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ABSTRACT

A method is presented for calculating the bottom orbital velocity under a
wave simply and directly from its known height and period, and the water
depth. When suitably nondimensionalised the results all fall on a single
curve, with separate curves for monochromatic and random (JONSWAP spectrum)
waves. The r.m.s velocity under random waves may be smaller or larger than
that produced by a monochromatic wave of height H_ and period T _, depending
on the water-depth. Direct methods of obtaining the effective period of the
bottom velocity under random waves are also presented; these periods can be
appreciably longer than T,.
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INTRODUCTION

In many aspects of coastal engineering and
oceanography it is necessary to know the orbital
velocity at the sea bed produced by surface waves.
Applications include sediment transport problems,
forces on pipe-lines and structures at the sea bed,
and the dissipation of wave energy. Frequently the
bottom orbital velocity has to be deduced from surface

measurements of wave height and period.

For monochromatic waves the appropriate quantity is
the maximum bottom orbital velocity Um during the wave
cycle. However, a naturally occurring random sea will
have a broad spectrum of frequencies. Generally,
information on the waves will be given in terms of the
significant wave-height Hs and the zero-crossing
period Tz (or the peak period TP). It is tempting to
assume that the sea can be represented by a
monochromatic wave of height HS and period Tz (or T ).
However, this may not be a good approximation as the
attenuation of orbital velocity with depth depends
strongly on wave period, so that the dominant waves at
the bottom will have a period different to either Tz
or Tp' The near-bottom velocity cannot now be
described by a single Um, and it is usual to describe
it by the standard deviation Urmsof the time-series of
instantaneous velocities. In some applications it is
important to know the effective period of the orbital

velocity, as well as the velocity itself.

The calculation of U for monochromatic waves is not
straightforward because it is necessary to solve the
dispersion relation for the wave-number, which must be
done graphically, iteratively, or as a series
approximation. Calculation of Urms from a given
surface elevation spectrum is considerably more
laborious. The usual procedure is to convert the
elevation spectrum to a bottom—velocity spectrum ,
which involves solving the dispersion relation at each

frequency, and then integrating the resulting spectrum
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MONOCHROMATIC
WAVES

over the frequency range to yield Ué;s. Calculation

of the effective period 1is equally laborious.

The purpose of this report is to present a method of
calculating U , U , and the effective period,

m’ “rms
directly from the known quantities HS and Tz together
with the water depth. The results in each case are
presented as single curves which are given in three
alternative forms : graphically; as tabulated values;
and as explicit algebraic expressions which

approximate the curves closely.

Consider a wave of amplitude a = H/2, and radian
frequency w = 271/T, where H and T are the wave height
and period respectively, which gives rise to a maximum
orbital velocity Um at the sea-bed (or, more
correctly, just outside the thin wave boundary layer
near the bed). Then Um is obtained using

small-amplitude linear wave theory from

[
o~
*
k
i

a sinh (kh) s R

The wavenumber k is related to the frequency w by the

dispersion relation
w? = gk tanh (kh), S (@)

where g is the acceleration due to gravity and h is

the water depth. Define dimensionless variables:

ey
T )
y = kh (4)



U %
F_ = (5)

m azg

Then Equation (1) becomes, after use of Equation (2),

= 2y
Fo = SIoR(Zy) (6)

and the dispersion relation, Equation (2), becomes
X = y tanh y. (7)

The dimensionless transfer function Fm cannot be
written explicitly in terms of x, and hence in terms
of H and T, because the dispersion relation, Equation
(7), cannot be written explicitly as y(x). However,
as Equation (7) gives a one—to-one correspondence
between x and y, we see from Equation (6) that Fm is a
parametric function of x alone. Both Fln and x contain
only the known quantities H, T, h and g, and the
required quantity Um. Thus a plot of Fm versus x
(obtained by using y as a parameter in Equations (6)
and (7)) allows UIn to be obtained directly from the
known quantities (Fig 1). For small values of x
(shallow-water waves) the value of Fm tends to one,
and Fm decreases monotonically with x until it becomes

very small for x > 4 (deep-water waves).

The quantities Fm and x are unnecessarily complicated
for practical calculations, as they contain the
squares of the quantities of interest and also coatain
some unnecessary constants. We therefore define more
readily usable quantities by first introducing the

natural scaling period Tn defined by

Nir

) (8)

Then the required dimensionless quantities are



UT F 3

- m

2H = 4 (9)
and
T 3

n _ X

A plot of Uan/ZH versus Tn/T (Fig 2) can be used
directly for obtaining Um from H, T, g and h. For
computer application, values of Uan/ZH are tabulated

against Tn/T in Table 1.

A 3-part explicit algebraic expression can be found

which fits the curve in Figure 2 closely, as follows:

1 ;
F * = (1~ 0.670x + 0.110 x2)%, 0« <l
(11)
1 -
= 1.72 x? & 0:9P2%x , 1% 3.2
1 -
=2x%2 e * sy 342 &K<
with
_ (21:)2 h
T 3

Equation (1l1) fits the exact curve in Figure 2 to an
accuracy of better than *1%Z over the entire range

0 <x¢<w, The first and third parts of Equation (l1) are
based respectively on small and large argument
approximations to sinh y and tanh y in Equations (6)
and (7), together with some optimisation of the
coefficients in the first part. Optimisation was also
used to determine the coefficients in the middle part.
The approximation given by Equation (11) has not been
shown on Figure 2, because it is indistinguishable

from the exact curve.
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A RANDOM SEA

Under natural conditions the wave climate is
represented by a spectrum of waves of different
frequencies, amplitudes and directions. In many cases
the only parameters which are known about the sea-
conditions are the significant wave height HS and the
zero~crossing period Tz. The best that can then be
done is to fit a realistic surface elevation spectrum
ST§ab to these two parameters. One of the most widely
accepted two—parameter spectra is the JONSWAP spectrum

(Hasselman et al, 1973), given by

5

where (12)

(w- w)?
exp - — 20y,
262w2p

W w

Here 03 is the radian frequency at the peak of the
spectrum, Yy and B are constants, and a is a variable
which depends on the wind-speed and duration. We use
the standard values of the constants, y= 3.3 and B =
0.07 for w > u%, B=0.09 for w < uﬁ. The variables «a
and u% can be related to HS and Tz respectively, so
that a particular sea-state described only by Hs and

Tz corresponds to a particular JONSWAP spectrum.

An additional complication of a random sea is that
there is an appreciable spread in the wave directions,
which is generally expressed by multiplying Equation
(12) by a spreading function. For calculations of the
wave energy dissipation rate the form of the spreading
function can influence the dissipation rate by up to
20% (Brampton et al, 1984). However, because the
bottom orbital velocity is related linearly to the
surface elevation 1, it is seen that the relationship
between the quantities Uré; and Hg (=160ﬁ2) is

independent of the spreading function.



The bottom velocity spectrum Su(uD is obtained by
applying the dimensional transfer function given by
Equation (1) to each frequency in the elevation
spectrum: '

w2

S (w) = —2 S (w (13)
v sinh2(kh) "

The variance of the bottom velocity is then obtained

by integrating Su(uD over frequency

@

Uﬁms = of 5, (W dw (14)

We now define dimensionless variables analogous to

those for monochromatic waves (Equations 3 and 5):

2
0, = G 2 ¥

rms
7 )

r N ( H
Z s

&) (15)

We note here that the standard deviation of the
surface elevation of a random sea is HS/4, and the
standard deviations of the surface elevation and
bottom velocity of a monochromatic wave are H/v2 and
Um//2 respectively. Thus, to make analogous
quantities for monochromatic and random waves
correspond in meaning, we have introduced the factor 4
into the definition of Fr’ and the factor 2 into the

quantity Uan/ZH defined earlier (see Appendix).

If we now further define Xp = ugh/g, and write sinh~%
= funcl(x) via Equation (7), then Equation (14)

becomes

oC-)
U2 = N -3/2 5 x 2 P ¢ d 3
rms ~ %8 g X exp { % (;—)‘ } Y uncl(x) b4

«©

a gh func, (x_)
P (16)



Also, from the definition of Hs in terms of the zeroth

moment of the spectrum Equation (12), we have

H o
S —
(Z—) = fo Sﬂ(w) dw
X
5/ 5 _ ¢(;{‘) .
=(xhzfx exp {—7(3;——) Y P dx?
0 P
= gh2? func 5 (x ) 17
p

From Equatioﬁs (16) and (17) we obtain an expression
for the dimensionless transfer function Fr given by

Equation (15):

func2 (x )

T
Fr func 4 (xp) (18)

Thus Fr is a function of xp alone. By expressing Ts

as the ratio of the second and zeroth moments of ST§f)
it can be related to the peak period Tp of the JONSWAP
spectrum given by Equation (12). With the values of

and y given earlier,

Zn _ 1981 T (19)
P

Thus X, is proportional to xp, and it follows that Fr

is a function only of X, .

Values of Fr for a range of values of X have been
calculated by performing numerically the integration
given by Equation (14). An adaptation of a more
general existing computer program described by
Brampton et al (1984) was used, with an integration
step of O.ls and limits of the integration taken
between periods of Q.ls and 5T . The resolution and
limits are ample to give good churacy. The resulting

curve (Fig 1) follows the curve for monochromatic



waves for small values of X but becomes increasingly

larger than it as X, increases.

For simpler graphical use we have plotted UrmsTn/Hs
versus Tn/Tz (Fig 2) where Tn is defined by Equation
(8). Values ofUrmsTn/HS are tabulated against Tn/Tz
in Table 1. For the random wave case it is not
straightforward to obtain asymptotic expressions for
Fr for small and large x,, as was done for
monochromatic waves. Instead we have employed curve-

fitting techniques to obtain an explicit algebraic

expression which fits the curve in Figure 2 closely:

UrmsTn _ 0.25
- 3
Hy (1 + At2)
where
- c11/6
A = [6500 + (0.56 + 15.54t) 6] (20)
and
- Ta L (@)t
T T g
A zZ

Equation (20) fits the JONSWAP curve in Figure 2 to an
accuracy of better than 1% in the range 0< t< 0.55.
Again we have not plotted Equation (20) on Figure 2

because it is indistinguishable from the exact curve.

We have calculated Fr only up to X, = 11.8, ie, Tn/Tz
= 0.55, because for larger values of X, the bottom
velocity is very small. For Tn/Tz = 0.55, Figure 2

gives U T /H = 0.0038, so that
rms n' s

H

U = 0.0069 _S T = 0.
s T at T_/T = 0.55 (21)

This provides an upper bound to velocities for Tn/Tz >

0.55. For example, if HS = 4m, TZ = 45, h = 47.5m,
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PERIOD OF BOTTOM
ORBITAL VELOCITY

g = 9.8lms™2, then T /T, = 0.55 and

= -1
UrmS 0.0069ms™ *.

Although it is clear from the frequency dependence of
the transfer function that the effective period of the
bottom velocity will be larger than that of the wave
elevations, it is less clear how the "effective
period” should be defined. We examine here the period
corresponding to the peak in the spectrum of bottom
orbital velocity. This makes the largest contribution
to the variance Urﬁs’ which is the form in which
wave—~effects often appear in applications to sediment
transport or to forces on structures near the

sea-bed.

We therefore wish to compare the period Tpu at the
peak of the velocity spectrum Su(uD with the period Tp
= Zﬂiuﬁ at the peak of the elevation spectrum Sr$u9.
The maximum of Su(ub is found by expressing Equation
(13) in terms of Fm from Equations (1) and (5), and
differentiating with respect to w. After setting
dSu/du)= 0 and dividing through by Su we obtain:

dFm ; 48

PSS - — ___n
dw S dw
it n

1
— (22)

Making the substitution ¢ = uvuh, Equation (22)

becomes
Lfﬂi&i&=_l_iﬂii? (23)
F dy dx dw S d¢ dw

Substitution of Fm and dFm/dy from Equation (6), dy/dx
from Equation (7), dx/dw from Equation (3), ST]and
dS1/d¢ from Equation (12), and d¢/dw = 1/u§, enables
Equation (23) to be written in the form



P(x) =9’ (24)

where
p(x) = L(2H45) &Y 4 4y -2
1-e™% + 4y &
and
Q¢) = 5¢-% -5 +lﬁ.‘§1 o (1-0) exp [ 2—167 (1-9 2}

The functions Q(¢) vs ¢ and P(x) vs x (using y as
parameter) can be plotted. Then if we denote by x
and 61 the values of x and ¢ which correspond to equal
values of P(x) and Q( ¢), thereby satisfying Equation
(24), we obtain, using the definition of ¢,

T
_pu (fz)% -1
Tp p.4 ¢]_
and (25)
X

x = —1

P ¢2

1

By picking off values of P(x) = Q(¢), and making use
of Equation (19), a plot of Tpu/Tz can be constructed
(Fig 3). TFor small values of Tn/Tz (shallow~water
waves) we find that T tends to T = 1.281 T . As

pu p z
Tn/Tz increases, Tpu/Tz increases first slowly, then
rather rapidly close to Tn/Tz = 0.4, and finally
slowly again for Tn/Tz > 0.5, at which point TPu is in

excess of 1.7 Tz.

Because the curve of T /T wvs T /T is not a simple
pu’ "z n z

shape we have not attempted to fit an algebraic

approximation to it. Values of Tpu/Tz are tabulated

against Tn/Tz in Table 1.

10



EXAMPLES

{ Then for h = 10m, Eq (8) gives Tn = 1.02s, and !
f Tn/Tz

As illustrations consider a monochromatic wave of
height H = 5m, period T = 8s, for two water—depths
h = 10m and 50m.

For h = 10m, Eq (8) gives T = 1.02s, and hence
Tn/T = 0.127. From the "monochromatic" curve in Fig 2

we obtain U T /2H = 0.196, and thus U = 1.92ms™— 1,

For h = 50m the corresponding values are T = 2.26s,
n

T /T = 0.282, UT /2H = 0.038, and U_ = 0.168ms™ L.
n mn m

Now consider a random sea having a JONSWAP spectrum

with HS = 5m and TZ = 8s, in the same water—depths.

oy —y

= 0.204, and thus U = 1.00ms™ L. i {
Tms v
Lo
For h = 50m the corresponding values are Tn = 2.26s,
T /T =0.282, U T /H = 0.087, and
n z rms n' s
U = 0.192ms™ L.
rms

In order to compare the random sea with a
monochromatic wave of height HS and period TZ it is
first necessary to convert the velocity amplitude of
the monochromatic wave to the corresponding
root—mean—square value by Urms = Um//2. Then for

h = 10m the random sea value Urms = 1.00ms™ ! compares
with the monochromatic wave value Urms = 1.36ms™ L.

By contrast, for h = 50m the random sea value

Urms = 0.192ms-1! compares with the monochromatic wave
value Urms = 0.119ms~ 1. Thus in shallow water an
estimate of bottom orbital velocity based on a
rnonochromatic wave of height HS and period Tz will be
a serious overestimate, but in deep water it will be a
serious underestimate. The cross—over point, at which
the monochromatic and random waves give the same Urms’

occurs at a depth given (using Fig 2) by
h = 0.049g TZZ.

11
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SUMMARY

The peak-period of the bottom orbital velocity
spectrum for the random sea with h = 10m, is obtained
from Fig 3 with Tn/Tz = 0.127, for which

Tpu/Tz = 1.296 giving Tpu = 10.4s. The corresponding
value for h = 90m is 10.6s. Neither value is very
different from the peak-period of the surface
elevation spectrum given by Eq (19) as TP = 10.2s.

For a JONSWAP spectrum, which is relatively strongly
peaked, Tpu will be appreciably different from Tp only

for rather short period waves or rather deep water.

Methods have been presented for calculating directly
the bottom orbital-velocity and effective bottom
period of waves of known height and period in water of
depth h. The results are presented graphically (for
visual use), as tables (for computer application by
look-up table), and as explicit algebraic expressions
accurate to 17 (for use on pocket calculators and
micro—-computers). The methods can be summarised as

follows:

1. Results, both for monochromatic and random waves,

are scaled by the natural scale period Tn =
1
(h/g)*.

2. For a monochromatic wave of height H and period T
the amplitude Um of the bottom orbital velocity
can be obtained from the plot of Uan/ZH versus
Tn/T given in Figure 2, or from Table 1 or
Equation (11). These results can be used for

laboratory as well as prototype waves.

3. For a random sea characterised by the significant
wave height HS and zero—crossing period Tz, the
root-mean-square bottom orbital velocity UrmS can
be obtained from the plot of U__ T /H versus

rms n s
Tn/Tz given in Figure 2 or from Table 1 or
Equation (20). This is based on a JONSWAP form

for the elevation spectrum. Results are presented

12



for 0< Tn/Tz< 0.55 which covers the entire range
of practical interest, but for values outside this
range an upper bound to Urms is given by Equation

(21).

4. The rms bottom orbital velocity calculated by
assuming a JONSWAP spectrum (item 3 above) is
larger or smaller than that calculated by assuming
a monochromatic wave of height HS and period Tz
(item 2 above) depending on whether h is larger or
smaller than 0.049g Tz2 respectively. The

difference may exceed 407% in either case.

5. The period Tpu of the peak of the velocity
spectrum is larger than the period TP of the
elevation spectrum, by an amount which can be
obtained from the plot of T /T versus T /T

pu’ "z n
given in Figure 3, or from Table 1. For many
purposes the assumption that the effective period

at the sea-bed is Tp is adequate.

6. Where necessary, use the relation Tp = 1.281 Tz

throughout.
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Table 1:

Values of non—-dimensional bottom orbital velocity for
monochromatic and random (JONSWAP spectrum) waves, and peak-period

of bottom orbital — velocity spectrum.

U,

Sk
n= VL

MONOCHROMATIC JONSWAP SPECTRUM
Tn/T U;?n/ZH'f*, Tn/Tz UrmsTn/Hs Tpu/Tz
0.00 0.250 0.00 0.250 1.281
0.02 0.248 ' 0.02 0.248 1.281
0.04 0.244 0.04 0.245 1.282
0.06 0.237 0.06 0.238 1.283
0.08 0.228 0.08 0.230 1.284
0.10 0.216 0.10 0.219 1.285
0.12 0.202 0.12 0.208 1.286
0.14 0.185 0.14 0.196 1.288
0.16 0.165 0.16 0.172 1.290
0.18 0.143 0.18 0.167 1.292
0.20 0.120 0.20 0.150 1.296
0.22 0.097 0.22 0.134 1.299
0.24 0.075 0.24 0.118 1.304
0.26 0.055 0.26 0.103 1.311
0.28 0.039 0.28 0.088 1.319
0.30 0.027 0.30 0.075 1.328
0.32 0.018 0.32 0.063 1.339
0.34 0.012 0.34 0.052 1.353
0.36 0.007 0.36 0.042 ©1.372
0.38 0.005 0.38 0.033 1.398
0.40 0.003 0.40 0.027 1.448
0.42 0.002 0.42 0.022 1.570
0.44 0.001 0.44 0.017 1.620
0.46 0.000 0.46 0.013 1.653
0.48 0.000 0.48 0.010 1.682
0.50 0.000 0.50 0.008 1.708
0.52 0.000 0.52 0.007 1.731
0.54 0.000 0.54 0.006 1.753
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APPENDIX

Relating Monochromatic and Random Wave Parameters
Confusion can easily arise about the
interrelationships of the various wave parameters in
common use. We clarify here the relationships between

the quantities used in this report.

For a sinusoidal monochromatic wave of height H and

period T, the angular frequency is:

w= 21T, : (A1)
the amplitude is

a = H/2 (A2)

and the variation of the surface elevation n(t) with

time t at a particular point is given by:
n=a sin ut. (A3)

Thus the standard deviation on of the surface is

related to H by:

H=2V2 A4
cn (A4)

The bottom orbital velocity U(t) is given by
U=1U_ sin ot (A5)

where Um is the amplitude of the velocity. The
standard deviation oh of the velocity, more commonly

written as U , is thus:
rms

o EU__=1U/2 (46)

For a random sea the significant wave height HS is

defined as:



H =4 ¢ (A7)

where cn is now the standard deviation of the random
surface elevation r(t). (The rms wave height Hrms is
also sometimes used, and is related to cn'by
H = 2/2 ¢_.) The term "random” is used to

rms n

distinguish a naturally occurring multi-directional
spectrum of waves from a unidirectional monochromatic
sinusoidal wave, rather than in the usual statistical

sense.

The period can be characterised either by the
zero—crossing period Tz or by the angular frequency u%
at the peak of the surface elevation spectrum, leading

to the peak period Tp given by:

T =2%Wuw ; A8
. b (A8)
For any standard shape of spectrum (JONSWAP,
Pierson-Moskowitz, etc) TP is proportional to Tz’
with the constant of proportionality depending on the

chosen spectral shape.

The root-mean-square bottom orbital velocity Urms is

related to the variance cﬁz of the random velocity

vector U(t) by:

"~

v 2=q?2= 'IL 2 - bl et o (A9)
Pnkpes pES o 974 AT -
Iy

If a monochromatic wave of height H and a random sea
of significant height HS have the same variance o 2 of
the surface elevation, then, using eqs (A4) and (A7),
they are related by:

H
s

H= (A10)

If, instead, they have the same variance 9@2 of the

bottom orbital velocity, then, using eqs (A6) and
(A9), they are related by:



U =2 U (ALL)

Thus, using eqs (A2), (Al0) and (All), the random wave
quantity defined in eq (15):

4U
H

Fo= (

rms h
r )2 (P (A12)

s

corresponds to the monochromatic quantity defined in
eq (5):

Similarly the monochromatic quantity Uan/(ZH)

corresponds to the random quantity U__ T /H .
rms n' s

DDB 8/86






