)  3.10(=5)  1.45(=6)  4.13(=2)
4 1.40(-2)  2.59(-5)  1.46(-6)  3.56(-2)
5 1.15¢=2)  1.55(=5)  1.26(=6)  3.59(-2)
6 8.82(-3)  9.45(-6)  1.36(-6)  3.85(-2)
7 1.03(-2)  7.95(-6)  1.52(=6)  4.61(-2)
8 1.12¢-2)  1.15(=5)  1.44(=6)  5.00(-2)
9 1.077(=2)  1.19(-5)  1.33(=6)  5.14(=2)

10 8.86(-3)  1.03(=5)  1.37(=6)  5.14(-2)

The linear diwmensions of the mesh were all scaled by a factor
100 (Mesh &), which implies a scaling of 10 for velocity and
tlme to maintain Froudian similarity, see Henderson (1966), and

a discharge scale of 10°. The flow was calculated with a
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roughness size of 0.36m which should produce results similar to
the flume geometry with roughness 0.0036m. For a time step of
10 seconds the computations diverged. For a time step of 1
second the results were similar to those obtained in the
corresponding test of Mesh 3 with a step of 0.1 seconds.
Variations of a few parts in 10% for water level, 10° for
velocity and 10" for the convection term, were apparent and the
convergence parameters for each time step and inner iteration

were nearly identical.

Finally a time step of 0.5 seconds was tested for the scaled
mesh. This was stable with the convergence parameters shown on
Figure 5.23 and the variation of water level across the centre
of the mesh shown on Figure 5.24. The difference in water
level across the channel (0.5m) is consistent with Sooky's
experiments, allowing for the appropriate scale factors. Soae

of the principal parameters of the flow are:

Flood Plain Channel
depth 2.0m 6.lm
velocity 2.1m/s 4.1m/s
Froude aumber 0.47 0.53
Total width 97m 21lm .

The total discharge was 1010m3/s; the streamwise surface slope
was 0.0016 and the transverse slope up to 0.02 locally. These
flow conditions are possibly more severe than those in many UK
rivers in flood. It should be noted that in some parts of the
flow the convection term domlnated the friction slope by a factor

of about 15.

Le0



5.6.3

Tallahala Creek data

The time stepping method was applled to Mesh 9 which represents
Tallahala Creek with Chezy roughness coefficlents taken from
Tseng (1975). The initilisation of the calculations involved a
solution of the steady flow equatlons without convection using
the first order variation method. 1In contrast to the flume
based tests this converged only slowly with the asymptotic rate
being (0.783)“. Computations were carried out for 5 two second
steps at which time the water depth changed by a maximum of
0.8% and the unit flow magnitude by 20%Z. 1In all time steps the
maximum changes occurred In the throat of the contraction
between the two embankments leading to the bridge. Figure 5.25
shows contours of water level at the end of the initialisation
with zero convection. At the end of five time steps the only
water levels which changed by more than 0.05m were 1in the
throat of the contraction where decreases up to 0.15m occurred.
The results for Tseng {1975) and Franques and Yannitell (1974)
are shown on Flgures 5.26 and 5.27 respectively. The contours
of Flgure 5.25 are closer to Tseng's results then those of
Frangques and Yannitell. An important feature is that, without
the convection term, the water level difference through the
contraction is nearly the same as the observations in

Tseng (1975). This indicates that the head loss 1s probably
due to frictional resistance on the increased length of

streamlines.

A modification to the updating of water level was tried to

improve the convergence of the level iterations. A relaxation
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parameter of 0.5 was used for all nodes where the update was of
opposite signs to the previous one at the node. This was
invoked at up to 15% of the nodes on the mesh at any one
iteration, but not consistently at any location. However it
only marginally improved the convergence rate and did not

significantly change the calculated water levels.

Concluding remarks

The least squares recovery method for obtaining the convection
term has not produced acceptable results in all cases despite
having sowme attractive properties. For iteration on the steady
flow equations the method converged only for unrealistically
low velocities. The method based upon time stepping stabllised
the computations, dependent upon time step. It produced
results for a scaled up version of the Sooky's (L964) flume
data which had physical parameters that are comparable to
intended engineering applications. The calculations did not
give a steady state for steady water levels on the flow
boundaries but depths and velocities varied between about 0.1
and 10% depending upon the time step. An interpretatioun of
this behaviour 1s that evaluating the convection term
introduces errors at each time step which are propagated out of

the computational domain.

Further work on the method is required before it can be applied
in earnest to practical problems. The accuracy of the computed
convection term should be investigated as should be the poor
performance of the iteration for water level for the Tallahala

Creek data. It is not clear whether higher order of
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approximation for the velocity or unit flow fleld may in fact

be required for practical applications.



6.1

6.1.1

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The mathematical model

Depth integration

The integration of the convective accelerations through the
depth of the flow requires particular care. The velocity
variation with depth may be conslidered either before or after
(the usual approach) the depth integration. Treating the
vertical structure before the depth integration gilves equation
(2.30). Solutlons of this equation can have significantly
different character from those of the usual approach, equation
(2.37). The usual formulation can predict flows which have
recirculation when the alternative formulation can have no
closed streamlines. In the usual formulation it 1s argued that
the depth varlation of plan velocity produces terms analogous
to the turbulent stress terms. However, it is known that they
are of an order or more greater in magnitude than typical
values of the turbulent stress. The use of dynamic equation
(2.30) gives a hyperbolic set of equations in the absence of
turbulent stresses whereas the use of equation (2.37) gives an
incompletely parabolic system requlring different boundary
data. These points are of practical importance outside the

area of river flow modelling.
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6.2

Turbulent stress terms

The effect of these terms on the lateral velocity distribution
has been quantified through a new analytic solution for
rectangular geometry, equation (2.42). This leads to estimates
of shear layer width at the boundary between the flood plain
and an incised river channel. It indicates that the shear
layers from the banks interact In the main channel with the
velocity not achieving the free stream vailue. This is
consistent with the difference between computed results which
iznore the turbulent stresses and Sooky's (1964) experiments.
The form of the transverse velocity profile should be examined
experimentally in more detall to confirm whether the simple
pixing length hypothesis which underlies equation (2.42) 1s

in fact valid for these flows.

The stream function formulation

The published iteration of Frangues and Yannitell (1974)
converged extremely slowly. The first order variation method,
Section 3.4.3, has a much superlor performance and produced
good results for tests based upon Sooky's flume data. The
method however produced poor results, both in terms of
convergence rate and predicted water levels on the Inflow
boundary, for the Tallahala Creek data. Further work 1s
required to identify why the iteration converged slowly on this
geometry. The streamline Iintegration algorithm needs to be
lmproved to include In some manner the property that contours
of the water level and stream function should be mutually

orthogonal.

165



6.3

Primitive variable formulation

The first order varlation form of the potential formulation
converged rapidly when applied to the flume gecmetry when

the convection term was excluded. When the convection term was
incorporated into the model again the method converged but only
for sufficiently slow flows. This limit has been explained by

an analysis of the iterative method.

The algorithm used to calculate the convection term is new. It
recovers the first derivatives of a plecewise constant velocity
field by least squares fitting. The algorithm produces results
which are consistent with a first order analytical solution of
flow in a bend and with observations in an experimental flume.
The method, however, has its limitations. Although the use of
a time stepping method allowed stable computations for all flow
velocities tested for the flume geometry, the time step
required was small. A true steady state was not achieved
despite the application of steady water levels at the flow
boundaries. Further work is necessary before the method can be
applied in practice. Attention should be directed to:
1 the comparison of the computed and first order analytic
solution for flow in a bend at higher velocities;
2 widening the limit on time step for the method to be
stable;
3 jmproving the performance of the inner iteration for water

level for the Tallahala Creek data.

Improving the limit on time step will probably require a

revision of the calculation of the convection term, weighting
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the term towards the forward time level. This will lead to a
larger set of linear equations to solve, as the elimination of
the unit flow varliables as in Section 5.6.1 will no longer he

possible.

An alternative procedure could be to use a higher order
approximation for the unit flow vector in the form of an
approximately divergence—-free element. This will have the
advantage of readlly being able to represent a diffusion type
model of the turbulent stress terms, since then the flow
equations are similar to the Navier—Stokes equations. However,
there is a relationshlp between the orders of approximation
that can used for the primlitive variables and this will need to
be examined along the lines of the work of Girault and Raviart

(1979).

The model of flow without turbulent stress terms will
incorporate some of the effects of these terms through its
calibrated roughness values. 1If the turbulent stress terms are
included and the roughness 1s unchanged, the distribution of
flow between the channel and flood plain will change. As with
the stream function formulation the proportion of the flow in
the main channel was higher in the computations of the

potential formulation then in Sooky's experiments.

Remarks on practical applications

For the low velocities used for the initial tests of the
potential formulation with convectlon, the flow in the channel

and flood plain geometry appeared insensitive to variations in
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boundary data. The water surface slope was determined by the
local bed geowmetry. This suggests that the boundaries in a
practical applicatlon need not be removed too far from the area
of Interest provided that a line normal to the flow direction
can be assessed. No tests, however, have been done on changing
the alignment of the inflow or outflow boundary. Such

senslitivity tests should be part of a practical application.

The potential formulation is complementary to the stream
function formulation 1n the nature of the boundary conditions.
When water levels are known at elther end of the flow domain,
as 1s usual in the case of calibration, the roughness will be
ad justed to achieve the correct discharge (and interlor water
levels etc, where known). In the stream function formulation
the roughness will be adjusted to achleve the correct water
level on the upstream flow boundary. Such adjustments may be
manual or done automatically in an outer 1teration around the
methods discussed In this thesis. Since friction losses are
dominant for river flow, callbration should initially proceed
on the assumption that the convection 1s zero. Final
refinements may be made by including the convection term if an
analysis of the veloclties and curvature of the flow without

convection suggest that this term may be significant.

In the design situation typically the water level 1s given at
the downstream end of the flow domailn and the total discharge
is known. These are precisely the boundary data for the stream
function formulation. 1In the potential formulation the total
discharge will be obtalned by adjusting the water level on the
inflow boundary.
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A difficulty in using the common cell-type flood plain meodel
has been demonstrated in Section 1l.4. For a river type link
the conveyence function for a link between cells depends upon
the veloclity direction. This implies that a calibrated value
may not be approprilate for deslgn purposes where the flow
direction changes. This feature is not reported in any of the
references to cell type models cited in Chapter 1, and

represents a serious limitation of the method.

Extensions to the mathematical model

The obvious extensions of the model equations from the

computations presented in this thesls are:

1 to Include the velocity distribution coefficient ¢ in the
convection term

2 to include the turbulent stress terms

The analysls of Chapter 2 and Appendix 1 indicates there should

be no fundamental problem in the first of these extensions.

Any model of the turbulent stress terms wlll change the

boundary data requirements and possibly increase the number of

equations to be solved.

A third extension of the model 1s to allow free boundaries at
the edges of the flood plain. Currently these no flow
boundaries are assumed fixed during the computation. This will
probably require an additional level of iteratlon to determine
the locatlon of the edge of the flow. Finally some means must
be found to incorporate structures such as weirs, sluices,

flumes and raised embankments in the model. At these sites the
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vertical accelerations and curvature of the water surface are
not small and one of the assumptions behind the two dimensional
equations 1is invalid. A penalty function approach could be
used to replace the standard dynamic equation with the

head-discharge relationehip for the appropriate structure.
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APPENDIX 1

The Characteristics of the Unsteady Flow Equations

We examine here the unsteady flow equations including the
convective accelerations:
ath + ¥v.q=0 Al.1

3. + Y.(mag /D) + gdth + ghq|q|/K2 =0 Al.2

This palr of equations may be written as a first order system
thus:

I 3+ ACL) dU + B(Y) R c(u) =0 Al.)

. R t R
Here U represents the solution variables (¢, h) ', T is the
identity matrix, C embodies the low order terms (bed friction

and bed gradient) and A and B are given below.

A= -2 ol 0 c? - p |
ol - AWV Al.4
1 0 0
B=|w o - v ]
0 2V ce - gV Al.5
0 1 0

In equations (Al.4) and (Al.5), c = (gD)g, the gravity wave

speed, and B = a - Daha.

We determine the geometry of the characteristics by arguments
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that follow quite closely Daubert and Graffe (1967) who
established the characteristics of the shallow water equations.
We will find that the general equations (Al.1) and (Al.2) do
indeed have characteristics identified by Daubert and Graffe in
the speclal case a = 1, but other values of g can glve rise to

bicharacteristic surfaces of a different topological nature.

Following Garabedian (1964) the system has characteristic
surfaces defined by:
$ (x, t) = constant

where ¢ iIs determined by the equation:

det(Iq:¢+Aq(¢+Bay¢) = 0. Al.6

Substituting for A and B and carrying out some elementary row

operations on the determinant reduces 1t to:

T(® 0 -G (9
0 T( ¢) -Gv( ) =0 Al.7
6x¢ ay¢ 6t¢

where:

T(§) = o 0+ A b+ NB O

- 2-a12 -
G (0 = ~(cZ@H 0+ BV ¢~ A ¢

- 2 g2 -
G (&) = AVR 0= (W3 - a¥D, 0

Thus the characterilstic surfaces are given by:

+ + = - .
T (T3 9+ G 84+ GC 2 e) =0 Al.8

The roots of this equation are:
+ = .
%¢ cﬁ%¢+<ﬂ%¢ 0 Al.9

and
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2
(%@ +ﬂNB%ﬂ%¢+2w%@%¢+2W%¢%¢

2 2 2 2 - .2 2 23 =
T AN FAR N2 - (Nt (3 0?)=0
which may be written as:
(3, 0+ dIB o+ avayq;)?— c? (3, 02+ (6y¢)2]

- (o~ B) (Ud, ¢+ vayqu)? = 0. Al.10

We may determine the local form of the characteristic surfaces
by considering the envelope of the planes tangent to them.
Without loss of generality we may take the x axis to be aligned
with the local flow direction and examine the characteristic
surfaces that pass through the origin. Furthermore we assume
the quantities U, V, ¢, a and P are constants with their values
taken at the origin. The general equation of a plane x,y,t)
through the origin is:

p=xo *+yeg +re =0 Al.11

For the first family of characteristics we combine (Al.ll) and
(Al.8) to give:

q)x(x—dlt) + y¢y = 0 Al.12
which is the equation of all planes containing the line

x = alt; y =0 Al.13

For the second family of characteristics we combine (Al.ll) and
{(Al1.10) to give:
]%

(x - u!.]t)¢x+y¢y = it[c2(¢§+ ¢}§) + (a2 - fi]2¢x Al.1l4

To identify the shape of the envelope of these planes consider
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the intersection with the plane t = ¢

0 and move the origin to

the point (@t O, tg. Also let Q= rcos 8 and :& = rsin 9

with 0 < 8 <27 to account for the choice of sign 1n equation

(Al.14), then:

x'rcos g + y'rsing = ctr (1 + kcos 2 9);5

Al.15

where k = (a? - B) U?%/c? and x' and y' are co-ordinates with

respect to the new origin.

Changing to polar co—-ordinates (p, )} we have:

pcosy cosg+ sing sing = ct (1 + k c0529)5_

Differentiating with respect to 68 we have:

- pcos{ sin@+ psinfcosB = ct gkcos BsinB(l+kcos 28)_5.

Squaring and adding (Al.l16) and (Al.l7):
pz(cosz(c-e) + sinz(c—e)) =

¢4 02[( l+kcos 20) 2 +k %cos 2@s1in 28] {(1+kcos 28)‘ 1
or p(8) = pg (1+(2k+1<2)<:osze)!5 (1+kc0526)_95
where pg = cty.

Combining (Al.l16) and (Al.l8) we have:

cos(-0) = (1 + kcos?6) (1 + (2k + kz)cosze)q%.

Al.l6

al.l7

Al.18

Al.19

The locus of the points gzlven by the polar co-ordinates (p, %)

may be plotted to give the intersection of the characteristic

surfaces 1n the plane t = ty. Filrstly, in the case k

@= 3= 1), the intersection is seen to be p = P
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0 <8 <2m This 18 the circle found by Daubert and Graffe
{(1967). From equation (Al.19) L= w2 if 6= w2 or if:
sin@ = (1 + kcos 20) (L + (2k + k Hcos ?-e)_l‘.

This latter condition is satisfied when

[l + (2k + k2) cos 29)(1 - cos208) = 1 + 2cos 20 + k Los "p,
ie. (k2 - 1)cos 26 = 2(k2 + 1) cos“g

ie. cos29= (k2- 1)/2(k2+ 1) Al.20

This equation has real roots for @& provided that k lies outside
the iaterval (-1, 1). Fig Al.l shows the different curves that
the point (p, ) traces out from equations (Al.18) and (Al.19)
as @ varies. There are seven different cases depending upoen
the value of the parameter k which is related to the velocity

distribution coefficient o by

k = a2_. C!"'Dq_l(l Al.21
(a) k <-1 The locus is a hyperbola.
(b) k = -1 The locus 1s degenerate consisting of the

two points g = p, L= = W2.
(c) -1 <k <0 The locus 1s an ellipse with the minor

axis on the line [ = O.

(d)y k. = 0 The locus 1s a circle radius pj.

(e) 0 <k <1 The locus lies between the circles p = py
and p = (1+k)%pu, but it is not an
ellipse. The curve touches the inner
circle at = +1/2.

(f) k=1 The locus is similar to case (e) but a
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cusp forms at the point of contact with
the inner circle.

(g) k »1 The locus s8till lies hetween the two
circles p= g5 and p= (1+k.)ijp0 but it now

has loops centred on the line = #*g/2.

Flows of practical interest will give values of k in the range
(-1, 1). For example, at a Froude number of 1, U = (gD)Sé and
then k 1s only greater than one if the exponent p of equation
(2.31a) is greater than (/5 + 1)/2; much larger than the
typlcal values observed. Also k can only be negative if qla is
large and negative; again thils is unlikely to occur in

practice.

The envelope of the tangent planes of the second family of
characteristics may now be seen to be a skewed cone for

=1 <k <1 with 1ts axis along the same line as the common
line, equation (Al.13) of the first family of characteristics.
For k = 0 the intersection of this cone with the plane

t = constant 1s a clrcle; for k negative it is an ellipse and
for k positive it is the more complicated figure described
above. The entire cone will lie on one side of the plane x = 0
for £ >0 1f:

dlt > pg (1 + k)i. Al.22
Substituting for p; and k we obtain the condition:

Fr > [(Fry2+1 - v2]5 Al.23
where v2 is defined by equation (2.76). This condition is
satisfied if v2 > 1 which is identical to the condition for the
steady flow equations to have three real characteristics, see

section 2.6.2.
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APPENDIX 2

The Mesh Geometries

The calculations in thils thesis have been based upon nine
geometries in all. The meshes come from three different
sources with seven of them being based upon the experimental
flume of Sooky (1964). Each mesh 1s described below and Table
A2.1 gives the mesh dimensions and indicates the simulations

performed with each one.

Mesh 1

This mesh represents a single meander wave of Sooky's flume.
It is based upon his fourth geometry and has a longitudinal
slope of 0.00l6. The incised channel lies approximately 39mm
below the level of the "flood plain” on either side. The
channel 1s 210mm wide and has a sinuosity of about 1.07 (ratio
of centre of channel length to shortest distance over one
meander wave). The mesh was laid out manually and is shown on
Fig A2.1. The mesh is not regular in that some nodes are
jolned by element sides to 5 or 7 other nodes as well as the

standard 6 connections of a deformed equilateral mesh.

Meshes 2, 5 and 6

These meshes form a nested set; 6 contains 5 which contains 2

which contains 1. Fig A2.3 jillustrates the nesting for Mesh 5.
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The idea behind this set of meshes was to investigate what
influence the proximity of the inflow and outflow boundaries
had on the conditions in he centre of the meander wave.

Mesh 6, which 1s not i1llustrated, was generated by doubling the
straight extension on either end of the mesh that was used to
generate Mesh 5 from Mesh 2. The elements used for these two
extensions had a different aspect ratio from those used in the
first extension from Mesh 1 to Mesh 2. The predicted water
surface profliles were checked against one another at three
locations; at the upstream and downstream limits of the
meander and at the centre of the meander as indicated on Fig

AZ.3.

In all tests the mean bed slope was 0.00l6 with an incised
channel, 210mm wide, 39mm below the flood plain. The extension
of the meshes was performed automatically and the flood plain
level at the downstream end of each mesh was set to 0.0m. Thus
the bed level for the elements in the common central portion of

the mesh were raised in each extension.

Meshes 3 and 4

These meshes were derived from Mesh 2. Mesh 3 uses the same
node co-ordinates as in a Mesh 2 but the connections hetween
nodes was altered to make the geometry regular (that is it
could be mapped onto an equilateral mesh). This was done
because Levine (1985) has shown that the mesh topology affects
the accuracy with which derivatives are recovered from the

finite element approximation. Levine considers values of
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derivatives at the mid-point of element sides, as these can be
recovered wore accurately than by taking the centroid value as
done 1in this thesls. The pliecewlse constant approximation to
the bed geometry impllies that formally there are veloclty
discontinuitlies across the element edges. Hence the mid-side
gradients of water level are not convenlent for defining the
unit flow or velocity vectors. A comparlson of Fig A2.2 with
either Fig A2.1 or Fig A2.3 will show the area affected by the
re—ordering of the triangles. This may also be recognlsed by
the chevron patterns on one side of Flg A2.2. Mesh 4 was
generated from Mesh 2 by scaling all linear dimensions
(horizontal and vertical)} by a factor of 100. This produced a
"life sized” version of the experimental flume with a channel

width of 2Im and a total width of 118m.

Mesh 7

This mesh was formed automatically by replicating Mesh 1 six
times. Tt represents something like the whole of Sooky's
experimental flume which had several channel meanders along 1t.
Fig A2.4 shows the upstream third of thils wmesh (ie two meanders
only). The elements (as for Meshes 1 to 6) were numbered
across the flow, which is efficient for Hood's (1976) frontal
solution method used to solve the liner equations. Mesh 7 was
used to assess how repeatable were the calculated flow
parameters from one meander to the next. Fig AZ2.4 shows the

centre and full meander positions used for the water surface
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profile plots of Figs 5.11 to 5.13. The flood plain level at

the downstream limit of the mesh was agaln set to 0.0m.

Mesh 8

This mesh represents a hypothetical U shaped channel as may be
constructed as an experimental facility. The channel has a
semi-circular bend with inside radius 3.4m and outside radius
5.1m see Fig A2.5. There are 6m long straight reaches on
elther end of the bend. The channel has a rectangular cross
section of width 1.7m and the centre of the channel falls by
0.lm in level over its length. The mesh is equllateral except
for distortions adjacent to the boundaries and was produced by
a commerclal mesh generator. The elements, however, were
numbered by hand across the flow to minimize the front size in
Hood's (op cit) solution algorithm. For low velocity flows the
first order analytical solutlon given in Sectlon 2.7 should be

approprlate around the bend.

Mesh 9

This mesh represents a highway crossing of Tallahala Creek and
was adapted from data taken from the report by Tseng (1975).
Both Tseng and Franques and Yannitell (1974) provide flow
simulations for this site. Mesh 9, however, differs from the
meshes used in elther of these earlier studies. Tseng
represented veloclty by quadratic basis functions and his mesh

was comprised of larger elements with mid-side velocity nodes.
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Mesh 9 was generated by dividing each of Tseng's triangles into
four by joining the mid-side nodes. Tseng's mesh included
several triangles with very small (<10°) angles at one of their
vertices. These lay around the solld boundaries and were
removed when mesh was set up to give the geometry shown on Fig
A2.6. All the mesh dimenslons were converted to metric units
and the datum adjusted by LOOm to give an average bed level on
the downstream end of the mesh of about 0.0m. This enables the
water surface gradlents to be calculated with the maximum
precision for a given length of real numbers on the computer.
In contrast to Meshes 1 and 7 there is no incised river channel
represented in Tseng's data. However, there 13 a severe
constriction in the width of the flow path which forces large
curvature on the streamlines. The calculations were all based
upon the Chezy roughness values from Tseng's report with a
discharge of 630m3/s. The water levels used on the flow
boundarles were set, where appropriate, to the mean value found
by Tseng. These roughness and boundary data differ from those

that Franques and Yannitell (1974) used.
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TABLE A2.1

MESH PROPERTIES

Mesh Number of Number of Dimensions Stream Potentlal Figure
number nodes elements (m) function formulation number
formulation
1 92 148 1.28x1.18 initial v/ AZ.l
2 172 292 2.54x1%18 - v A2.3
3 172 292 2.54x1.18 - v A2.2
4 172 292 254 x 118 final / A2.2
5 252 436 5.06x1.18 - v A2.3
6 332 580 7.58x1.18 - v -
7 502 888 7.68x1.18 - v AZ.4
8 343 542 1.7 wide - / A2.5
x 10.2 dia
9 163 272 1600x844 final v A2.6
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APPENDIX 3

Solution of Linear Equations

The code published by Hood (1976) was modified when it was
included in the model programs. Firstly, two corrections were
made; one of these was published by Hood (1977) and the second
only affected the case where the pivotal searching procedure
produced an off-diagonal pivot. The substance of this
correction is as follows. For off-diagonal plvoting the
back—-substitution phase may be written:

Xy = bk - Zm an X (A3.1)
Here k 1s the plvotal row number, £ is the pivotal coluan
number and akm 1s non-zero only where the solution vector
element X is already known. The value of X~ may have been set
either by the boundary conditions or by the back substitution.
In Hood's (1976) code the variable X, appears on the right hand
side 1n place of X in equation (A3.1). The correction
requires the pivotal column number LCO to be written out of
store on lines 261 and 306 and then read back 1nto store on
line 449. This column number 1s used as an index into the

solution array SK at line 462.

Three modifications were also made to the code which were

designed to increase the speed of execution.
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1. The front size NCRIT was reduced after each elimlnation and
only Increased again when necessary. Thus the front size
expands and contracts to match the number of active
equations rather expanding to the maximum size required and

then remaining at this value.

2. Wherever Dirichlet boundary data are supplled for a
variable all entries in the corresponding matrix equation
are set to zero except for the leading diagonal. There 1s
no need to search for a pivot under these circumstances}
diagonal pivoting is used as soon as the boundary data is

recognised.

3. The ANSI (1966) standard for FORTRAN specifies the storage
organizatlon for 2D arrays. A one-dimensional array may be
"equivalenced” to the 2D stiffness matrix and the 1D array
used to access entries where the address can be computed

more efficiently than using the 2D addressing.

Hood (1977) suggests further improvements to the code which
affect its performance when searchlng for pivots. The
principal ene is to restrict the number of equations for the
search, but to guarantee that at least 5 are available. This
has not been implemented. The code in the model, however,
allows the user to specify diagonal pivoting and not carry out
any search. This procedure is stable for symmetric, definite
matrices. An inspection of detalled dlagnostic dumps of the

operation of elimination algorithm revealed that Hood's
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plvoting strategy produced diagonal pivoging for the Galerkin
equations for both the gtream function and potential
formulations. Hence dlagonal pivoting was selected at the
outset of each run. Even where the Galerkin equations were
non-symmetric in the first order varlation algorithms no
problems were encountered. Cutting out the search for pivots

typically reduced the program run time by a factor of four.

The internal application of the boundary conditions differs
from that proposed by Hood. Hood allowed space for a boundary
value to be given to each wvariable but most of this storage was
not used. In the code implemented therefore the boundary
conditions and an index (equation) number are packed in
ascending order of the index Into smaller arrays. A simple
binary search routine extracts the appropriate data whenever

required.
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APPENDIX 4

Existence and unliqueness for the friction controlled flow

equations.

The material in this appendix was supplied by Endre E Siili of

the University of Belgrade when visiting the Department of

Mathematics at the University of Reading.

Consider the equation:

-2
-y ®w|P ) =¥ (a4.1)
with the exponent p > 1. The restriction on p ensures that

(A4.1) is elliptic, see Section 2.6.1.

The stream function formulation is the specilal case p = 4 and
the potential formulation corresponds to p = 3/2. Take q as
the conjugate of p, that is:

p_1+ q'1= 1 (A4.2)

We now set up the problem with Dirichlet data

Problem P

Given positive K in L _(Q) bounded away from zero by ey and from
above by c, almost everywhere in the domain @ and given F in

w_l’q(Q); find u in Wé’p () satisfying equation (A4.1) in Q.

From here onwards the qualification () applies to all function
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spaces. Define the operator A on u in Wé’p by
Au = - 2| mP? )

We observe that for all u, v in Wi’P

1 A 1s monotone:

<Au - Av, u~=-v> 20

2 A is coercive:

cau s [l [P,

3 A is bounded:

-1
<Au, v> £ ||§U||Ep |IEV||Lp

a1 < <ol o,
o

These three conditions 1imply that, by the Minty-Browder
theorem, the problem P has at least one solution. However,
since the condition 1 is not of strong monotonlecity, the

solution may not be unique.

Uniqueness of the solution may be proved by an alternative

method. Introduce the following function ® on u in Wé’p

-1
&u) = p fK Xi|])iulp dp - F,ux» (A4.3)
We observe that by Polncare's lnequality & 1s coercive over

1 .
Wo’p. Also, since 1 < p < = the function |x|p is strictly

convex and it follows that & is also strictly convex over the

Sobolev space Wé’p. These two properties imply that the

following minimization, problem Q, has exactly one solution u

1,p
0 °

in W
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Problem Q

1
Find inf &u) over WO’P

However, the differential equation (A4.1) is the Euler equation
for the minimization problem . Hence the solution u to Q 1s
at the same time the unique solution to problem P. For further

material consult Ciarlet (1978) and Ekeland and Temam (1976).
References
Ciarlet Ph (1978) : The finite element method for elliptic

problems, North Holland.

Ekeland P and Teman R (l976) : Convex analysis and variational

problems, North Holland.
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Appendix 5

International Conference on the

Hydraulic Aspects of Floods
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Two dimensional modelling of flood flows using
the finite element method
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Summary

This paper examines two dimensional (in plan) mcdeis of
flow over a flood plain. Three different sets of model
equations are mtreduced and their mathematical type and
appropriate boundary conditions are discussed. The solution
of the flow equations by finite element methods 15 discussed
for fniction controlled flow and for flows including the
convection of momentum. The numerical tests relate to a
laboratory flume with a meandering channel and the
discussion focusses on the rates of convergence of the
numerical methods employed.
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Nomenclature
Symbol
C
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Fr
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alg. @)

| —3

uu., u)

(84

™

| & >

prefix A
subscript j
superscript (i)
superscript n

3.2

Description
the convection term (u . Y)u/g

flow depth
turbulent eddy viscosity

a flow vanable (defined in text)
mesh Froude number

Froude number
acceleration due to gravity
water level

friction tactor

outward unit vector normal to the
boundary

unit discharge (and components)
distance along a streamline

time

turbulent stress term
depth mean velocity (= g/D)

velocity distribution coefficient

convergence parameter {defined in

Section 3.1)
iteration updating parameter
stream luncticn

gradient operator

increment
value for node or element ]
value for iteration i

value at time n/t

Units






2

Assumptions 2.1

Introduction

Although one dimensional models of river flow (Ref 1) are
an established tool for simulating long reaches of river they
cannot always provide all the local detail that is required.
such models cannoet resolve any features of the flow either at
a scale finer than the grid size used in the model or which are
produced by two or three dimensional effects. For example,
an embankment across a flood plain leading to a bridge may
have a profound impact on the flow direction and water levels
on the flood plain. Variations of the flow across the width of
the river as well as along the length can be studied by using a
two-dimensional (in plan) model. The use of standard finite
difference techniques, based on a regular gnid, are
complicated by the highly irregular geometry of natural river
valleys, but this 1s readily included by models based on the
fimte element method (Ref 2). The finite element method has
been applied successfully to many types of fluid flow
including tidal hydraulics (Refs 3, 4, 5). Relatively little work,
however, has been published on using the finite element
method for modelling flow In a river and over its flood plain.

This paper examines the formulation of two dimensional
models of flood flow. As various processes are mcluded In the
mathematical mode] the nature of the equations change. This
has an affect on the most appropriate numerical method for
solving the flow equations. The numerical methods discussed
In this paper are all directed at choosing the lowest order of
approximation possible for the flow which is consistent with
the quality of data available for commercial studies. A
topographic survey of a river and 1ts flood plain can be
expensive, particularly if closely spaced river cross sections
-at a spacing of the width of the main channel or less - or if
many flood plain ground levels - with accuracy better than
+ 0.lm - are required. In any prototype investigation there is
pressure to keep the data needs to the minimum compatible
with the accuracy required from the study. The relationship
between the model accuracy and the density of prototype
data, however, 1s not considered further in this paper.

The model equations

The starting point for producing the two dimensional flow
equations 1s the fully three dimensicnal equations, see
Sections 2.2 and 3.2 of Batchelor (Ref 6). Making amongst
others the following assumptions these equations may be
integrated through the depth of the flow giving equations (1}
and (2) in Section 2.2:

1) Flow 1s incompressible and density constant.
2) Vertical velocity and acceleration are small.
3) There 1s no stress on the air/water surface.
4) The earths rotation can be neglected.

5) The river bed does not change with hme.
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Two dimensional
flow equations 2.2

This paper considers features characternstic of bulk flow
n the river and flood plain system and the above assumptions
are all reasonable. Obviously these assumptions can be
altered qiving different flow equations with a different range
of applicability. '

Typical of the restrictions forced by these assumptions 1s
the neglect of secondary flow in river bends (assumption 2).
This can be relaxed as shown by Kalkwijk and de Vriend (Ref
7.

Using the notation at the front of the paper the flow
equations are:

. h
Continuity: %t +V.g=0 (1)

. aq

Dynamic: oD 3t T gD

In the rest of the paper the velocity distribution coefficient
a Wil be set to 1.0 which 1s not unreasonable if the veriical
velocity profile 1s approximately logarithmic. The stress term
T will also be neglected. This term includes the turbulent
stresses in the fluid and study its relation to the properties of
the bulk flow has produced a variety of turbulence models
(Ref 8). Ignoring the turbulent stresses may restrict the use of
the model to regions without high rates of shear.

+

v @D ens 49 o7 (2)

Simplifving equations (1) and {2) further we have the three
following approximations to describe the flow.

(a) Steady friction controlled flow:

vV.gq=0 (3)

Vh + %l(ﬂz—' =0 4)
(b) Steady flow with convection and bottom friction.

v.oq=0 ®)

Con L dlal 1o gl

Vh+fKT+gDV7.(ﬁ)fO (5)

{¢) Unsteady flow with convection and bottom friction:

V.g+ % =0 (D

L 3q algl | | 949 _

Datt e tgpY (=0 ®)

Defining the depth mean velocity by u = q/D eguations
(6) and (8) may be rewrntten as: o

2
vh + B‘%‘ZD + é(u. Viu = 0 (6a)
I du uju|D* 1 _
&_f;at+v—h+ Kz--+é(u_‘V_')u_—O (8a)
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Classification
of equations 2.3

Equations (1) to (8) are all written in terms of the primitive
variables, the velocities and water levels. The continuity
equation for steady flow (3) and (8), however, allows the flow
to be described in terms of a stream function ¥ by defining:

v a¥
= " = - _— 9

. e A 9

Substituting this in the dynamic-equation (4) and taking its
curl gives:

V. (VYK )V ¥ =0 (10)

Franques and Yannitell (Ref 9) used this equation to
define the stream lines of the flow. They rewrote equation (6a)
in a co-ordinate system orentated with the flow and integrated
1t along the stream lines to give water levels, thus:

Ut _ U
29 2g
where the points 1 and 2 lie on the same streamline.

h, - hy + + ;? (|V¥|?K2)ds = 0 (1)

An alternative simplification of equations (3) and (4) 1s to
eliminate q between them assuming that the water level h
performs the role of a velocity potential. The resulting
equation will be termed the potential formulation and is:

V (K |Vh| %5vh) = 0 (12)

To the author’s knowledge the potertial formulation above
has not been used befare to solve steady two-dimensional
friction controlled flow over a river flood plain.

The field equations for steady flow controlled by friction
(10) and (12) are elliptic. They are also each degenerate in the
case of |[V¥| or |Vh| vanishing anywhere in the flow field, this
occurs when the flow becomes stationary. Suitable boundary
conditions on the appropriate flow variable - stream function
for equaticn (10) or water level for equation (12) - are for the
variable, its normal derivative, or a combination of these two
to be specified around the entire boundary of the region. The
conditions imposed on the stream function and water level are
complementary. Equations (3, (4), and (9) imply that when ¥ is
specified as constant on a no-flow (solid) boundary in the
stream function formulation, dh/dn 1s set to zero on the same
boundary in the potential formulation and that where a¥/an is
set to zero in the stream function formulation indicating flow
normal to the boundary, h is specified as constant in the
potential formulation.

When the convection term is included in the model to
give the dynamic equation (6) as opposed to (4), the nature of
the flow equations changes. The equations form a quasi-linear
system which may be classified according to the roots of the
corresponding characteristic equation, see Garabedian, pp
94-99 (Ref 10). The system has three real characteristics and
so 18 hyperbolic where the flow 1s supercritical but the
characteristic equation has one real and two imaginary roots
for subcritical flow. The flow 13 subcritical or supercritical
according to whether the local value of the Froude number F,
defined by:
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F, = |ujgD)=95 (13)

1s less than or greater than untty. The same classification of
the equations holds if the velocity distribution coefficient « is
retained in the definition of the convection term of equation (2).
In this case the discriminant for critical flow is the two
dimensional analogue of the critical flow number introduced
by Price and Samuels (Ref 1). For all flow regimes the
appropriate condition on a no flow (or solid) boundary is to
specify:

a.n=0 (14

The situation on the flow boundaries, however, is not so
clear cut. For a domain where the flow is entirely supercritical
the geometry of the characteristics indicates that data should
only be specified on an inflow boundary, where information is
transferred into the domain. When the flow is entirely
subcritical the equations cannot be classified as simply
elliptic, parabolic or hyperbolic. In this case the equations are
similar to those for two dimensional compressible
aerodynamic flow discussed by Garabedian (Ref 10) p 5319ff.
Garabedian shows the aerodynamic equations to be
essentially elliptic for subsonic flow by eliminating the flow
variable along the one real characteristic using the Bernoulli
equation. Finally, under certain conditions the flow may be
supercritical in some parts of the domain and subcritical 1n
others. The location of the transition zones between the flow
regimes depends upon the local ground topography,
probably at a finer scale than it is possible to resolve
economically with a model designed to look at a large area.
This problem is not discussed further in this paper. It is
interesting to note that, in contrast to steady constant flow
governed by friction, the water level i1s not constant along a
boundary which is normal everywhere to the flow across it.
The water levels along such a boundary depend upon the
curvature of the streamlines as they cross the boundary.

Following the discussion on pp 94 to 99 of Garabedian
{Ref 10) the unsteady flow equations (7) and (8) may be shown
to be always hyperbolic. The flow regimes may again be
identified subcritical and supercritical according to the local
value of the Froude number given in equation (13). On no flow
boundaries equation {14) may be applied. On flow boundaries
the conditions which may be applied depend upon the Froude
number. For supercritical flow all three flow variables must
be determined on an inflow boundary and none on an outflow
boundary, see Oliger and Sundstrom (Ref 11) and Daubert
and Craffe (Ref 12). The situation for subcritical flow, however,
is more complicated. Two conditions must be imposed on an
inflow boundary and one on an outflow boundary but not all
choices of boundary conditions produce a well posed set of
equations. Oliger and Sundstrom (Ref 11) give some conditions
suitable for friction-less flows. These conditions may not be
necessary for flows with a significant friction term as is the
case of flood plain flow, they will however be sufficient. The
water level may be given along an outflow boundary and both
velocity components on an inflow boundary. Other more
complicated conditions are admissable on the inflow
boundary.
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3
The test problem 3.1

The turbulent stress terms are often introduced into the
equations by sethng:

T-Eva (18)

where E is some turbulent eddy viscosity. With this
representation of T the unsteady flow equations are
incompletely parabolic (Refs 11 and 13) and require different
boundary conditions from the equations without the turbulent
stress terms. These problems will not be considered further in
this paper.

Numerical models of friction controlled flow

All the numerical tests described in the remamder of the
paper have been carried out on representations of part of the
experimental flume used by Sooky (Ref 14). This flume had a
regular sinusoidal channel let into its gently sloping floor; the
slope of the flume and channel geometry were adjustable.
The numerical model simulated Sooky's fourth gecmetry with
bed slope of 0.0016; meander wave length 1.28m, meander
amplitude 0.126m, channel depth 0.0381m, channel width
(.209m and total width 1.184m.

A single meander wave was covered by an irregular
triangular mesh containing 92 nodes and 148 elements, see
Fig 1. Most tests have been done on a single meander wave,
some having a section of straight channel added on to either
end. Some tests investigated the effect of the location of the
boundaries on the flow in the central portion of the mesh, this
was done by lengthening the straight portion at each end of
the meander wave and In one case by repeating the meander
wave six times. The main features of the flow in the central
meander were not affected much by the location of the
boundaries, nor was the convergence behaviour of the
numerical methods tested. The rest of this paper is principally
concerned with the numerical properties of the various
methods mvestigated rather than a detailed comparison of
their results with the flume data.

The systems of linear equations from the finite element
method were solved using a corrected version of Hood's
Frontal solution technique (Ref 15}, This technique 1s
particularly suitable for two dimensicnal regions where one
dimension is much longer than the other as is usually the case
of a model of part of a river valley. No analytical solutions
exist for the flow equations in the test geometry. The rates of
convergence of the iterative methods used were therefore
measured in terms of the magnitude of the change in the flow
variables at each iteration thus:

6 = T 20 - O+ 50
where ¢V is the value of the convergance parameter for the
variable f at iteration i and fi¥ is the value of the variable f at a

node or element j (as appropriate) for iteration 1. The following
three hmits of e are of interest.
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The stream function
formulation 3.2

Potential
formulation 3.3

(1) convergence of the sequence [f01 for all j is marked by
either ) — 0 or efl/ef-1 — ¢ < 1

(2) o(_scli)llatiogn of the sequence [{¥] at some j is marked by
edt 1) o~ ()

(3) c%_i)vergence of the sequence [f{] at some j is marked by
el — 2.

The first test of the stream function formulation used the
iterative method suggested by Franques and Yannitell (Ref 9).
Given an initial guess for the solution each iteration consisted
of determining the stream function from equation (10) with the
non-linear coefficient [v¥|K ~2 evaluated at the old iteration.
The water levels were then determined from equation (11)
using the most recent values of the stream function to
calculate the velocities, The stream function and water level
were represented by plecewise linear functions over the
triangular mesh. This method was found to have a poor rate of
convergence with 0t 1/¢0 — .96, This means that about 150
iterations would be required to achieve three decimal digits of
precision. The first order behaviour of the iteration algorithm
was analysed on the basis that at each iteration only a
proportion of the predicted change in the flow variable Af, is
taken, that is

ffirl = {0 + \Af, (16)

The analysis showed that setting A = | give oscillatory
results, as was found, setting A = 0.5 would give convergence
like (0.5 which was again found and finally the optimum
choice was to set A = | and 0.5 in alternate iterations. This
final choice was found to converge as (0.38) giving 3 decimal
digits of precision in 7 iterations. Frangques and Yannitell
suggest that the variation of the water level can be specified
along the whole of the downstream flow boundary on which
they set 8¥/dn to zero. As discussed in section 2.3 this is not
consistent with using equation (10) to determine the flow field.
The iteration method, however, converged with consistent and
Inconsistent water level data on the downstream flow
boundary. No further work has been done on this formulation
of the flow equations. The next step which is to include the
convection term in the dynamic equation would require the
stream function to be represented as having continuous
derivatives across element boundaries. This requires a high
order element and greatly increases the computational cost,
see section 3.6 of Connor and Brebbia (Ref 3).

Two iteration methods for the potential formulation were
tested. The first method was similar to the successive
substitution algorithm used to solve the stream function
formulation. Equations (12) and (14) were iterated as a pair,
using equation (12) to calculate a new set of water levels and
equation (4) to calculate the discharge in each element. The
non-linear coefficient K|vh|-%5 in equation (12) was evaluated
at the old iteration. This method was found to converge at
about the same rate as the optimum method for the stream
function formulation.
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4

Orders of
approximation 4.1

The second iteration method used equation ¢(12) alone and
was based on setting

h'*D = b + ah,

at each node, expanding all terms in the Galerkin finite
element equations to first order in Ah,. The coefficients of the
linear equations for the Ah; were more complicated and
expensive to compute than those for the first method tried.
The iteration however converged nearly quadratically with
e+l = ()2 and machine precision, 11 significant digits, was
achieved in about 4 iterations. On convergence the total inflow
matched the total outflow exactly. With the potential
formulation the normal discharge across each flow boundary
1s not constrained whereas in the stream function formulation it
1s fixed by the boundary data.

This second iteration method for the potential formulation
1s a basis for constructing practical modeis of friction
controlled flood plain flow. The computational resources for a
mesh with about 200 nodes and 400 elements were 40 K words
of store and 30 seconds CPU time per iteration on the ICL
2960 computer at HRS running under the DME operating
system.

Models including convection

The choice of approximations for water level and velocity
in this case is not clear cut. It is well known that for solving the
Navier Stokes equations of fluid flow there is a relationship
between the orders of approximation that can be used for the
various flow variables, see Temam (Ref 16). Papers published
on solving the flood plain flow equations have used orders of
approximation as shown below.

Authors Reference Water level Velocity

Zielke & Urban 2 linear linear

Herrling 17 linear (discontinuonus)
linear

Tseng 18 linear quadratic

In the limit as the friction term dominates the convection
term the flow equations tend to those discussed in Section 3
above where the natural choice of order of approximation is a
plecewise linear for water level or stream function. This 18 the
lowest order possible and both the stream function and
potential formulations can be argued to represent the velocity
(or discharge) vector as piecewise constant within each
triangular element. The difficulty in using this description of
the flow once the convection term (u . V)u has been included
In the dynamic equation is that velocity gradients need to be
determined from the piecewise constant values of velocity.
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Calculating the
convection term 4.2

Numerical
experiments 4.3

Choosing the same description of the flow variables as
described in section 3.3 above, the convection term may be
calculated as follows.

1) For each element locate its neighbours which share a
common side, see Fig 2.

2) Calculate the depth mean velocity u at the centroid of
each element. o

3) Calculate the least squares best fit velocity and its plan
derivatives from the values in the centre of the element
and its three neighbours.

4) Calculate the convection term from the best fit velocity
and derivatives found in (3).

This process is in some sense analogous to taking a
‘central difference’ approximation to calculate the convection
term since 1t 15 independent of the direction of the velocities.
This fitting procedure uses known values of velocity and was
always applied to estimate the convection term for the
velocities calculated at the end of an iteration (for steady flow)
or a time step (for unsteady flow).

First of all the convection term was included in the steady
flow equations by modifying the algornthm used to solve the
friction controlled flow. Since g is piecewise constant within
each element it may be calculated from equation (6) as

q = K¥h + C) [Vh + C| 08 (18)

where C is the convection term, (u . V)u/g. BEquation (18) was
substitufed into the continuity equation ®) to give a single
equation to solve for the water level h.

The method was found to converge in some cases and not
in others. The flow overall velocity was adjusted by altering
the value of the friction factor K. A first order analysis of the
iteration method implied a stability limit dependent on the
mesh Froude number defined by:

f, = (K/D) (gas)~ 08

where As is the space step size in the stream direction. The
calculation was stable for f, < | and unstable for f., > | with
the values of the sclution variables growing exponentially at a
rate proporticnal to f, in the latter case. The growth rates
predicted by the linearised analysis matched closely those
found in the numerical experiments. This stability limit is too
restrictive for practical computations since it forces a
minimum size on the mesh size. Using typical values for the
size of the friction factor it corresponds to about 10m for flood
plain flow but to 300m for flow in the adjacent river channel.

Returning to the unsteady flow equations (7) and (8) these
may be solved using a semi-implicit methed based upon the
steady flow solution method discussed above. This is done by
setting:
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ah hn+l — h~

at At
37]_1 3 Lln*l. -
at At

and calculating all other terms in the equations except the
convection term at the forward time level (n+ 1)At. The
convection term is calculated at the time nAt as described in
Section 4.2 above. Assuming the velocity to be piecewise
constant it may again be eliminated by solving the dynamic
equation locally in each element.

This method was applied to one of the flow cases found to
be unstable for the steady flow equations. The computations
were stable for steady flow boundary conditions provided that
the time step was chosen to restrict the Courant number
|u|At/As to a value somewhat less than unity. The model
results, however, did not converge to steady values for the
test problem but rather changed by a small amount in each
time step. The variations in the flow velocity were of the order
1 or 2% in each time step and the probable source of these
changes 1s the error introduced by the least square fitting
procedure used to calculate the convection term. Obviously a
more thorough understanding of the properties of this method
1s required before it can be used in practice.

Concluding remarks

Several sets of model equations for flood plain flow have
been discussed and the appropriate boundary conditions
indicated. For steady friction controlled flow the
implementation of the potential formulation described in
section 3.3 appears to be the basis of a practical
caomputational model. The best means of modelling flows
where the convection term is important is still not clear. The
stability restrictions are too severe on the steady flow
equations using the least squares fitting procedure introduced
In section 4.2. 1t is possible that a working model will be
based on the unsteady flow equations using this fitting
procedure but more work is required to establish this.
Alternative solutions are to use another method for calculating
the convection term based on the piecewise constant
description of the flow velocity or to use a higher order of
approximation for the velocity.
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