
1 INTRODUCTION 

1.1 Background 
Suffusion is a type of internal erosion where the fin-
er grains in a soil are washed out under the action of 
seepage flow (Moffat et al., 2011; Fannin et al., 
2014). Suffusion poses a significant hazard to em-
bankment dams and flood embankments and is con-
sidered in recent guidelines for practising engineers: 
CIRIA et al. (2013) and ICOLD (2015). Materials 
that are susceptible to suffusion are considered to be 
internally unstable. 

A key contribution is the work of Skempton & 
Brogan (1994) who showed that in an internally un-
stable material significant particle migration can oc-
cur at hydraulic gradients of approximately 20% of 
the critical hydraulic gradient calculated from Ter-
zaghi’s theory (ic). They attributed this observation 
to the fact that the finer grains in the sample carry a 
stress that is significantly lower than the applied 
stress. Skempton & Brogan (1994) proposed a stress 
reduction factor (α) which is the ratio of the stress in 
the finer fraction (σfine’) to the overall applied stress 
(σ’): 

''
fine ασ=σ  (1) 

They hypothesised that α can be estimated by 
comparing the hydraulic gradient at which there is 
significant particle migration with ic. Shire et al. 
(2014) used DEM to revisit a sample considered by 
Skempton & Brogan (1994) and largely confirmed 
this hypothesis using particle-scale measurement of 
stresses. 

Shire et al. (2014) directly calculated α, rather 
than inferring it from hydraulic gradients at which 
particles moved. To calculate α they used the ex-
pression for an average stress tensor within a particle 
given by Potyondy and Cundall (2004): 
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where ijσ  = stress acting throughout volume; V = 
total volume (particles + voids); Np = number of par-
ticles; p

ijσ  = average stress in particle p; and pV  = 
volume of particle p. Using Equation 2, the mean 
normal stress for fine particles is given as follows: 
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where fineσ  = mean stress acting in the finer parti-
cles; n = sample porosity; and Np,fine = number of fi-
ne particles. 

Again, in agreement with hypotheses put forward 
by Skempton & Brogan (1994), Shire et al. (2014) 
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showed that at a fines contents of 24% the finer 
grains do not completely fill the void space between 
the coarser particles, so they carry little stress, and 
the material is considered underfilled. At fines con-
tents above 35%, where the finer grains separate the 
coarser grains, they transmit significant stress, and 
the material can be considered overfilled. The DEM 
data highlighted that for transitional fines contents 
between 24 and 35% the susceptibility to internal in-
stability is very sensitive to packing density (relative 
density). Shire et al. (2014) found that for under-
filled materials typically α < 0.4, while typically α > 
0.8 for overfilled materials. These conclusions were 
developed for isotropic stress and fabric and it is not 
clear whether they are applicable to more general 
stress states and fabrics. 
 

In contrast to Skempton & Brogan (1994)’s ex-
periments, where the samples were pluviated under 
gravity to have a one-dimensional K0 stress state, 
Shire et al. (2014) considered isotropic stress condi-
tions. Chang & Zhang (2013) showed that the sus-
ceptibility to suffusion is dependent on the stress-
state. They found that the hydraulic gradients that 
caused measureable deformation under isotropic 
stress conditions are much larger than those under 
triaxial compression or extension. They attributed 
the difference to the formation and of strong force 
chains in anisotropic stress states. Ke & Takahashi 
(2015) experimentally observed mechanical conse-
quences of suffusion under different effective con-
fining pressures and concluded that the decrease in 
strength and settlement after suffusion becomes 
smaller under larger initial effective confining pres-
sure. Again they attributed this to the stability of 
force chains and the stabilizing contribution of the 
fine particles that remain after suffusion. Chang & 
Zhang (2013) and Ke & Takahashi (2015) could on-
ly propose hypotheses about the mechanics underly-
ing the macro-scale deformation; there is a clear 
need for additional DEM analyses to examine 
whether these hypotheses are accurate. 

Shire et al. (2014) considered samples in a peri-
odic cell, thus minimising boundary effects. This 
study extends their contribution to see how sensitive 
their results are to the way the DEM samples are 
created. This study also examines the implications of 
using rigid boundaries for internal stability studies. 
Rigid wall boundaries are needed in simulations 
where gravity is applied. Furthermore, not all DEM 
codes allow use of periodic boundaries and rigid 
wall boundaries may be needed when coupling DEM 
with computational fluid dynamics (CFD) pro-
grammes to simulate fluid-particle interaction. . 
 
 After describing how the DEM simulations were 
carried out, the paper discusses the homogeneity of 
the specimens created, prior to discussing anisotro-
py. 

2 SIMULATION AND ANALYSIS APPROACH 

2.1 Particle generation 
The DEM simulations discussed here were carried 
out using the PFC3D software (Itasca Consulting 
Group (2016)). The samples considered have a gap-
graded particle size distribution (PSD) with 35% 
fines as illustrated in Figure 1. This particle size dis-
tribution was previously considered by Shire (2014) 
and Shire et al. (2014). Two types of samples were 
considered: compressed and pluviated. The com-
pressed samples are illustrated in Figure 2; in this 
case, three numerical samples were prepared to con-
sider size effects on the measured parameters. These 
samples had differing numbers of particles, the 
“small” sample had 3,315 particles, the “medium” 
sample had 15,982 particles and the “large” sample 
had 31,793 particles. A pluviated sample was also 
prepared to consider segregation effects as shown in 
Figure 3. In this case, all 31,793 particles fell under a 
gravitational body force, and compression was ap-
plied subsequently. The equivalent sample consid-
ered by Shire et al. (2014) had 50,357 particles.  

Kezdi (1979) proposed that internal stability for 
gap-graded soils can be assessed using the ratio 
D’15/d’85, where D’15 stands the coarse fraction di-
ameter for which 15% of coarse particles are small-
er, and d’85 represents a fine fraction diameter for 
which 85% of fine particles are smaller, as shown in 
Figure 1. In this approach, gap-graded soils are re-
garded as being internally stable if D’15/d’85 < 
4.Referring to Figure 1, in the current study particles 
more than 0.8 mm in diameter are considered to be 
“coarse“, while particles less than 0.12 mm are con-
sidered to be “fine”. D’15/d’85 of the gap-graded soil 
considered here is 4.6, meaning that this soil is un-
stable according to the Kezdi (1979) approach. 
 

Key soil properties and DEM parameters are given 
in Table 1, which are approximately the same as 
values for spherical glass beads used by Barreto 
(2008). The critical time step used in this study was 
calculated as (Itasca Consulting Group, 2007): 

β×=
k
mtcrit  (4) 

where tcrit = critical timestep; m = mass; k = spring 
stiffness; and β = 0.25 (this is a safety factor). 
 

Two coefficients of friction (μ) were used to con-
trol the initial void ratio and relative density, so that 
μ = 0.1 gave dense samples and μ = 0.3 gave loose 
samples. 
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Figure 1. PSD of gap-graded soil with 35% fines 
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Figure 2. Schematic figures of three compressed numerical 
samples: (a) Small sample: 3,315 particles; (b) Medium sam-
ple: 15,982 particles; (c) Large sample: 31,793 particles 
 

 
 

Figure 3. Schematic diagram of pluviated numerical sample: 
31,793 particles 
 
Table 1. DEM input parameters 
 
Parameter Value 
Particle density, ρ 2.670 kg/m3 
Poisson’s ratio, ν 0.3 
Shear modulus, G 27.0 GPa 
Coefficient of friction, μ  

between particles 0.1, 0.3 
between particles and walls 0.0 

Local damping  
during compression 0.1 
during applying gravity 0.05 

Gravity, g 9.80665 m/s2 
Timestep, Δt 2.0E-8s 
Contact model Non-linear Hertz-Mindlin 
Boundary condition Rigid wall 
 

2.2 Representative Volume Element (RVE) 
DEM was proposed by Cundall & Strack (1979) and 
is now well established as a tool in geomechanics re-
search, e.g. O’Sullivan (2014). DEM simulations are 

computationally expensive, and the numbers of par-
ticles used in geomechanics related DEM simula-
tions rarely exceeds 10,000 according to the work of 
O’Sullivan (2014). A 1 cm3 cube of uniform sand 
with median particle diameter (D50) of 200 microns 
will contain about 150,000 particles. Thus DEM 
simulations are using very small numbers of parti-
cles; consequently boundary effects and issues 
around establishing a minimum representative vol-
ume element (RVE) are important. 

Previous DEM-related research that has investi-
gated boundary effects / sample size effects in terms 
of bulk properties, such as compressive strength and 
the critical state line position includes Potyondy & 
Cundall (2004); Huang et al. (2014). These studies 
have been supplemented with observations of 
boundary effects on porosity, strain and contact force 
distributions near rigid walls (Chan & Ng (1986); 
Marketos & Bolton (2009); Huang et al. (2014)). 
 Huang et al. (2014) highlighted the need to check 
that the overall response is a representative material 
response when rigid walls are used. The concept of a 
RVE, which was defined by Nemat-Nasser & Hori 
(1999), is useful. A RVE for a material point of a 
continuum mass is a material volume which is statis-
tically representative of the infinitesimal material 
neighbourhood of that material point. A RVE must 
include a very large number of corresponding micro-
constituents of the RVE, and be statistically repre-
sentative of the local continuum properties. It must 
be large enough not to change measured parameters, 
such as coordination number, porosity, stress and 
strain. Here, coordination number is defined as the 
number of contacts per particle; i.e. z = 2Nc / Np 
where z = coordination number; Nc = the total num-
ber of contacts; Np = the number of particles. This 
index is useful for the measurement of packing in-
tensity at the particle scale. In DEM simulations, a 
specified measurement volume may be created as a 
measurement sphere within a sample as shown in 
Figure 4. When a measurement sphere is big enough, 
it can be regarded as a RVE. Thus the sample con-
sidered itself must be at a minimum large enough to 
itself be a RVE and if subzones of the sample are 
used to develop conclusions about material response, 
these must also be a RVE. 

As outlined in Potyondy & Cundall (2004) parti-
cle stresses can be calculated knowing the particle 
positions and the contact forces. This information 
can be used to calculate an average stress tensor for 
the measurement sphere. 
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Figure 4. Schematic shape of measurement sphere 
 

2.3 Isotropic compression and application of 
gravity 

To create the compressed samples, the particles were 
initially randomly placed in non-touching positions 
within a cubic container surrounded by rigid walls, 
which is called normal method in this study. First, 
the particle radii were selected to match the gap-
graded PSD (Figure 1) using an in-house algorithm, 
and then all particles were placed by using the 
PFC3D particle generation algorithm. The drawback 
of using the PFC3D algorithm is that the resulting 
samples tend to have an inhomogeneous fabric, so 
that there is a relatively large concentration of fine 
particles near the rigid walls. This inhomogeneity 
arises since this algorithm is designed to place parti-
cles in positions which cannot overlap the rigid 
walls. However, this situation is appropriate for con-
sidering real phenomenon as a similar constraint ap-
plies close to the boundaries in laboratory experi-
ments. 

Each sample was isotropically compressed to a 
mean stress of σꞌp = 50 kPa using local damping of 
0.1 to minimize dynamic effects. A stress-controlled 
servo-control algorithm was used during this com-
pression stage. This algorithm applied a controlled 
strain rate that was gradually reduced as the target 
isotropic stress of 50 kPa was approached, and the 
variation in the imposed strain rate with stress is 
given in Figure 5. This target stress was measured on 
the walls. After the target stress was reached, and 
coordination number remained stable for 500,000 
steps (0.4 seconds in numerical time), the isotropic 
compression stage was terminated. 
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Figure 5. Strain rate applied in accordance with current stress 
 

Once the isotropic stress reached the target stress 
of 50kPa, gravity was gradually applied to all parti-
cles. In order to avoid significant impact forces due 
to a rapid change in contact forces and prevent seg-
regation, gravity was increased in five stages, i.e. 
0.5, 1.0, 2.0, 5.0 and 9.8 m/s2. At each stage, once 
the coordination number stabilised, the next incre-
ment of gravity was applied to the sample. After the 
completion of the application of gravity, the porosi-
ty, coordination number and mechanical coordina-
tion number were calculated as indicated in Table 2, 
where the total volume of the sample enclosed by the 
rigid walls was considered. Mechanical coordination 
number (zmech) was defined by Thornton (2000): 

( )01
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where Np
0 = the number of particles with zero con-

tact and Np
1 = the number of particles with one con-

tact. Note that contacts between balls and walls are 
not taken into account in Table 2. 
 
Table 2. Final conditions within the whole sample 
 
Sample Particles 

(Coarse) 
μ n z zmech 

Small-loose 3,315 (25) 0.3 0.298 4.49 4.52 
Medium-loose 15,982 (125) 0.3 0.292 4.65 4.66 
Large-loose 31,793 (250) 0.3 0.278 4.69 4.70 
Small-dense 3,315 (25) 0.1 0.275 4.82 4.84 
Middle-dense 15,982 (125) 0.1 0.261 5.09 5.10 
Large-dense 31,793 (250) 0.1 0.271 5.17 5.18 
Pluviated 31,793 (250) 0.3 0.280 4.69 4.70 
μ: Coefficient of friction, n: porosity calculated from whole 
sample, z: coordination number, zmech: mechanical coordination 
number 

 
In Figure 6, it is shown that the increase of coor-

dination number affects the decrease of porosity. 
There is a clear relation between the porosity and 
coordination number. 
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Figure 6. Relation between porosity and coordination number 
 

A pluviated sample with µ = 0.3 was also created 
so as to investigate whether generating a sample by 
pluviation would induce segregation. To create the 
pluviated sample, gravity was applied in five stages 



(0.5, 1.0, 2.0, 5.0 and 9.8 m/s2). In each step, parti-
cles naturally fell down until a steady state was 
reached when coordination number was stable situa-
tion for 500,000 steps (0.4 seconds in numerical 
time). Then, isotropic compression was applied up to 
the target stress of 50 kPa. The final conditions ob-
tained from the measurement sphere are compared in 
Table 4. The data for “Gap Med 35” included on Ta-
ble 4, come from the results of Shire et al. (2014) 
who used periodic boundaries and the same grading. 

The values for n and z were calculated by consid-
ering the measurement sphere to give nmeas,sphere and 
zmeas,sphere. For each sample, measurement sphere was 
located so that it did not intercept the boundaries and 
centred at the centre of the sample. For the com-
pressed samples, different measurement sphere radii 
were considered, extending to 20, 100 and 200% of a 
median diameter (D50) away from the boundaries so 
that the effect of the size of measurement spheres 
can be compared. In this study, the D50 for the entire 
grading was used which was 0.8 mm. As Table 3 be-
low shows, for these radii values, the measurement 
sphere size measurably influence the porosities and 
coordination numbers for the smaller sample; the da-
ta for the larger sample show less variation with 
measurement sphere size. A measurement sphere 
which extended to be 100% of D50 from the walls 
was used in the remaining calculations (Figure 4). 
 
Table 3. Effect of measurement sphere size 
 
Sample Distance from 

walls 
nmeas,sphere zmeas,sphere 

Small-loose    
 20% of D50 0.233 5.12 
 100% of D50 0.233 5.12 
 200% of D50 0.238 4.95 
Large-dense    
 20% of D50 0.238 5.51 
 100% of D50 0.237 5.50 
 200% of D50 0.239 5.45 
nmeas,sphere: porosity from measurement sphere, zmeas,sphere: coor-
dination number from measurement sphere 
 

Referring to the measurement sphere data Table 
4, as expected, the denser samples have lower poros-
ities and higher coordination numbers than the loos-
er samples. In terms of the porosity, the results are in 
good agreement with Shire et al. (2014); however, 
Shire et al. (2014) reported lower coordination num-
bers. The absence of gravity in these earlier simula-
tions allows particles to exist in a state of suspension 
in voids with no contacts, resulting in lower coordi-
nation numbers in comparison with the simulation 
data presented here. The porosity and coordination 
number data for the pluviated sample are similar to 
the large loose compressed sample. Here, μ= 0.3 
gives a loose packing. 
 
 
 

Table 4. Final conditions within measurement sphere 
 
Sample Particles 

(Coarse) 
μ nmeas,sphere zmeas,sphere 

Normal method    
Small-loose 3,315 (25) 0.3 0.233 5.12 
Medium-loose 15,982 (125) 0.3 0.243 4.92 
Large-loose 31,793 (250) 0.3 0.244 4.90 
Small-dense 3,315 (25) 0.1 0.223 5.63 
Middle-dense 15,982 (125) 0.1 0.233 5.49 
Large-dense 31,793 (250) 0.1 0.237 5.50 
Pluviated method    
Large-dense 31,793 (250) 0.3 0.252 4.91 
Shire et al. (2014)    
Gap Med 35 50,357 (500) 0.3 0.245 3.08 
Gap Med 35 50,357 (500) 0.1 0.241 4.62 

3 INHOMOGENEITY EVALUATION 

3.1 Layer analysis 
In order to quantify inhomogeneity within the sam-
ples, each sample was divided into an integer num-
ber of layers to give a layer depth of approximately 
0.5 mm, following the approach that was originally 
developed for cylindrical rigid-wall samples by 
Huang et al. (2014). The small samples were divided 
into 6 layers, the medium samples 9 layers and the 
large samples 12 layers. This layering technique was 
applied in the x, y, and z directions. The volume of 
particles within each layer was accurately calculated 
by taking the intersection volume into account by de-
termining the volume of the spherical cap, which is 
created when a sphere intersects a layer boundary. 
Figure 7 displays the spherical cap, and the corre-
sponding volume is given in Equation 6. 
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Figure 7. Schematic area of spherical cap 
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where Vcap = spherical cap (hatching area of Figure 
7); h = height of spherical cap; and r = radius. 
 

Representative distributions of porosity in all three 
coordinate directions (normalized by mean porosity 
excluding values in both end layers) are shown in 
Figure 8 and Figure 9, and the detailed measure-
ments for all samples considered are provided in Ta-
ble 5 considering the vertical (z) direction. It is clear 
that in all cases the porosity close to the top and bot-



tom boundaries is higher than the average porosity in 
agreement with Chan & Ng (1986), Marketos & 
Bolton (2009) and Huang et al. (2014). There is also 
significant variation within the sample, and this vari-
ation is more noticeable for the smaller samples, re-
flected in the higher standard deviation associated 
with these samples (Table 5). The greater variation 
in measured porosity in the layers in the smaller 
sample can simply be attributed to the fact that each 
layer is significantly smaller than a RVE and so the 
position and size of one particle within that layer can 
have a measurable influence on the porosity for that 
layer. Although the average porosity in Table 5 is 
not very different from the porosity within the meas-
urement sphere in Table 4, especially for the large 
samples, the tolerance between these results is still 
approximately 9%. Considering the measurement 
sphere is useful for thinking of homogeneity, and la-
boratory experiments need to be taken into account 
the inhomogeneity. 

 
The PSDs in each layer were compared to under-

stand the inhomogeneity. Referring to the small-
loose sample (Figure 10), large-dense sample 
(Figure 11) and pluviated sample (Figure 12), while 
there is some evidence of segregation in the small-
loose sample, the PSDs of the large-dense and pluvi-
ated sample are very similar to each other, excluding 
the top and bottom layers, and so this sample can be 
regarded as being homogeneous (no segregation). 

As Figure 11 illustrates, the large-dense sample 
shows that more fine particles tend to be placed in 
bottom and top layers due to the walls. In particular, 
the bottom layer of the pluviated sample (Figure 12) 
is inclined to have more fines than that of large-
dense sample. More interestingly, it is seen that No. 
2 (second layer from the top layer) has slightly more 
coarse particles because of gravity applied. Note also 
that the PSDs of layers No. 1 (Top layer) and No. 12 
(Bottom layer) are broadly similar in this case. 
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Figure 8. Normalised distribution of porosities with small-loose 
sample: (a) in x-direction; (b) in y-direction; (c) in z-direction 
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Figure 9. Normalised distribution of porosities with large-dense 
sample: (a) in x-direction; (b) in y-direction; (c) in z-direction 
 
Table 5. Porosity distribution of each layer in z direction 
 __________________________________________________ 
Layer  Small    Medium     Large  Pluviated ____________ ____________ ____________ 
No. Loose Dense Loose Dense Loose Dense Loose __________________________________________________ 
Top layer 
1    -   -   -   -  0.343 0.341 0.331 
2   -   -   -   -  0.253 0.240 0.241 
3   -   -   -   -  0.269 0.264 0.281 
4    -   -  0.321 0.318 0.265 0.262 0.260 
5   -   -  0.269 0.252 0.264 0.255 0.272 
6   -   -  0.270 0.266 0.267 0.265 0.270 
7  0.325 0.325 0.284 0.274 0.257 0.252 0.264 
8  0.278 0.268 0.259 0.254 0.268 0.257 0.268 
9  0.283 0.278 0.281 0.274 0.277 0.274 0.278 
10  0.299 0.286 0.265 0.256 0.271 0.264 0.292 
11  0.254 0.246 0.267 0.256 0.259 0.249 0.252 
12  0.351 0.346 0.329 0.328 0.337 0.334 0.348 
Bottom layer __________________________________________________ 
μ  0.279 0.270 0.271 0.262 0.265 0.258 0.268 
σ  0.019 0.017 0.009 0.009 0.007 0.010 0.015 __________________________________________________ 
μ: average without both end layers, σ: standard deviation with-
out both end layers 
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Figure 10. PSDs in each layer of small-loose sample 
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Figure 11. PSDs in each layer of large-dense sample 
 



No. 12

No. 1

No. 4

No. 8
No. 10
No. 7
No. 5
No. 9

No. 2

No. 6

No. 3

No. 11

 
 
Figure 12. PSDs in each layer of pluviated sample 
 

3.2 Comparison of measurement sphere with 
overall data 

One potential way to remove boundary effects on the 
calculated α values is to consider only particles 
within the central measurement sphere. To isolate 
this sub-set of particles, the particles that intersected 
the measurement sphere were identified, as shown in 
Figure 13. Then, as indicated in Figure 14, the vol-
ume of a sphere-sphere intersection was calculated 
using Equation 7. Thus the partial volumes of the in-
tersected particles that were considered are as illus-
trated in Figure 15. 
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Figure 13. Particles on the intersection: (a) all particles; (b) 
cross-section view along the centre plane 
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Figure 14. Schematic area of sphere-sphere intersection 
 

 
 
Figure 15. Particles including intersected particles within 
measurement sphere 
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where Vintersection = sphere-sphere intersection (hatch-
ing area of Figure 14); R = radius of one particle; r = 
radius of the other particle; and d = distance between 
centres of two spheres. 

In Figure 16 and Figure 17, the distribution of 
mean particle stress is visualised on the three sam-
ples on an XZ-plane through the samples. Particles 
shaded in “black” transfer a significant amount of 
stress, whereas the “white” particles transfer sub-
stantially less stress. For the loose samples in Figure 
16, stress is preferentially transmitted by the coarse 
particles, when the centre of the figure is considered. 
As density increases, fines carry more stress as 
shown by comparing Figure 16 and Figure 17, where 
the loose samples are considered, there is a higher 
proportion of low stress “white” particles in the cen-
tre of the samples than for the dense samples in Fig-
ure 17. The increase of α values with sample density 
(Table 6 and Table 7) confirms the observations of 
Shire et al. (2014) that this type of transitional fine 
content is sensitive to relative density. The heteroge-
neity in the smaller samples is very evident in Figure 
16 and Figure 17. In particular, the force chain is 
formed by only a few coarse particles. The small 
numbers of highly stressed particles in this small 
sample in Figure 16(a) highlights the fact that this 
sample is too small to be considered a RVE. 
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Figure 16. Distribution of mean stress in XZ plane with loose 
samples: (a) small; (b) medium; (c) large; (d) pluviated 
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Figure 17. Distribution of mean stress in XZ plane with dense 
samples: (a) small; (b) medium; (c) large 
 

Table 6 and Table 7 give the α values obtained 
from the whole sample and the measurement sphere, 
respectively. There are measureable differences 
when the α values in these two tables are compared. 
The values listed in Table 6 are significantly higher 
than the values listed in Table 7. The ratio of α cal-
culated from the whole sample to α obtained from 
the measurement sphere is also shown in Table 8. 



These data show the concentration of fines close to 
the boundary lead to an unrealistic increase in α val-
ues. Furthermore in laboratory tests observations of 
particle migration close to the boundaries will not be 
representative of the material response. 

The data presented in Table 6 and Table 7 indi-
cate that the α values for the loose samples are 
smaller than those of the dense samples. Considering 
the measurement sphere data in Table 7, for the 
loose samples, the α value is roughly between 0.34 
and 0.51. The α value of the dense samples are be-
tween 0.69 and 0.84. The α value increases as the 
number of particles increases. 

As was the case for the porosity data in Table 4, 
the α values noted by Shire et al. (2014) are included 
on Table 7. The results show that for large samples, 
provided the boundary data are excluded, representa-
tive data can be obtained. 
 
Table 6. Stress reduction factor calculated from throughout the 
whole sample including stress in both ends of layers __________________________________________________ 
      Small     Middle    Large ____________ ____________ ____________ 
Direction Loose Dense Loose Dense Loose Dense __________________________________________________ 
αwhole 
α,pꞌ   0.791 0.918 0.687 0.976 0.641 0.991 
α,σx   0.750 0.892 0.681 0.962 0.626 0.987 
α,σy   0.845 0.951 0.695 0.973 0.635 0.994 
α,σz   0.779 0.912 0.685 0.994 0.662 0.991 __________________________________________________ 
α,pꞌ: α calculated from mean stress, α,σx: α relating to x direc-
tion, α,σy: α relating to y direction, α,σz: α relating to z direc-
tion 
 
Table 7. Stress reduction factor calculated from particles within 
measurement sphere __________________________________________________ 
      Small     Middle    Large ____________ ____________ ____________ 
Direction Loose Dense Loose Dense Loose Dense __________________________________________________ 
αmeas,sphere 
α,pꞌ   0.506 0.694 0.430 0.830 0.341 0.836 
α,σx   0.421 0.652 0.428 0.814 0.335 0.823 
α,σy   0.616 0.757 0.437 0.839 0.327 0.850 
α,σz   0.491 0.678 0.426 0.837 0.361 0.835 __________________________________________________ 
            Gap Med 35   Pluviated 
α,pꞌ    -   -   0.34  0.86 0.552  - 
α,σx    -   -    -   -  0.509  - 
α,σy    -   -   -   -  0.606  - 
α,σz    -   -   -   -  0.548  - __________________________________________________ 
 
Table 8. Ratio of stress reduction from measurement sphere to 
that from the whole sample __________________________________________________ 
      Small     Middle    Large ____________ ____________ ____________ 
Direction Loose Dense Loose Dense Loose Dense __________________________________________________ 
αmeas,sphere/αwhole 
α,pꞌ   0.64  0.76  0.63  0.85  0.53  0.84 
α,σx   0.56  0.73  0.63  0.85  0.54  0.83 
α,σy   0.73  0.80  0.63  0.86  0.51  0.86 
α,σz   0.63  0.74  0.62  0.84  0.55  0.84 __________________________________________________ 
 

4 ANISOTROPY 

4.1 Stress-induced anisotropy 
For the samples that were initially isotropically con-
solidated, prior to applying gravitational loading, 
there is a small stress anisotropy owing to the weight 
of particles in the vertical (z) direction. The α values 
were calculated so as to get a feel as to whether such 
an anisotropy might influence susceptibility to inter-
nal erosion. The difference in stress was, however, 
small. The isotropic stress applied was 50 kPa. The 
additional stress in the vertical (z) direction pro-
duced by applying gravity to 31,793 particles was 
approximately 116 Pa. This stress is not capable of 
contributing the anisotropy. However, particle rear-
rangement caused by gravity could still include ani-
sotropy. 

As for the α values as shown in Table 7, discrep-
ancy between directions becomes narrow with the 
large number of particles and high density. Focusing 
on the large samples, the difference of α values in x 
and y direction to α values in z direction is at most 
3% in the dense sample, whereas the difference is 
10% in the loose sample. The effect of particle con-
figuration predominantly affects the α values differ-
ence when the applied stress was distributed. Con-
sidering the heterogeneity in the small samples, 
segregation and size deficiency of the measurement 
sphere, which is not large enough as the RVE, the α 
values are not taken into account here. The medium 
and large samples probably have a RVE according to 
the data. The stress-induced anisotropy can be meas-
urably recognised in the samples with lower densi-
ties and pluviated sample. 

4.2 Fabric anisotropy 
Oda et al. (1985) showed that fabric can be quanti-
fied by using orientation data at particle scale: con-
tact normal, particle, void and branch vector. Here, 
fabric anisotropy was quantified by means of unit 
contact vectors normal as well as Oda et al. (1985). 
The direction of contacts between particles is visual-
ised from Figure 18 and Figure 19. Here, each rose 
histogram bin length represents the number of all 
contacts orientated within that bin’s angular incre-
ment. 36 bins were considered to give 10o angular 
increments. The colour gradation stands for the 
magnitude of average contact force with a specific 
direction. Satake (1982) defined fabric tensor for 
quantifying the fabric anisotropy as follows: 
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where N = total number of vectors; and θ = direction 
of the fabric anisotropy or principal fabric. This fab-
ric tensor has been used in a number of DEM stud-



ies; for example, Thornton (2000) and Shire et al. 
(2012). Rothenburg & Bathurst (1989) proposed an 
equation including only two parameters where an el-
lipse is fitted by means of Fourier series. The Satake 
(1982) equation and Rothenburg & Bathurst (1989) 
equation are shown respectively; 
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where a = magnitude of fabric anisotropy; and = kth 
unit orientation vector. 

The length of the histograms differs as there are 
fewer contacts between the particles in the loose 
samples (Figure 18) than in the dense samples 
(Figure 19) and pluviated sample (Figure 20). This is 
related to the coordination number data shown in 
Table 2. For small number of particles such as Fig-
ure 18, the direction of the contacts slightly varies as 
the fabric tensor indicates. As the number of parti-
cles goes bigger and bigger, this variability becomes 
small and stable. These figures imply that there is 
almost no fabric anisotropy due to gravity under 50 
kPa. The isotropic compression stress of 50 kPa is 
relatively big in comparison with the impact of the 
gravity. 

Besides, α, σy tends to have relatively higher val-
ues as shown in Table 6 and Table 7. This may as 
well be attributed to the way of applying isotropic 
compression, i.e. the target stress should be con-
trolled by measuring stress within a measurement 
sphere instead of walls. Further investigation is re-
quired. 
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Figure 18. Rose histograms of fabric anisotropy with small-
loose sample: (a) in XY-plane; (b) in XZ-plane; (c) in YZ-plane 
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Figure 19. Rose histograms of fabric anisotropy with large-
dense sample: (a) in XY-plane; (b) in XZ-plane; (c) in YZ-
plane 
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Figure 20. Rose histograms of fabric anisotropy with pluviated 
sample: (a) in XY-plane; (b) in XZ-plane; (c) in YZ-plane 

5 CONCLUSIONS 

This contribution has explored how best to run DEM 
simulations to improve understanding of internal in-
stability. The work builds on the contribution by 
Shire et al. (2014). Shire et al. (2014) considered pe-
riodic boundaries and a gravity-free environment. In 
this contribution, samples were bounded by rigid 
walls, and gravity was applied in a controlled man-
ner. The number of particles in the systems varied, 
and two different interparticle friction values were 
used to control the relative densities, so that loose 
and dense samples were considered. 

The use of rigid wall boundaries induced signifi-
cant boundary effects on the samples. The porosities 
close to the rigid walls were quite high in compari-
son with those in the centre of the samples. There 
was also a stress concentration along the rigid walls. 
The differences between the α values calculated 
from the central measurement sphere and those ob-
tained from the whole sample emphasized this fact.  

There was little particle segregation in the centre 
of samples when gravity applied, this is most likely a 
consequence of the way the samples were prepared, 
e.g. the strategy of the applying gravity in five stag-
es. 

Specific recommendations are: 
• 3D simulations with more than 30,000 parti-

cles are required to obtain representative re-
sults for this grading. 

• A measurement sphere must be used to inter-
pret DEM data when rigid walls are used in 
order to avoid the effect of the concentrated 
stress in the vicinity of the walls and the sam-
ple inhomogeneity. 

The anisotropy was described in terms of the 
stress and the fabric. According to the α values in x, 
y and z direction, little anisotropy was observed 
when there are enough particles, i.e. more than 
30,000 particles, whereas the stress-induced anisot-
ropy is seen in the samples with the low density and 
pluviated sample. Particularly, the α values of the 
pluviated sample are higher than those of the large-
loose sample. In order to avoid this difference, the 
target stress should be controlled by measuring stress 
within a measurement sphere. Under the isotropic 
stress of 50 kPa, gravity did not play an important 



role in terms of the anisotropy. The fabric anisotropy 
can be negligible when the effect of the gravity is 
relatively smaller than the compression stress. 

The results presented here focus on the case only 
without water. The authors are currently using cou-
pled DEM-CFD analysis to explore how erosion of 
fine particles with various stress reduction factors in-
itiates. 
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