
1 INTRODUCTION 

The present work addresses the scour below a pipe-
line on a mild-sloped seabed due to random waves 
alone. In general, for current plus waves, a pipeline 
resting on the seabed is situated within the boundary 
layer of the flow close to the bed. In deep water, the 
flow can be considered as steady, while in shallow 
and intermediate water depths, there is commonly 
combined wave-current flow. A typical design con-
dition for a pipeline in the vicinity of the seafloor in, 
e.g., the North Sea is that the flow is wave-
dominated and that the seabed consists of fine sand. 
When a scour hole develops, this may have consid-
erable effect on the dynamic behaviour and the on-
bottom stability of the pipeline. After installation, 
for example, on a plane or sloped seabed consisting 
of fine sand, it may experience different seabed con-
ditions, e.g., the seabed may be flat or rippled. This 
is mainly due to the complicated flow generated by 
the interaction between the incoming flow, the pipe-
line, and the seabed. The result will depend on the 
incoming flow velocity, the geometry of the bed and 
the bed material, as well as on the ratio between the 
near-bed oscillatory fluid particle excursion ampli-
tude and the pipeline diameter. Additional details on 
the background and complexity as well as reviews of 
the problem are given in, e.g., Whitehouse (1998) 
and Sumer and Fredsøe (2002). Myrhaug and Ong 
(2011a) gave a review of the authors’ studies on 
two-dimensional (2D) random wave-induced equi-
librium scour characteristics around marine struc-
tures including comparison with data from random 

wave-induced scour experiments. Recently the au-
thors have also provided practical stochastic meth-
ods for calculating the maximum equilibrium scour 
depth around vertical piles (Myrhaug and Ong, 2013 
a, b; Ong et al., 2013) and below pipelines (Myrhaug 
and Ong, 2011b) due to 2D and three-dimensional 
(3D) nonlinear random waves. To our knowledge, 
no studies are available in the open literature dealing 
with random wave-induced scour below pipelines on 
mild slopes. 

The purpose of this study is to provide an engi-
neering approach by which the maximum equilibri-
um scour depth below a pipeline exposed to random 
waves alone on mild slopes can be derived. The ap-
proach is based on assuming the waves to be a sta-
tionary narrow-band random process, adopting the 
Battjes and Groenendijk (2000) wave height distri-
bution for mild slopes including the effect of break-
ing waves, and using the empirical formulas for the 
scour depth by Sumer and Fredsøe (1996). Results 
are presented and discussed by varying the seabed 
slope and water depth. An approximate method is 
proposed and compared with the present stochastic 
method.  

2 SCOUR IN REGULAR WAVES 

The 2D scour below a fixed pipeline on a horizontal 
seabed in regular waves was investigated in labora-
tory tests by Sumer and Fredsøe (1990). They ob-
tained the following empirical formula for the equi-
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librium scour depth S below the pipeline with di-
ameter, D (see  Fig. 1) 
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where the Keulegan-Carpenter number KC is de-

fined as 
 

UTKC
D
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Here U is the undisturbed linear near-bed orbital 

velocity amplitude, T is the wave period, and Eq. (1) 
is based on data for which 2 1000KC≤ ≤ .  

 

 
Fig. 1 Definition sketch of the scour depths (S) below a pipe-
line with diameter (D) on a horizontal bed. 

 
Eqs. (1) and (2) are valid for live-bed scour, for 

which θ > θcr where θ is the undisturbed Shields pa-
rameter defined by 
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where wτ  is the maximum bottom shear stress 

under the waves, ρ  is the density of the fluid, g is 
the acceleration due to gravity, s is the sediment 
density to fluid density ratio, d50 is the median grain 
size diameter, and θcr is the critical value of the 
Shields parameter corresponding to the initiation of 
motion at the bed, i.e. 0.05crθ ≈ for sand. One 
should note that the scour process attains its equilib-
rium stage through a transition period. Thus, the ap-
proach is valid when it is assumed that the storm 
generating random waves has lasted longer than the 
time-scale of the scour. It should be noted that this is 
the case for a rigid pipeline in a 2D problem, which 
will be handled in the present study. However, in re-
ality, after this length of time the pipeline may have 
lowered into the scour hole, altering the scour depth 
and potentially leading to sedimentation. Further de-
tails on the time-scale of the scour are given in Su-
mer and Fredsøe (1996). 

The maximum bottom shear stress within a wave 
cycle is taken as 
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where wf  is the friction factor, which here is taken 
from Myrhaug et al. (2001), and is valid for waves 
plus current for wave-dominated situations (see 
Myrhaug et al. (2001), Table 3) 
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where /A U ω=  is the near-bed orbital displace-
ment amplitude, / Tω π= 2  is the angular wave fre-
quency, and z0 = d50/12 is the bed roughness (see e.g. 
Soulsby (1997)). The advantage of using this friction 
factor for rough turbulent flow is that it is possible to 
derive the stochastic approach analytically.  

It should be noted that the KC number can alter-
natively be expressed as 
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 Moreover, A is related to the linear wave ampli-

tude a by 
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where h is the water depth, and k is the wave number 
determined from the dispersion relationship 

tanhgk khω =2 .  
It should be noted that since Eq. (1) appears to 

be physically sound for KC = 0 , i.e. S equals zero 
for KC = 0 , the formula can be taken to be valid 
from KC = 0 . This extension of Eq. (1) relies on the 
threshold of motion near to the pipeline being ex-
ceeded, which for small values of KC may not be the 
case.  

 



3 SCOUR IN RANDOM WAVES  

Here a tentative stochastic approach will be outlined 
following the approach presented in Myrhaug et al. 
(2009) and Myrhaug and Ong (2011b), except for 
the modification performed by adopting the Battjes 
and Groenendijk (2000) wave height distribution. As 
a first approximation, it is assumed that the scour 
formulas for the case of a horizontal bed described 
in Section 2 can be applied for the case of mild 
slopes as well. Figure 2 shows the definition sketch 
of the scour below a pipeline on a mild slope. 

 

 
Fig. 2 Definition sketch of the scour depth (S) around a circular 
vertical pile with diameter (D) on a mild slope (α). 

3.1 Theoretical background 
At a fixed point in a sea state with stationary nar-
row-band random waves consistent with regular lin-
ear waves in finite water depth h and wave height H 
= 2a, the near-bed orbital displacement amplitude, 
A, and the near-bed horizontal orbital velocity am-
plitude, U, can be taken as, respectively, 
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where 2 /p pTω π=  is the spectral peak frequency, 

pT  is the spectral peak period, and pk  is the wave 
number corresponding to pω  determined from the 
dispersion relationship 
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Moreover, A and U are made dimensionless by tak-
ing ˆ / rmsA A A=  and ˆ / rmsU U U= , respectively, 
where 
 

2sinh
rms

rms
p

HA
k h

=  (14) 

2sinh
p rms

rms p rms
p

H
U A

k h
ω

ω= =  (15) 

 
and Hrms is the root-mean-square (rms) value of H. 
The definition of Urms in Eq. (15) corresponds to Um 
defined in Sumer and Fredsøe (2002) Eq. (2.25).   
By combining Eqs. (11), (12), (14) and (15) it fol-
lows that 
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and consequently 
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Here the Battjes and Groenendijk (2000) parametric 
wave height distribution based on laboratory exper-
iments on shallow foreshores is adopted. This cumu-
lative distribution function (cdf) is composed of two 
two-parameter Weibull distributions of the non-
dimensional wave height ˆ / rmsH H H= : 
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where 1 2k = , 2 3.6k = , 1 1

ˆ / rmsH H H= , 2 2
ˆ / rmsH H H= ,

ˆ /tr tr rmsH H H= . Here trH  is the transitional wave 
height corresponding to the change of wave height 
where there is a change of the distribution associated 
with depth-induced wave breaking, given by 
 
 

(0.35 5.8 tan )trH ha= +  (19) 
 
where rmsH  is related to the zeroth spectral moment 

0m  by 
 
 

0 0(2.69 3.24 / )rmsH m h m= +  (20) 
 

The values of 1H  and 2H  can either be read from Ta-
ble 2 in Battjes and Groenendijk (2000), or they can 
be solved by an iteration procedure solving two 



equations (see Eqs. (25) and (26)). The model is a 
so-called point model, i.e. depending on local pa-
rameters regardless of the history of the waves in 
deeper water. It should be noted that the effect of the 
bottom slope is of a secondary nature compared to 
the effect of water depth (see Battjes and 
Groenendijk (2000) for more details). 

The zeroth spectral moment, m0, is obtained as 
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where ( , )S hω  is the wave spectrum in finite water 
depth, which can be obtained by multiplying the 
deep water wave spectrum ( )S ω  with a depth cor-
rection factor ( , )hψ ω  as 
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where according to Young (1999) 
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ensuring that the frequency part of the wave spec-
trum becomes proportional to 3k −  irrespectively of 
the water depth (see Young (1999) for more details). 
From Eq. (23) it follows that (see Jensen, 2002) 
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For given h, a, and m0, the values of 1Ĥ and 2Ĥ  

can be either read from Table 2 in Battjes and 
Groenendijk (2000), or they can be determined by 
solving the following two equations:   

The distribution function has to be continuous, 
i.e. 

 
1

ˆ( )P H = 2
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The mean square normalized wave height, or the 

second moment of the probability density function 
(pdf) of Ĥ , has to equal unity, i.e., 
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where P1and P2 are the pdfs of Ĥ and defined as 

1 1
ˆ/p dP dH=  and 2 2

ˆ/p dP dH= , respectively. 
 
 

3.2 Outline of stochastic method 
The highest among random waves in a stationary 

narrow-band sea-state is considered, as it is reasona-
ble to assume that it is mainly the highest waves 
which are responsible for the scour response. It is al-
so assumed that the sea state has lasted long enough 
to develop the equilibrium scour depth. The highest 
waves considered here are those exceeding the prob-
ability 1/ n , 1/

ˆ
nH  (i.e., 1/

ˆ1 ( ) 1/nP H n− = ). The pa-
rameter of interest is the expected (mean) value of 
the maximum equilibrium scour characteristics 
caused by the (1/n)th highest waves, which is given 
as 
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where ˆ( )S H  represents the scour characteristics, 

and ˆ( )p H  is the pdf of Ĥ . More specifically, the pre-
sent approach is based on the following assump-
tions: (1) the free surface elevation is a stationary 
narrow-band process with zero expectation, and (2) 
the scour response formula for regular waves in the 
previous section (see Eq. (1)), is valid for irregular 
waves as well. These assumptions are essentially the 
same as those given in e.g., Myrhaug et al. (2009), 
where further details are found. 

For a narrow-band process T = Tp where Tp = 
2π/ωp = 2πArms/Urms and k = kp. Then by referring to 
Eq. (17) it follows that  
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By substituting Eq. (28) in Eq. (1), Eq. (1) can be 

re-arranged to  
 

( )0.5ˆ ˆ0.1 rms
SS KC H
D

≡ =
 (29) 

 
Let S denote Ŝ  given in Eqs. (29) and KCrms = 

UrmsTp/D = 2πArms/D. Then the mean of the maxi-
mum equilibrium scour depth caused by the (1/n)th  
highest waves follows from Eq. (27) as (i.e.  by ne-
glecting any memory effects in the scouring process 
from the previous waves) 
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where the cdf of Ĥ  is given in Eq. (18), and p

( )Ĥ  is the pdf  of Ĥ , i.e.,  1 1
ˆ/p dP dH=   and 

2 2
ˆ/p dP dH= , given as follows: 
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Moreover, 1/

ˆ
nH  is obtained by solving the equa-

tion 1/
ˆ1 ( ) 1/nP H n− = . 

 
 

4 RESULTS AND DISCUSSION 

To the authors’ knowledge no data exist in the open 
literature for random wave-induced scour below 
pipelines on mild slopes. It should be noted that the 
formulation in Section 3 is general, i.e., valid for a 
finite water depth. 

4.1 Prediction of parameters 
In the present study, the effect of mild slopes on 
scour below pipelines in random waves alone is in-
vestigated. Four bed slopes a = 1/50, 1/100, 1/150 
and 1/250, are considered for this purpose.  

The case with the bed slope a = 1/100 is exem-
plified to show the procedure of calculating all the 
required parameters. Figure 3 shows the seabed con-
ditions with a =1/100. The water depth at the sea-
ward location (x = 0 m) is 15 m; the horizontal 
length of the sloping seabed is 600 m; the diameter 
of the pipeline D is set to be 1m for all the cases. 

The wave spectrum in finite water depth S(ω, h) 
can be obtained from the spectrum in deep water 
S(ω), see Eq.(22). Hence, the random waves with a 
standard JONSWAP spectrum (γ = 3.3) and signifi-
cant wave height 0mH = 8 m are assumed to describe 
the sea state in deep water. Figure 4 shows some re-
sults of the wave spectra at the four locations trans-
formed from the deep water according to Eqs. (21) - 
(24). It is clearly seen in Fig. 4 that the wave energy 
decreases as the water depth decreases. Consequent-
ly, Fig. 5 shows that m0 (Eq. (21)) decreases as the 
water depth decreases. With the values of m0 along 
x, Hrms can be determined by Eq. (26) and subse-
quently KCrms can be computed.  

 

 
Fig. 3 Definition sketch of the seabed conditions with 
1/100a = . 

 

 
Fig. 4 The transitional wave spectra in finite water depth 

( , )S hω versus ω at four locations for a = 1/100.    
 
 

 
Fig. 5 Zeroth spectral moment m0 versus x in finite water 

depth for a = 1/100.    
 
 



4.2 Random waves alone 
The pdf and cdf of the Battjes and Groenendijk 
(2000) wave height distribution of Ĥ  at the four lo-
cations are shown in Figs. 6 and 7, respectively. The 
discontinuous points in Fig. 6 are due to the transi-
tional wave height ˆ

trH , representing the limiting 
wave height for non-breaking waves. The figure 
shows that from location 1 to location 4 (as x in-
creasing from 0 m to 600 m), ˆ

trH decreases from 
1.78 to 1.30, reflecting that the influence of breaking 
waves on the distributions becomes more significant 
as the water depth decreases. It should be noted that 
the area under each pdf curve must be equal to one, 
and this is validated in Fig. 7where the cdf curves 
are shown.  

 

 
Fig. 6 ( )ˆp H at four locations for a = 1/100. 
 

 
Fig. 7 ( )ˆP H  at four locations for a = 1/100. 
 
 
Four different bed slopes (a = 1/50, 1/100, 

1/150, 1/250) are considered in the present study. 
Figure 8 shows KCrms versus x for the four slopes; 
KCrms increases as the water depth decreases for all 

the slopes. Furthermore, it appears that KCrms in-
creases as the slope increases at a given location x.  

 
Fig. 8 KCrms versus x for a = 1/50, 1/100, 1/150, 1/250. 
 
 
Figure 9 shows S/D1/10 for the different slopes. 

The reason for choosing n = 10 is based on earlier 
comparison between the stochastic method 
(Myrhaug et al. (2009)) and the corresponding ex-
perimental data for random wave-induced scour 
around pipelines reported by Sumer and Fredsøe 
(1996), where the stochastic method predictions for 
n = 10 overall give upper bound values compared 
with experimental data. Deeper scour hole is en-
countered when the slope becomes steeper. For all 
slopes, S/D1/10 increases as x approaches to 600 m. 
At a given location x, it appears that S/D1/10 increas-
es as the slope increases. These results are physically 
sound and consistent with those observed in Fig. 10. 
It should be noted that the effect of water depth is 
included by changing the location x. 

 

 
Fig. 9 S/D1/10 versus x for a = 1/50, 1/100, 1/150, 1/250. 
 



4.3 Alternative view: Approximate method 
An alternative pragmatic view of the scour process 
below pipelines and around a single vertical pile un-
der random waves is that of Sumer and Fredsøe 
(1996, 2001). They looked for which parameters of 
the random waves to represent the scour variable, 
finding by trial and error that the use of rmsH  and pT  
in an otherwise deterministic approach gave the best 
agreement with data.  

This alternative view of the scour process will 
now be considered using the results of the present 
stochastic method. The question is how well the 
mean scour depth caused by the (1/n)th highest 
waves, [ ]/( ) | nE S H H H> 1  (see Eq. (30)), can be 
represented by using the mean of the (1/n)th highest 
waves in the scour depth formula for regular waves, 
i.e. [ ]( )/ nS E H1 .  

An alternative KC number for random waves in 
the approximate method can be defined as 
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Based on the narrow-band assumption, [ ]/nE U1

and [ ]/nE A1  can be defined as  
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where [ ]/nE A1 , [ ]/nE U1  and [ ]/nE H1  are the 

mean values of the (1/n)th largest values of the near-
bed orbital displacement amplitude, velocity and 
wave height, respectively. 

The scour depth below a pipeline for random 
waves alone can be obtained by replacing KC with 
KC1/n  in Eq. (1), given by  

 
0.5
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D

=  (36) 
 
The results of the stochastic to approximate 

method ratio of the scour depth for the four slopes 
are shown in Fig. 10, denoted by R1/10 for n = 10. It 
is interesting to note that the approximate method 
gives almost the same values as that of the stochastic 
method for all slopes. Thus, it appears that the ap-
proximate method can replace the stochastic method 
for random waves alone. 

 

 
Fig. 10 Random waves alone: The stochastic to approxi-

mate method ratio R1/10 versus x for four slopes a = 1/50, 
1/100, 1/150, 1/250. 

 

4.4 Shields parameter 
As described in Section 2, the scour prediction mod-
el in Eq. (1) is valid for live-bed scour, for which 

crθ θ> , where θ  is the undisturbed Shields parame-
ter defined in Eq. (3). 

When the bed is sloping, the gravity gives a 
force component on the grain which may increase or 
decrease the threshold shear stress required from the 
flow. The threshold Shields parameter, craθ , for ini-
tiation of motion of the grains at a bed sloping at an 
angle a  to the horizontal in upsloping flows is relat-
ed to the value crθ  for the same grains on a horizon-
tal bed by (see e.g. Soulsby (1997, Section 6.4)) 
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where iφ  is the angle of repose of the sediment. 
Following Myrhaug (1995) and Myrhaug and 

Holmedal (2002), the non-dimensional maximum 
Shields parameter for individual narrow-band ran-
dom waves near a horizontal bed, ˆ / rmsθ θ θ= , is 
equal to the non-dimensional maximum bottom 
shear stress for individual narrow-band random 
waves, ˆ /w wrmsτ τ τ= . Here rmsθ  is defined as  
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and θ  is defined  in Eq. (3). By using this and fol-
lowing Myrhaug and Holmedal (2002, Eq. (21)), θ̂  
is given as 

 
ˆ ˆ dHθ −= 2  (40) 

 
For random waves it is not obvious which value 

of the Shields parameter to use to determine the 
conditions corresponding to live-bed scour. Howev-
er, it seems to be consistent to use corresponding 
statistical values of the scour depth and the Shields 
parameter, e.g., given by 
 

( ) /
ˆ ˆ ˆ ˆ , lnn

dE H H H n nθ   > = Γ −    
1 2
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where ( , )Γ ⋅ ⋅  is the incomplete gamma function 

(see Abramowitz and Stegun (1972, Ch. 6.5, Eq. 
(6.5.3)). This is used in conjunction with Eq. (37) 
when the bed is sloping. 

5 SUMMARY AND CONCLUSIONS 

A practical method for estimating the scour depth 
below pipelines exposed to random waves is provid-
ed. The main conclusions are: 

 
1. The Battjes and Groenendijk (2000) wave height 

distribution for mild slopes is applied to describe 
the random wave condition on mild slopes in-
cluding the effect of breaking waves. A method 
for transformation of the wave spectrum from 
deep water to finite water depth is presented. 
Then a method is derived for calculating the ran-
dom wave-induced scour below a pipeline based 
on assuming the waves to be a stationary nar-
row-band random process. 

2. The present results reveal that the effect of a 
mild slope increases the scour depth compared 
with that at the seaward location.  Moreover, a 
larger bed slope causes more scour at a fixed lo-
cation. 

3. The results suggest that the approximate method 
can replace the stochastic method. 
 
Although the methodology is simple, it should 

be useful as a first approximation to represent the 
stochastic properties of the scour depth around pipe-
lines under random waves alone on mild slopes. 
However, comparisons with data are required before 
a conclusion regarding the validity of this method 
can be given. In the meantime the method should be 
useful as an engineering tool for the assessment of 
scour and in scour protection work of pipelines on 
mild slopes. 
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