
1 INTRODUCTION 
For the excavation of soil with a high ground water 
level within a cofferdam, seepage water flows 
through the soil under a hydraulic head difference, 
H, between the up- and downstream sides of a sheet 
pile wall, and seepage failure is often a problem. 
Seepage failure sometimes occurs even when a cof-
ferdam has been expertly constructed based on a cur-
rent design method. There still remain various short-
falls in the theory of the seepage failure of soil. 

In experiments on 2D seepage failure of soil, the 
discharge, Q15, increases linearly with increasing H 
until a certain value, Hd, i.e., the hydraulic head dif-
ference at which the H− Q15 curve diverts from line-
arity. Q15 is the quantity of discharge which is trans-
lated to the value at 15 degrees Centigrade. At 
almost the same point of Hy as Hd, the soil surface 
begins to settle on the upstream side and rise on the 
downstream side. Hy is defined as the onset of soil 
deformation. The experimental results lead to the in-
teresting conclusion that Hy = Hd (Tanaka et al. 
1999). Soil particles move from up- to downstream 
around the bottom tip of a sheet pile wall. As H in-
creases beyond Hd, Q15 becomes larger with increas-
ing H more steeply than before, and the ground final-
ly collapses at the hydraulic head difference at 
failure, Hf. The ground is subjected to irreversible 
damage and cannot be restored when H increases 
beyond Hy. So, the head difference, H, must be de-
signed to not be above Hy. The hydraulic head dif-

ferences at deformation in an experiment, Hy (= Hd), 
are nearly equal to the theoretical critical hydraulic 
head differences based on the prismatic failure con-
cept (pfc), Hc, for the same cases. 

In this paper, the prismatic failure concept (pfc) is 
first presented, which is one of the conventional 
methods for calculating soil excavation safety 
against seepage failure. The non-dimensional formu-
lization of the critical hydraulic head difference 
against seepage failure, Hc, is discussed especially in 
two dimensions. In the discussion, the cases of 2DC, 
3D, and AXS flow conditions are also considered. If 
the non-dimensional formulization becomes availa-
ble, the critical hydraulic head differences, Hc, can 
be precisely obtained from conditions of 2D, 2DC, 
3D, and AXS flows, as well as information about the 
total depth of soil, penetration depth of sheet piles, 
and plane shapes of a cofferdam without performing 
complex calculations. 

2 FLOW CONDITIONS 

It has been found that the aspects of seepage failure 
of soil (with a high ground water level) are markedly 
influenced by the flow conditions (Tanaka et al. 
2009). When excavating a large area with a high 
ground water level, as shown in Figure 1, the seep-
age failure of soil in front of a sheet pile wall is a 
problem in two dimensions, which is designated as 
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two-dimensional flow (2D flow). In the excavation 
of soil between double sheet pile walls, as shown in 
Figure 2, seepage water concentrates into the soil 
two-dimensionally from the outside, which is called 
two-dimensional concentrated flow (2DC flow). The 
2DC flow of water lowers the safety factor regarding 
the seepage failure of soil. When the longitudinal 
length of the double sheet pile walls is small, as 
shown in Figure 3, seepage flow concentrates three-
dimensionally into soil surrounded by a rectangular 
wall, which is called three-dimensional concentrated 
flow (3D flow). The 3D flow condition further low-
ers the safety factor for seepage failure. An axisym-
metric seepage flow through soil within a cylindrical 
wall is often used to model such a three-dimensional 
flow (Nagai et al. 2016). The cylindrical wall condi-
tion brings about axisymmetrically concentrated 
flow (AXS flow), as shown in Figure 4. The seepage 
flow during the excavation of soil in a cylindrical 
shaft with a high ground water level is just the con-
dition of the AXS flow. 

In this paper, we discuss the non-dimensional 
formulization of the critical hydraulic head differ-
ence for the seepage failure issues of soil in two di-
mensions. The method of calculating stability 
against the seepage failure of soil –the prismatic 
failure concept in two dimensions (pfc-2D)– is pre-
sented, and the theory of non-dimensional formuliza-
tion of the critical hydraulic head difference is dis-
cussed. The pfc-3D and pfc-AXS are not made 
reference to, but whether or not the non-dimensional  
formulization is appropriate is discussed regarding 
all flow conditions: 2D, 2DC, 3D, and AXS flows. 

 
Figure 1. Two dimensional flow (2D flow). 
 

 
Figure 2. Two-dimensional concentrated flow (2DC flow). 

 

 
Figure 3. Three-dimensional flow (3D flow). 
 

 
Figure 4. Axisymmetric flow (AXS flow). 

3 PRISMATIC FAILURE CONCEPT IN TWO 
DIMENSIONS 

The prismatic failure concept (Tanaka 1966, Tanaka 
& Verruijt 1999) is an extension of Terzaghi’s 
method (Terzaghi 1943). In the prismatic failure 
concept, we assume that the body of soil lifted by 
seepage water has the shape of a prism with a certain 
height and width adjoining a sheet pile wall. Let us 
consider, for instance, the prism OABC in homoge-
neous soil, as shown in Figure 5. As we can see in 
Figure 6, the rise of the prism is resisted by the sub-
merged weight, W’, and frictions, FL and FR, on the 
left and right sides, respectively. The safety factor Fs 
with respect to the rise of the prism, which is sub-
jected to the total excess pore water pressure on its 
base, Ue, is given as: 
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The values on the right side in Eq.(1) are expressed 
as: 
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in which γ’ is the buoyant unit weight of sand, l is 
the height of a prism, x0 and z0 are the coordinates of 
the bottom left point O of the prism (see Fig. 6), ue is 
the excess pore water pressure at the bottom of the 
prism, σx’ is the horizontal effective stress, d1 is the 
angle of friction on the left-hand side between the 
sheet pile wall and sand, and d2 is the angle of fric-
tion on the right-hand side between sands. 
 

 
Figure 5. Soil in front of sheet piles. 
 

 
Figure 6. Forces acting on a prism. 

For the hydraulic head difference (H) between up- 
and downstream sides, safety factors (Fs) are calcu-
lated for all of the prisms in front of sheet piles. The 
safety factor (Fs) takes the minimum value (Fs min) 
for a certain prism among all of the prisms. The cal-
culation is iterated for another hydraulic head differ-
ence, H, until the condition whereby Fs min becomes 
nearly equal to 1.0. The head difference H = Hc at 
which the condition Fs min = 1.0 is applied is defined 
as the critical hydraulic head difference. This ap-
proach is based on the minimum criterion by Kälin 
(1977). The prism with a value of Fs min = 1.0 among 
all of the prisms for H = Hc is defined as the critical 
prism. We could say that the critical prism is sepa-

rated from the underlying soil at its base when H ex-
ceeds Hc. Safety factors using the prismatic failure 
concept when considering friction, FPF, are dis-
cussed here. The above approach of pfc was ex-
plained only for 2 dimensions, but pfc-3D (Tanaka et 
al. 2012) and pfc-AXS (Tanaka et al. 2000) can also 
be defined in the same way. 

4 NON-DIMENSIONAL FORMULIZATION OF 
THE CRITICAL HYDRAULIC HEAD 
DIFFERENCE 

Let us consider the non-dimensional formulization 
of the critical hydraulic head difference against the 
seepage failure of soil in two dimensions, as shown 
in Figure 1. We assume that the real and test soils in 
two dimensions are geometrically similar, consisting 
of the same material (sand) and under the same con-
ditions. Here, the real soil is referred to as the proto-
type, and the test soil as the model. 

4.1 Theory of non-dimensional formulization based 
on pfc-2D 

Let us consider the two-dimensional x-z coordinate 
system. The basic equation of seepage flow through 
soil with an anisotropic permeability is given as: 
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where h is the total hydraulic head, and kxx, kzz, and 
kxz are the coefficients of permeability tensor in two 
dimensions. Referring to the ratio of corresponding 
lengths of the model and prototype as lr, we have the 
relationship: 

Lmod = lr Lpro (7a) 
where L is an arbitrary length corresponding to each 
soil, the subscript “mod” represents model or test 
soil, “pro” is the prototype or real soil, and the scale 
lr is the same for the horizontal x and vertical z direc-
tions. So the coordinates xmod and zmod in test soil 
correspond to xpro and zpro in the real soil as follows, 
respectively: 

xmod = lr xpro , (7b) 

zmod = lr zpro . (7c) 
In the case of a homogeneous soil, excess pore water 
pressure (expressed in water head), he, on the bottom 
of a prism is represented as follows, because the par-
tial differential equation (Eq.(6)) is linear with re-
spect to the water head, h: 

he mod = lr he pro . (8) 
The excess pore water pressure, ue, means a net 
pressure which actually causes a seepage flow, and is 



represented as follows, using the value expressed in 
the water head, he: 

ue = γw he = ρw g he , (9) 
so the value of ue is represented as, using Eqs.(8) and 
(9): 

ue mod = lr ue pro (10) 
in which γw is the unit weight of water, ρw the densi-
ty of water, and g the acceleration of gravity. A pres-
sure acts on an area, so it must be represented as a 
square of the length ratio, lr

2, but is given as lr in 
Eq.(10). This is because we consider a unit depth 
(perpendicular to the page), and one side of the area 
is a unit depth. The same can be said of the stresses 
discussed below (see Eqs.(12) and (17)). The vertical 
effective stress at point z, σz’, is calculated by: 

σz’ = γ’ z − ue (11) 
and the following relationship is obtained for the 
corresponding points from Eqs.(7c), (10), and (11): 
σz’mod = γ’mod z mod − ue mod = lr (γ’pro z pro − ue pro) = lr σz’pro . 

 (12) 
The real and test soils consist of the same sand, un-
der the same conditions, and under the same gravita-
tion, so the following relationships are applied: 

γ’ = γ’mod = γ’pro , (13a) 

γ’ = ρ’ g ,  γ’mod = ρ’mod g ,  γ’pro = ρ’pro g , and (13b) 

ρ’ = ρ’mod = ρ’pro (13c) 
where γ’ and ρ’ are the unit weight and density of 
soil, respectively. 

The horizontal effective stress σx’ is given as, us-
ing the coefficient of a lateral earth pressure K: 

σx’ = Kσz’. (14) 
The coefficients of earth pressure K values are given 
as Kp for the passive state and K0 for the state at rest 
according to the states of soil. These values are giv-
en as follows, by Rankin and Jáky, respectively: 
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K0 = 1 − sinφ’ (15b) 
in which φ’ is the internal friction angle with respect 
to the effective stress. Assuming that the real and 
test soils are the same and under the same conditions 
(or φ’ is the same for the two soils), the relation: 

Kmod = Kpro (16) 
is applied. From Eqs.(12), (14), and (16), we can 
have: 

σx’mod = lr σx’pro . (17) 

Now, we consider Eq.(1) for calculating the safe-
ty factor against seepage failure of the real and test 
soils. For the corresponding buoyant weights of 
prisms W’mod and W’pro are related to each other: 

W’mod = lr
2 W’pro . (18) 

A buoyant weight of a prism acts in a volume, so it 
must be represented as the cube of the length ratio, 
lr

3, but is given as lr
2 in Eq.(18). This is because we 

consider a unit depth (perpendicular to the page), 
and one side of the prism concerned is a unit depth. 
The frictional forces acting on the left and right-hand 
sides of the prism, FL and FR, respectively, are the 
integrals of (σx’ tand ) along those sides. If the angles 
of friction on the left and right-hand sides, d1 (be-
tween the sheet pile wall and sand), and on the right-
hand side, d2 (between sands), are the same for the 
real and test soils, respectively, the following equa-
tions are obtained, using Eqs.(4), (5), (12), and (14): 

FL mod = lr
2 FL pro , and (19) 

FR mod = lr
2 FR pro (20) 

in which d1 = 2φ’/3 and d2 = φ’ are used in our calcu-
lation (Yamaguchi 1976, Soil Engineering Library 
1975). Next, we consider the total excess pore water 
pressure acting on the prism, Ue. The value of Ue is 
an integral of the excess pore water pressure, ue, on 
the bottom of the prism, so the following relation-
ship is obtained, using Eqs.(3), (7b), and (10): 

Ue mod = lr
2 Ue pro . (21) 

For the corresponding prisms of the real and test 
soils, safety factors against seepage failure are relat-
ed to each other: 
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Thus, the safety factors against seepage failure are 
the same for the real and test soils. The critical 
prisms, which give a safety factor (Fs) a minimum 
value (Fs min) and 1.0 simultaneously among all 
prisms, are located at the same position for both 
soils. 

As for the critical hydraulic head difference, we 
have: 

Hc mod = lr Hc pro . (23) 
For the total depth of soil, T, and the penetration 
depth of sheet piles, D, we have the relations, using 
Eq.(7a): 

Tmod = lr Tpro ,  Dmod = lr Dpro , (24) 
so, the relationships Dmod/Tmod = Dpro/Tpro, Hmod/Dmod 
= Hpro/Dpro, and Hmod/Tmod = Hpro/Tpro are true, and 
the non-dimensional values of D/T, H/D, and H/T 



are the same for the two soils. From a theoretical 
point of view, the relationship between a non-
dimensional value, D/T, and normalized values 
Hγw/Dγ’ and Hγw/Tγ’ must be the same for the real 
and model soils. The normalized values of Hγw/Dγ’ 
and Hγw/Tγ’ are given as the non-dimensional values 
H/D and H/T divided by another non-dimensional 
value, γ’/γw, which is the critical hydraulic gradient 
of soil subjected to an upward seepage flow. We 
should be aware that the relation γ’mod /γw = γ’pro /γw 
is used to obtain the equations above. 

The aforesaid results will be obtained with the 
following: 
(1) We consider the real and test soils in two dimen-
sions which are geometrically similar, consisting of 
the same material (sand) and under the same condi-
tions. 
(2) The partial differential equation (6) is linear with 
respect to the water head, h. 
(3) The equations (7c), (10), (11) and (14) for repre-
senting respective pressures (and effective stresses) 
acting on the prisms of the test and real soils are lin-
ear to the scale of a length, lr, because one side of the 
prism concerned is a unit depth (perpendicular to the 
page). 

4.2 Theoretical consideration about buoyant unit 
weight of soil γ’ 

Here, we consider the case where the real and test 
soils have the same size (or lr = 1.0) but different 
buoyant unit weights, i.e.: 

Lmod = Lpro , (25a) 

xmod = xpro , (25b) 

zmod = zpro , and (25c) 

γ’mod = γr’ γ’pro (26) 
in which γr’ is the ratio of corresponding buoyant 
unit weights of the model and prototype, γr’ = γ’mod 
/γ’pro. 

As a matter of convenience, we suppose that the 
real soil has γ’pro and the test soil has a different val-
ue, γ’mod (= γr’ γ’pro). As for the model soil, we have 
the following relations from Eqs.(2) and (11), using 
Eqs.(25c) and (26): 

W’mod = γ’mod b l = γr’ γ’pro b l = γr’ W’pro , (27) 

σz’mod = γ’mod z mod − ue mod = γr’ γ’pro z pro − ue mod . (28) 
Assuming that the values of h and γ’ are independent 
from each other, the total hydraulic head, h, is 
thought to be given as follows for the corresponding 
(or the same) points in two soils: 

he mod = γr’ he pro . (29) 
From Eqs.(9) and (29), we can obtain: 

ue mod = γr’ ue pro . (30) 
The value of σz’mod is derived as follows, using 
Eqs.(28) and (30): 
σz’mod = γr’ γ’pro z pro − ue mod = γr’ γ’pro z pro − γr’ ue pro = 

γr’(γ’pro z pro − ue pro) = γr’σz’pro . (31) 
The frictional forces acting on the left and right-

hand sides of the prism, FL and FR, respectively, are 
the integrals of (σx’ tand ) along those sides. If the 
coefficients of friction are the same for real and test 
soils, the following equations are obtained from 
Eqs.(4), (5), (14), and (31), in a similar way as in 
Sec.4.1: 

FL mod = γr’ FL pro , and (32) 

FR mod = γr’ FR pro . (33) 
The Ue value is an integral of the excess pore water 
pressure ue on the bottom of the prism, so the fol-
lowing relationship is obtained, using Eqs.(3), (25b), 
and (30): 

Ue mod = γr’ Ue pro . (34) 
For the corresponding prisms of the real and test 
soils, safety factors against seepage failure are relat-
ed to each other: 
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Thus, the safety factors against seepage failure are 
the same for the real and test soils, in which the 
buoyant unit weights (γ’) are different. The critical 
prism, which gives a safety factor (Fs) a minimum 
value (Fs min) and 1.0 simultaneously among all of 
the prisms, is located at the same position for each soil. 

As for the critical hydraulic head difference, Hc, 
we have: 

Hc mod = γr’ Hc pro. (36) 
So, the values of H/D and H/T are not the same for 
the two soils, respectively, in this case. The non-
dimensional and normalized values Hcγw/Tγ’ and 
Hcγw/Dγ’ are given as follows for the model and real 
soils, respectively: 
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Figure 7. Terzaghi’s method. 
 

 
Figure 8. Terzaghi’s prism of failure in the case of homogene-
ous soil. 
 
Values of Hcγw/Tγ’ and Hcγw/Dγ’ are the same for the 
two soils, respectively. Therefore, these values are 
thought to be appropriate as non-dimensional and 
normalized values. When deriving these equations in 
this Section 4.2, we use the relations of Tmod = Tpro 
and Dmod = Dpro . 

4.3 Formulization of Hc based on Terzaghi’s 
method 

In this section, why we use the “D/T − Hcγw/Tγ’ 
curves” for the seepage failure issues of soil in front 
of sheet piles is discussed. Let us first consider Ter-
zaghi’s method, which is said to effectively represent 
the experimental results. Terzaghi (1943) assumed, 
from experimental evidence, that the body of soil ad-
jacent to the sheet piles with a width D/2 and depth 
D0, as shown in Figure 7, is lifted up by seepage wa-
ter and collapses. The rise of the prism is resisted by 

its weight and side friction. It is assumed that, at the 
instant of failure, the effective stress on the sides of 
the prism and the corresponding frictional resistance 
are practically zero. Therefore, the prism rises as 
soon as the total excess pore water pressure, Ue, on 
its base, OA, becomes equal to the submerged 
weight of the prism, W’. At a given hydraulic head, 
H, the safety factor against the rise of a prism, Fs, 
depends on the value of D0. The minimum value of 
Fs among all of the D0 values is the safety factor of 
the soil (Terzaghi 1943). For the single sheet pile 
wall condition, as illustrated in Figure 8, an investi-
gation revealed that the bottom of the critical prism 
coincides with the lower edge of the sheet piles 
(Terzaghi & Peck 1948), and the Fs value is repre-
sented as: 
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where W’ is the buoyant weight of the prism, Ue is 
the total excess pore water pressure acting on the 
base of the prism, γ’ is the buoyant unit weight of 
soil, γw is the unit weight of water, ha (= C0 H) is an 
average value of excess pore water pressure head 
acting on the bottom of the prism, and C0 is a value 
depending on the hydraulic, geometric, and soil con-
ditions. 

Substituting Fs = 1.0 into Eq.(39), we find the 
critical hydraulic head difference by Terzaghi Hc as: 
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It was found that Eq.(40) effectively represents the 
experimental results (Tanaka 1996, Tanaka & Ver-
ruijt 1999). So, Eq.(40) can be utilized for represent-
ing the non-dimensional formulization of the Hc val-
ue. 

4.3.1 For soil of an infinite depth 
Here, we consider the case where the lower impervi-
ous boundary is very deep, i.e., the soil is of an infi-
nite depth. It means that the total depth of soil has no 
influence on seepage failure phenomena. In this 
case, dividing both sides of Eq.(40) by D for non-
dimensional, and by γ’/γw for normalized: 
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where C0 is a constant. Eq.(41) shows that, for 2D 
soil of an infinite depth, only one non-dimensional 
and normalized value, Hcγw/Dγ’ (= Const.), is given. 
 



 
Figure 9. Notation of 2D flow for excavation case 
 

Figure 10. 2D flow 
 

Figure 11. 2DC flow 
 
 
4.3.2 For soil of a finite depth 
Here, we consider the case where the lower impervi-
ous boundary is located at a finite depth, i.e., the soil 
is of a finite depth. It means that the seepage flow is 
restricted to the part of soil around/under sheet piles. 
In this case, it has been found that the total depth of 
soil has a marked effect on seepage failure phenom-
ena (Tanaka & Verruijt 1999). In this case, dividing 
both sides of Eq.(40) by T for non-dimensional, and 
by γ’/γw for normalization: 
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where C0 is a function of D/T. It can be found from 
Eq.(42) that for 2D soil of a finite depth, a non-
dimensional and normalized relationship (or curve), 
D/T − Hcγw/Tγ’, is obtained. 

4.3.3 Non-dimensional formulization 
The prismatic failure concept (pfc) is an extension of 
Terzaghi’s method, so the same relationships (or 
Hcγw/Dγ’ = Const. for an infinite depth and D/T − 
Hcγw/Tγ’ curve for a finite depth) can be used for 
representing analytical results based on pfc. 

From a physical point of view, the non-
dimensional value D/T is the penetration ratio of a 
sheet pile wall, and Hcγw/Dγ’ and Hcγw/Tγ’ are the 
non-dimensional values of Hc/D and Hc/T, which are 
normalized by another non-dimensional value, γ’/γw, 
respectively. The value of γ’/γw is a critical hydraulic 
gradient against boiling of a one-dimensional soil 
subjected to an upward seepage flow. 

The above discussion is only true for a no-
excavation case (d = 0), and the excavation ratio 
d/(D+d) is also added as a new parameter for the 
case of excavation (d > 0), as shown in Figure 9. The 
value of d is the excavation depth on the down-
stream side. 

In the above discussion, only a discussion on the 
2D flow case (see Fig. 10) was made. In the case of 
2DC and AXS flow (see Figs. 11 and 13), the new 
parameters of the ratio of a half breadth of double 
sheet piles (b) to the penetration depth of sheet piles 
(D), b/D, and the ratio of the radius of circular wall 
(R) to D, R/D, can be added, respectively, for a no-
excavation case (d = 0). The excavation ratio 
d/(D+d) should also be added as a parameter for an 
excavation case (d > 0). The values of b and B (= 2b) 
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are the half and total breadth of double sheet pile 
walls, respectively. 

In the case of 3D flow (see Fig. 12), another ratio, 
W/B, relating to the plane shape should be added as 
well as the ratio of b/D, where B (= 2b) and W (= 
2w) are lengths of the short and long sides of a rec-
tangle in a plane shape of a 3D cofferdam, respec-
tively. 

As shown in Figures 10 to 12, L is the distance 
between the sheet pile wall and the impervious left 
or right-hand side boundary, which is taken as an in-
finite boundary. 

4.4 Appropriateness of non-dimensional 
formulization of Hc for seepage failure of soil 

Let us now discuss whether or not the non-
dimensional formulization of Hc for the seepage 
failure of soil is appropriate. With respect to the 2D, 
2DC, 3D, and AXS flows as shown in Figures 10 to 
13, FEM (Finite Element Method) seepage flow and 
stability against the seepage failure of soil were ana-
lyzed for real, 1/50 model, and 1/100 model soils. As 
an example, the real soil has the sizes of L = 40 m, T 
= 20 m, D = 10 m, t = 0 mm, d = 0 m, and γ’/γw = 
1.0, where L is the distance between the sheet pile 
wall and the impervious left or right-hand side 
boundary, T is the total depth of soil, D and t are the 
penetration length and thickness of the sheet pile 
wall, respectively, d is the excavation depth down-
stream, γw is the unit weight of water, and γ’ is the 
buoyant unit weight of soil. We use the following 
notation for some flow conditions: B (= 2b) is the 
breadth of double sheet pile walls under the 2DC 
flow condition, R is the radius of circular wall in an 

axisymmetric flow under the AXS flow condition, 
and B (= 2b) and W (= 2w) are the lengths of short 
and long sides of the rectangular wall, respectively 
(in the plane shape) under the 3D flow condition. As 
an example of real soil, these values have the magni-
tudes of B = 20 m, R = 10 m, and W = 40 m. The 
model soils correspond to the actually tested soils, 
i.e., the 1/50 models to 2D, 2DC, 3D, and AXS test 
soils, and 1/100 models to H2D, H2DC, H3D, and 
HAXS test soils. Here, for instance, the H2D test 
means a half model of the 2D seepage failure exper-
iment. The authors have already conducted 2D, 2DC, 
3D, AXS, and H2D experiments in their laboratory. 

Here, the critical hydraulic head differences, Hc, 
obtained by the numerical analyses are considered. 
In the two-dimensional case, analyses were conduct-
ed using a Fortran program FEMNESD7 for FEM 
seepage flow with 4CST elements (Desai and Abel, 
1972), and Fortran program SEEPFL57 for the sta-
bility against seepage failure based on the pfc 2D. In 
the axisymmetric case, FENESYD3 for FEM seep-
age flow with 4CST elements, and SEEPFL57 for 
stability against seepage failure based on the pfc 
AXS were used, and in the three-dimensional case, 
FEMSEE6E for seepage flow with iso-parametric 
elements composed of 27 nodes, and SEEPFL67 for 
stability against seepage failure. These programs, not 
coupled, were coded in the authors’ Laboratory. 

As for the 2D flow condition, Table 1 (a) shows 
the values Hc and those non-dimensional values 
Hcγw/Tγ’, in the cases of the 2D real (prototype), 2D 
test (1/50 model), and H2D test (1/100 model) soils. 
Table 1 (a) shows that the Hcγw/Tγ’ values are almost 
the same for real, 1/50, and 1/100 models. It has 
been verified that the above theory of the non-

            
Figure 12. 3D flow (1/4 of a 3D cofferdam)                            Figure 13. AXS flow (1/4 of a circular wall) 
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dimensional formulization is true, and the non-
dimensional and normalized value Hcγw/Tγ’ is ap-
propriate under the 2D flow condition. 

For the 2DC, 3D, and AXS flow conditions, Ta-
ble 1 (b), (c), and (d) show the values Hc and those 
non-dimensional values Hcγw/Tγ’, in the cases of the 
prototype, 1/50, and 1/100 models, respectively. Ta-
ble 1 (b), (c), and (d) show that the Hcγw/Tγ’ values 
are almost the same for real, 1/50, and 1/100 models. 
It has been verified that the above theory of the non-
dimensional formulization is true, and the non-
dimensional and normalized value Hcγw/Tγ’ is also 
appropriate for the 2DC, 3D, and AXS flow condi-
tions. 

To validate a non-dimensional formulation for 
buoyant unit weight γ’, the analytical results with 
γ'/γw = 0.86077 for 2D, 2DC, 3D, and AXS flows are 
shown in Table 1 (a), (b), (c), and (d), respectively. 
The notation (B) in the left column of Table 1 shows 
the case where γ’/γw = 0.86077 is used in the calcula-
tion. With respect to the value of γ’, the above theory 
of the non-dimensional formulization is true, and the 
non-dimensional and normalized value Hcγw/Tγ’ is 
also appropriate for the 2D, 2DC, 3D, and AXS flow 
conditions. 

The above discussion is restricted to the cases of t 
= 0 and d = 0, where t is the thickness of the sheet 
pile wall, and d is the excavation depth on the down-
stream side. However, the same thing is said for the 
cases where t and/or d has a certain value, as long as 
we consider the prototype and model soils which are 
geometrically similar, consisting of the same materi-
al (sand), and under the same conditions. 

5 CONCLUSIONS 

In this paper, the prismatic failure concept was first 
presented, which is one of the conventional methods 
for designing soil excavation safety against seepage 
failure. The non-dimensional formulization of the 
critical hydraulic head difference against seepage 
failure, Hc, was discussed especially in two dimen-
sions. In the discussion, the flow conditions such as 
two-dimensional (2D), two-dimensional concentrat-
ed (2DC), three-dimensional (3D), and axisymmetric 
(AXS) flow conditions were considered. When the 
prototype (real) and model (test) soils are geometri-
cally similar, we discussed whether or not the non-
dimensional formulization for Hc is possible. The 
following results were obtained: 
(1) Non-dimensional values of D/T, and normalized 
values Hcγw/Dγ’ and Hcγw/Tγ’ are the same for real 
and model soils that are geometrically similar, where 
D is the penetration depth of the sheet pile wall, T is 
the total depth of soil, and γ’ and γw are the buoyant 
unit weight of soil and unit weight of water, respec-
tively. 
 (2) Even if the buoyant unit weights of prototype 
and model soils are different, the same non-
dimensional values D/T, and the same non-
dimensional and normalized values Hcγw/Dγ’ and 
Hcγw/Tγ’ are also obtained. 
(3) The non-dimensional equations of Hc for the in-
finite and finite depths of 2D soils are as follows, 
based on Terzaghi's method: 

Table 1. Hc and Hγw/Tγ’ values in the cases of the 2D, 2DC, 3D and AXS flows for the real (prototype), 1/50, and 1/100 model soils __________________________________________________________________________________ 
     Hc     γ’    γw    T    D   B/2   W/2   Hcγw/Tγ’        __________________________________________________________________   

       m     kN/m3   kN/m3   m   m   m   m ______________________________________________________________________ 
(a) 2D __________________________________________________________________________________ 
2Dreal     29.638990  9.80000  9.80000  20.00  10.00         1.4819495 
2Dmodel    0.5927794  9.80000  9.80000  0.400  0.200        1.4819485 
2Dmodel (B)   0.5102466  8.43555  9.80000  0.400  0.200         1.4819481 
H2Dmodel    0.2963904  9.80000  9.80000  0.200  0.100        1.4819520 __________________________________________________________________________________ 
(b) 2DC __________________________________________________________________________________ 
2DCreal     22.293860  9.80000  9.80000  20.00  10.00  10.00      1.1146930 
2DCmodel    0.4458785  9.80000  9.80000  0.400  0.200  0.200     1.1146963 
2DCmodel (B)  0.3837988  8.43555  9.80000  0.400  0.200  0.200     1.1146961 
H2DCmodel   0.2229396  9.80000  9.80000  0.200  0.100  0.100     1.1146980 __________________________________________________________________________________ 
(c) 3D __________________________________________________________________________________ 
3Dreal     16.315670  9.80000  9.80000  20.00  10.00  10.00  20.00  0.8157835 
3Dmodel    0.3263146  9.80000  9.80000  0.400  0.200  0.200  0.400  0.8157865 
3Dmodel (B)   0.2808819  8.43555  9.80000  0.400  0.200  0.200  0.400  0.8157867 
H3Dmodel    0.1631568  9.80000  9.80000  0.200  0.100  0.100  0.200  0.8157840 __________________________________________________________________________________ 
(d) AXS __________________________________________________________________________________ 
AXSreal    15.506710  9.80000  9.80000  20.00  10.00  10.00      0.7753355 
AXSmodel    0.3101349  9.80000  9.80000  0.400  0.200  0.200     0.7753373 
AXSmodel (B)  0.2669548  8.43555  9.80000  0.400  0.200  0.200     0.7753372 
HAXSmodel   0.1550672  9.80000  9.80000  0.200  0.100  0.100     0.7753360 __________________________________________________________________________________ 
 (B): Biwa Lake sand 3 (γ’/γw = 0.86077) 
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for soil of a finite depth in two dimensions, where C0 
is a value depending on hydraulic, geometric, and 
soil conditions. C0 is a constant for soil of an infinite 
depth, and is a function of D/T for soil of a finite 
depth. 
(4) Similar relationships are true for 2DC, 3D, and 
AXS flow conditions. Some non-dimensional pa-
rameters showing the shape of a cofferdam should 
be added to describe the excavation cross-sectional 
shapes. 
(5) Numerical analyses show that the non-
dimensional and normalized values Hcγw/Tγ’ are the 
same in the cases of the prototype, 1/50, and 1/100 
models for the 2D, 2DC, 3D, and AXS flow condi-
tions, respectively. 

The above discussion is restricted to the cases of t 
= 0 and d = 0. However, the same thing is said for 
the cases where t and/or d has a certain value, as 
long as we consider the prototype and model soils 
which are geometrically similar, consisting of the 
same material (sand), and under the same conditions. 
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