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Abstract 
It is widely recognised that coastal flood events can arise from combinations of extreme waves and sea 
levels. For flood risk analysis and the design of coastal structures it is therefore necessary to assess the joint 
probability of occurrence of these variables. Traditional methods have involved the application of joint 
probability contours (JPC), defined in terms of extremes of the sea conditions, that can, if applied without 
correction factors, lead to the underestimation of flood risk and under design of coastal structures. This 
paper describes the application of a robust multivariate statistical model to analyse extreme offshore waves, 
wind and sea levels around the coast of England. The approach described here is risk-based in that it seeks 
to define extremes of response variables directly, rather than the joint extremes of the sea conditions. The 
output of the statistical model comprises a Monte-Carlo simulation of extreme events. These distributions of 
extreme events have been transformed from offshore to the nearshore using a statistical emulator of a wave 
transformation model. The resulting nearshore extreme sea condition distributions have the potential to be 
applied for a range of purposes. The application is demonstrated using two structures located on the South 
Coast of England. 
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Notations 
X Vector of sea condition variables 

fX Joint density of X 

Z Random variable for the response variable, eg. Overtopping rate 

S Deepwater wave steepness 

Hs Significant wave height 

Tm Mean wave period 

Te Energy period, used in wave overtopping calculations 

Y X transformed onto Laplace Scales 

w Vector of residuals from fitted regression model 

a Vector of parameters from the fitted regression model 

b Vector of parameters from the fitted regression model 

v Threshold used in the fitting of the regression model 

1. Introduction 
The UK has a long history of coastal flooding (Haigh et al 2015). The Winter of 2013/2014 further highlighted 
the threat to the UK posed by coastal flooding . From December through to February a series of low 
pressure weather systems crossing the country bought unprecedented levels of disruption, caused by 
flooding, to large parts of the country. Flooding from multiple sources was in evidence as mainline railway 
infrastructure was severely damaged and large numbers of properties were inundated. Some properties, 
notably on the Somerset Levels, experienced inundation lasting over a month. 

In response to this flooding the government implemented a series of initiatives, including collation of 
information relating to the state of flood defences by the military and obtaining improved information on the 
national level of flood risk. As part of this process it was recognised that improved information relating to the 
analysis of coastal flood risks was required. 

It is well-known that coastal flooding in England arises as a combination of extreme sea levels and wave 
conditions occurring together and consideration of extremes of their joint likelihood of occurrence is 
important (Bruun and Tawn, 1998, Hawkes et al, 2002, Defra/Environment Agency, 2005). The Environment 
Agency (EA) has produced a national coastal flood boundary conditions dataset that provides industry with 
return period estimates of extreme sea levels around the coastline of the UK, (Environment Agency, 2011a). 
Information relating to extreme wave conditions and their joint likelihood of occurrence with extreme sea 
levels is however, also required to undertake coastal flood risk analysis and to support the design of coastal 
structures that protect critical infrastructure, including nuclear facilities. 

Traditional approaches to joint probability analysis that use joint probability contouring (JPC) methods are 
known to have limitations that can result in an underestimation of flood risk, or the under-design of structures 
(HR Wallingford/Lancaster University, 1998, Hawkes et al., 2002). This study, undertaken for the EA, 
describes the application of a statistically robust multivariate analysis of offshore extreme waves, sea levels 
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and wind speeds around the coastline of England. The output of the multivariate analysis is a Monte-Carlo 
simulation of extreme offshore sea conditions. Whilst this analysis has been undertaken offshore, the results 
have been translated to the nearshore using a combination of a wave transformation model and a statistical 
emulation method that significantly increases computational efficiency. It is envisaged the resulting outputs 
from the study can potentially be used for a range of purposes, including national and local-scale flood risk 
analysis and future climate change impact assessments.  

To understand the motivation for the new approach adopted here, the method applied in current practice has 
been reviewed in Section 2. Section 3 goes on to describe the study area and data sets. The multivariate 
and wave transformation methods are described in Sections 4 and 5. An example application of the 
methodology to estimate overtopping rates at a location on the south coast is described in Section 6. Finally, 
a discussion and conclusions are provided in Sections 6 and 7, respectively. 

2. Background and limitations of current practice 
2.1. Background 
There are two distinct joint probability approaches in widespread use in coastal engineering practice in the 
UK, (Defra/Environment Agency, 2005). These two approaches comprise a simplified method that involves 
the use of joint probability contours (JPC) and a robust risk-based statistical method. Both approaches are 
implemented within the widely-used JOIN-SEA software system (HR Wallingford/Lancaster University, 1998, 
Hawkes et al, 2002). 

It is of note however, the practice of deriving and applying JPC’s has known limitations (HR Wallingford, 
1998, Hawkes et al., 2002). 

The JPC method is motivated by the traditional deterministic univariate design framework that specifies 
structures are to be designed to “withstand a 100 year (for example) design event”. Where the design event 
is defined in terms of the loading or forcing variables. The underpinning quantity of interest in this type of 
analysis is the probability (or return period) of failure of the structure, defined either through serviceability 
failure or failure of the ultimate limit state (Melchers, 1999). Unfortunately, this traditional framework does not 
translate well to the coastal environment, where the hydraulic loading is defined by multiple sea condition 
variables. There are three main reasons for this. Firstly, there are multiple definitions of return period that can 
be applied to the case when the loading is multivariate and hence there is ambiguity associated with a 
multivariate return period. This is in contrast to the univariate case. In addition, within any specified definition 
of a multivariate return period, there are an infinite number of “design events”, lying on a specified contour 
and hence no unique “design event”. Moreover, in general, none of the definitions of multivariate return 
periods, and associated contours and design events, relate directly to the quantity of interest, the return 
period associated with failure of the structure or associated flood consequences. These aspects are 
discussed in more detail below in order to describe the motivation for the approach adopted here. 

2.2. Technical description of the JPC method 
The JPC approach applied in coastal engineering practice, shown in concept Figure 1, requires the creation 
of contours of the extreme variables (e.g. waves and sea levels) that have an equal likelihood of 
simultaneous exceedance. These contours are defined as a locus of (𝑥𝑥1, 𝑥𝑥2) that satisfies:  

Pr(𝑋𝑋1 > 𝑥𝑥1 ∩𝑋𝑋2 > 𝑥𝑥2) = 𝑝𝑝 (1) 
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where X1 and X2 are the random variables for sea levels and wave heights respectively and 𝑝𝑝 is a fixed 
probability. In practice, the contours are derived for probabilities associated with specific return periods of 
interest. The contours are used for two specific purposes: specification of design events that form the 
boundary conditions for numerical and physical models for the purposes of structural design; and 
quantification of return period estimates of overtopping and overflow rates for use in flood mapping and risk 
analysis. In practice, combinations of the wave and sea level variables that lie on a specific contour are 
extracted and then applied to the response.   This could mean a marginal extreme sea level with a return 
period of 10 years is combined with a marginal extreme wave height of 5 years and tested as one possible 
combination, for example. A series of combinations are tested in order to find the “worst case” value of the 
response variable. This “worst case” value of the response is then assumed to have the same return period 
as the return period associated with the JPC (Hawkes et al., 2002, HR Wallingford/Lancaster University, 
1998). This assumption can be defined explicitly. 
 

 

Figure 1: Simulated joint events from a BVN with an associated 100-year joint probability contour (AND 
definition), with two “design events” highlighted 

If 𝑍𝑍 is the random variable for the response function, it follows that: 

𝑍𝑍 = 𝑓𝑓(𝑋𝑋1,𝑋𝑋2 ) (2) 

The JPC method implements the following false assumption : 

Pr�𝑍𝑍 > max �𝑓𝑓�𝑥𝑥1,𝑖𝑖 , 𝑥𝑥2,𝑖𝑖��𝑖𝑖 = 1, … ,𝑛𝑛}� = Pr (𝑋𝑋1 > 𝑥𝑥1 ∩  𝑋𝑋2 > 𝑥𝑥2) (3) 

where the (𝑥𝑥1,𝑖𝑖 , 𝑥𝑥2,𝑖𝑖) pairs each satisfy Eqn. 1.  
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2.3. Multivariate return periods 
To highlight the limitations of the current JPC method, seven example alternative multivariate contouring 
definitions have been applied, (Serinaldi, 2014) and include those developed and explored by a range of 
authors, (Hawkes et al., 2002, Salvadori et al., 2004, De Michele et al., 2007, Salvadori et al., 2011, 
Jonathan et al., 2013, Corbella & Stretch, 2013, Volpi & Fiori, 2014). Whilst these alternatives are not 
routinely applied in coastal engineering practice within the UK, they have been introduced here to raise 
awareness of the limitations of multivariate contouring approaches. 

In this convention, (Serinaldi, 2014), the JPC method is known as AND, Eqn. 1. The alternative definitions 
are OR, PCOND1, PCOND2, PCOND3 and Kendall AND. Their definitions are detailed in Appendix 1. 

The alternative multivariate JPC methods have been compared using samples drawn from a simple bivariate 
normal model (BVN), Figure 1. The commonly used AND probabilities, Eqn. (1) were calculated for each 
sample using the known function of the data. A contour with an AND return period of 100 years was adopted. 
Two sample points on this contour were then identified, (i.e. candidate 100-year “design event” points) as 
shown in Figure 1. The multivariate return periods were then calculated for these two sample points using 
the alternative definitions and the known function of the data. Table 1 gives the return periods that were 
obtained for each definition. 

The results from Table 1 show the “100-year design event” obtained from the widely applied coastal JPC 
(AND method), Eqn. 1, can have a return period that ranges between 1 and 5000 years, depending upon 
which multivariate return period definition is used. An alternative view to the problem is shown in Figure 2, 
where “100-year” contours have been derived and plotted for the alternative multivariate return period 
definitions. It is apparent there is little in common between the various different definitions.  

Whilst the AND approach is adopted in coastal engineering practice, there are no specific properties that 
give this definition a meaningful advantage over the others. Hence adoption of the AND method in practice 
can be considered a somewhat arbitrary choice. This is because it is the expected frequency (or return 
period) of structural failure or overtopping or flood risk (ie the response variable) that is of most interest. Or, 
in risk parlance, it is the probability of outcomes, response or consequences that are of most relevance. 

Table 1. Comparison of the return period of two 100-year events (AND definition) with alternative JPC 
definitions  

JPC method name 
Multivariate return period: years 

Sample 1 Sample 2 

ANDa
 100 100 

OR 20 4 

COND1 (conditional on X1) 3 25 

COND1 (conditional on X2) 3 1 

COND2 (conditional on X1) 42 1210 

COND2 (conditional on X2) 62 4 

COND3 (conditional on X1) 6 5616 

COND3 (conditional on X2) 10 1 

Kendal AND 37 37 
aDefinition currently applied in practice  
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Figure 2: A range of “100-year” joint probability contours obtained from the simulated data 

2.4. Practical application of the JPC method 
When applying the current JPC method it is important that these limitations are accounted for. With particular 
regard to the wave overtopping rate response function, evidence on a limited number of tests (Hawkes et al., 
2002, HR Wallingford/Lancaster University, 1998), has shown that application of the JPC method can 
underestimate the probability (and hence overestimate the return period) associated with exceeding a 
specific overtopping rate leading to potential under design of coastal defences. This systematic error is 
illustrated in concept in two dimensions in Figure 3. A conceptual contour of a response variable (y) has 
been defined (labelled “y” in Figure 3) and exceedance of the contour is represented by the dashed shaded 
region and solid line shaded region. The JPC definition is conceptualised by the right angle region shaded 
with solid lines. The systematic error can be viewed as the difference between these regions (the dashed 
shaded region). The JPC method approach also contains limitations with regard to the treatment of other 
variables, wave period, for example. In practice, the application involves assuming wave period is a direct 
deterministic function of wave height, often implemented through an offshore steepness equation. In reality, 
however, there is variability between these parameters and it is desirable to account for this variability.  This 
can be important as it is well-known overtopping rates and damage potential are sensitive to wave period, 
(Pullen et al., 2009).  

The objective of the analysis described here is to overcome the limitations of the JPC approach. This is 
achieved by enabling extremes of response variables to be determined directly, through the provision of a 
full multivariate extreme sea condition distribution in the nearshore region around the coast of England.  
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Figure 3: Conceptual diagram showing the systematic error introduced by the joint probability contour 
method represented by the differences between Regions A and B 

3. Study area and data overview 
The method adopted on this study comprises two main components: 

 Multivariate (joint) probability analysis – offshore wave and wind data has been combined with sea level 
data and extrapolated to extreme values using a robust statistical method. 

 Offshore to nearshore wave transformation –The offshore wave conditions have been translated to 
nearshore (approximately to the -5mODN sea bed contour), using the SWAN wave transformation model 
and a statistical emulation method. 

To implement the method, the coastline has been sub-divided into 24 different regions, each region 
comprising a SWAN wave transformation model domain, Figure 4. These regions were defined through 
consideration of a number of factors, including the exposure and orientation of the coastline and the spatial 
variability of the wave conditions along the offshore boundary. The data used in the analysis is summarised 
in Table 2 and detailed below.  
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Figure 4: SWAN wave model domains and locations of the associated wave, wind and sea level data 
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Table 2. Summary of data sources 

Variable Source Comment 

Sea-level time series NTSLF national class ‘A’ network of 
tide gauges supplemented with 
additional processed EA tide gauge 
data 

Class A tide gauges are supplemented with 
records from EA tide gauges located at 
Padstow and Exmouth 

Sea-level extremes  Coastal flood boundaries study EA (2011a) study that provides extreme 
sea levels at a 2 km resolution around the 
coast 

Wave conditions WWIII hindcast Hindcast run by the Met Office model grid 
is 8km resolution for a timespan from 
January 1980 to June 2014 so it includes 
the winter storm of 2013/2014 
Some locations have been corrected for 
bias following comparison with measured 
data sets (EA, 2011a)  

Wind conditions WWIII hindcast As wave conditions, but it is of note than no 
bias corrections have been applied to wind 
speeds  

Bathymetry offshore SeaZone TruDepth Approximately 30 m resolution, July 2014 
download 

Bathymetry nearshore 2 m resolution combination of EA 
light imaging detection and ranging, 
multibeams and single beam 
surveys from channel coastal 
observatory, known as the EA surf 
zone composite bathymetry  

Compiled by EA Geomatics Group  

 

A separate offshore multivariate extreme value model has been developed at a single offshore WWIII grid 
point of each of the 24 regions. The wave conditions were imposed along the offshore boundary for the 
relevant wave directions. To account for the spatial variation in the water levels across the model domain, 
when undertaking the wave transformation modelling, an algebraic relationship between the water level at a 
specified control point and the distance from this control point was defined. These relationships were 
implemented at the nearshore points (approximately the -5mODN contour), during the emulation phase of 
the wave transformation modelling. The specific relationships and further details are published in an 
accompanying report, (HR Wallingford, 2015a). 

Time series sea level data was obtained from the National Tide and Sea Level Facility (NTSLF) National 
Class “A” network of tide gauges (Figure 4), owned by the Environment Agency. Prior to implementation 
within the multivariate analysis, the water level data was de-trended and updated to present day levels, using 
standard approaches, (HR Wallingford, 2015). Within the statistical model this sea level data was 
supplemented with information on extreme sea levels at a 2km resolution around the entire coastline, 
(Environment Agency, 2011a), again updated to the present day. 
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Wave and wind data was obtained from a hindcast of wave conditions using the WaveWatch III Model 
(WWIII), undertaken by the UKMO, (Mitchell et al., 2016) . The grid resolution for this model is 8km and the 
timespan of the hindcast from January 1980 to June 2014 which therefore includes the winter storms of 
2013/2014. Data from 1980 to 2000 is available at a 3-hour resolution and from 2000 onwards at a 1-hour 
resolution. The wave model was driven with wind data from the ECMWF ERA-interim (global) and Unified 
(regional) models. The hindcast study provided spectral components of waves including 𝐻𝐻𝑠𝑠, 𝑇𝑇𝑚𝑚 and direction. 
The locations of the WWIII points where wave and wind information was extracted for the multivariate 
extreme value analysis for each region is shown in Figure 4. An example plot showing the performance of 
the WWIII model when compared with measured wave data is shown in Figure 5. Measured wave data from 
wave buoys was obtained from CEFAS and the Regional Coastal Monitoring Programmes for these 
purposes. Where appropriate, bias corrections were introduced and applied to the offshore wave conditions. 
Further results of this analysis are detailed in an accompanying report, (HR Wallingford, 2015a). 

The new SWAN models are based upon bathymetry from the SeaZone TruDepth data set which is at a 
resolution of approximately 30m. 

 

Figure 5: Comparison between the WaveWatch III Hindcast data and Channel Light Vessel measured wave 
conditions 
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4. Multivariate extreme value modelling 
To quantify the probability of exceeding a particular value of the response variable, it is necessary to 
extrapolate the joint probability density of the sea condition variables to extremes, whilst preserving the 
dependence between the variables, and then integrate the joint density over the region where the response 
variable 𝑍𝑍 has been exceeded: 

Pr(𝑍𝑍 > 𝑧𝑧) = ∫ 𝑓𝑓𝑋𝑋
 
𝑍𝑍>𝑧𝑧 (𝑥𝑥)𝑑𝑑𝑑𝑑 (4) 

This integration is illustrated in concept in Figure 3. This robust statistical approach is facilitated within the 
JOIN-SEA system and has been implemented in practice by specialists for many years. For this analysis, the 
same basic method is used (i.e. Eqn. 4 is solved directly). However, an alternative method to that employed 
by JOIN-SEA has been used to extrapolate the joint density of the sea condition variables to extreme values. 
The approach adopted for undertaking this extrapolation is more advanced, (Heffernan & Tawn, 2004). This 
method has greater flexibility in terms of the handling of the dependence structure with a greater number of 
variables, when compared to the approach adopted within JOIN-SEA and other algebraic copula 
approaches. Further description on the justification for the use of this model in the context of coastal wave 
and water level analysis and flood risk modelling is provided by others, (Wyncoll & Gouldby, 2012, 
Gouldby et al., 2014, Jonathan et al., 2013, Lamb et al., 2012, Keef et al., 2012, Environment Agency, 
2011b). A description of its implementation here is provided below. 

The variables considered in this analysis were significant wave height, wave period, wave direction, 
directional spreading, wind speed, wind direction and sea level. Of these, only wave height, wave period, 
wind speed and sea level required extrapolation to extremes.  

The offshore analysis for a single region started with a concurrent time series of the seven variables of 
interest, created by combining a representative wave and wind series with a de-trended water level series.  
In order to ensure a good representation of the known strong dependence between wave height 𝐻𝐻𝑠𝑠 and 
period 𝑇𝑇𝑒𝑒, the deep water wave steepness was calculated via: 

𝑆𝑆 =  2𝜋𝜋 𝐻𝐻𝑠𝑠
𝑔𝑔 𝑇𝑇𝑒𝑒2

 (5) 

and used in place of the wave period in the multivariate analysis as a non-extreme variable. In contrast to the 
traditional contour methods, this enables some random variability between wave height and period, rather 
than assuming wave period is a deterministic function of wave height. This left three variables to be 
extrapolated to extremes: wave height, wind speed and sea level; with four additional variables whose 
dependence with these and with each other requiring preservation within the modelling procedure. 

Potential peak wave overtopping events were then identified from the joint time series. Since overtopping 
can potentially be caused by extreme offshore waves, local winds generating waves or sea levels which do 
not necessarily peak concurrently, the peaks of each of these variables were identified separately to form a 
separate set of peak events for each extreme variable. Peak waves and winds were identified as local 
maxima separated by at least a day whereas for water level each high tide was identified. In each case, the 
peak in the primary variable was paired to the concurrent values for the remaining variables (Figure 6). Each 
peak dataset was used only to extrapolate extremes of the same primary variable and sampled only when 
this was most extreme to avoid double-counting the events. 

In order to account for known seasonal and directional dependencies, the extreme variables were de-
trended with respect to season and direction before their extremes were analysed (Figure 7). The EA has 
already published industry standard extreme sea levels (Environment Agency, 2011a) and there was a 
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requirement to ensure compatibility with these published results. Since these published results have no 
dependence on season, this could only be done to the two remaining variables. Wave heights and wind 
speeds were first de-trended with respect to season followed by wave and wind direction, respectively. For 
this, a continuous season variable was constructed from the date and time of the peak representing the 
fraction of the year. In each case, the de-trending was carried out by subtracting a smoothed mean and then 
dividing by a smoothed standard deviation that were each created from Gaussian Kernel smoothers fitted to 
the peaks of each variable that account for the periodicity in the smoothing variables. The seasonality was 
added to the list of non-extreme variables associated with each joint observation so that its dependencies 
could be modelled to allow variables on the original scale to be reconstructed after simulation. 

Prior to analysis of the dependencies between each variable, the marginals of the extreme variables were 
first analysed. As it was a requirement for the sea levels to follow a predefined distribution based upon the 
industry standard levels, (Environment Agency, 2011a), these were imposed within the modelling process 
during specification of the marginal distribution of extreme sea levels. But for wave height and wind speed, 
the standard peaks-over-threshold (POT) approach of Davison and Smith (1990) was applied, whereby the 
peaks of each variables that fall above a suitably high threshold were fitted to the Generalised Pareto 
distribution (GPD). This defined a probability model for large values of 𝑋𝑋𝑖𝑖. To provide a full specification of 
the marginal distributions of the extreme variables, the empirical distribution of the 𝑋𝑋𝑖𝑖 values below the 
threshold were combined with the GPD above the threshold to provide a semi-parametric function for the 
cumulative marginal distribution (Coles & Tawn, 1991). 

The multivariate method (Heffernan & Tawn, 2004) was applied in the standard way. The extreme variables 
in each peak dataset were therefore transformed from their original scales 𝑿𝑿 to Laplace scales 𝒀𝒀 using the 
standard probability integral transformation applied to the marginal distributions of the peaks. The analysis of 
the dependence between the variables on the transformed scales 𝒀𝒀 was then undertaken. 

If 𝒀𝒀−𝑖𝑖 denotes the vector of all extreme variables excluding a particular variable 𝑌𝑌𝑖𝑖, the following multivariate 
non-linear regression model was applied to 𝒀𝒀−𝑖𝑖  | 𝑌𝑌𝑖𝑖 > 𝜈𝜈: 

𝒀𝒀−𝑖𝑖 = 𝒂𝒂 𝑌𝑌𝑖𝑖 + 𝑌𝑌𝑖𝑖𝒃𝒃 𝒘𝒘  for 𝑌𝑌𝑖𝑖 > 𝑣𝑣 (6) 

where 𝒂𝒂 and 𝒃𝒃 are vectors of parameters, 𝑣𝑣 is a specified threshold, 𝒘𝒘 is a vector of residuals. The fitted 
models each describe the dependence between all remaining variables when a primary peak variable was 
extreme and together they describe the full distribution of potential peak overtopping events when at least 
one source variable is extreme. The fitted model was then applied using a Monte-Carlo simulation procedure 
whereby a large synthetic dataset representing 10,000 years’ worth (0.2 million) of potential peak 
overtopping events was randomly sampled. Rejection sampling was used to ensure 𝑌𝑌𝑖𝑖 was the most extreme 
to avoid double-counting events where more than one source was extreme. The simulated dataset was then 
transformed back to the original scales. The resulting output was a large multivariate sample of extreme 
offshore sea condition data that captures the characteristics of dependencies between the variables, as well 
as preserving the marginal extremes, see Figure 8. 

To quantify the probability of exceeding a value of the response variable, 𝑍𝑍 (and hence solve Eqn. 4), it is, in 
principle, necessary to evaluate the response function for each Monte-Carlo realisation output from the 
multivariate analysis. Given the chain of models involved, this can be computationally demanding and hence 
an efficient statistical model emulation procedure was implemented to facilitate this process. This is 
described in more detail in Section 5. 
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Figure 6: Illustration of the method used to select events 
 

 
Figure 7: Illustration of the method used to de-trend peak wave height events with respect to wave direction 
and season. 
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Figure 8: Example Monte-Carlo simulation output from the multivariate extreme value model 
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5. Offshore to nearshore wave transformation 
modelling 

5.1. Wave transformation model set up and calibration 
The model chosen to transform the wave conditions from offshore to inshore was the well-known SWAN 
model, (Booij, 1999). The objective of the SWAN modelling was to transform the offshore multivariate 
extreme sea condition data to a series of nearshore locations with a 1km spacing along the coastline, at 
approximately the -5mODN contour. This depth was chosen, as in shallower water (the surf zone), wave 
breaking increases and the bed levels vary significantly. It was thus desirable to separate out the complex, 
highly dynamic surf zone and structure related aspects from the more stable regime in deeper water. This 
de-coupling enables flexibility with regard to the surf zone models. The surf zone modelling can easily be 
repeated when new beach level information becomes available, for example. 

Figure 4 shows the SWAN model extents used for the study. For reasons relating to numerical stability and 
runtime efficiency, the SWAN models were set up using a 200m regular mesh. 

All the SWAN models were set up in a stationary mode with a constant wind direction and speed applied. 
Each of the new models was calibrated using a range of different events selected based upon analysis of 
historical peak events Details of the calibration methodology and results are provided in an accompanying 
report, (HR Wallingford, 2015). 

5.2. SWAN Emulation 
In principle it is necessary to transform all of the events output from the offshore Monte-Carlo simulation 
(Figure 8) through to the nearshore. However, SWAN can be computationally time consuming to run, 
particularly given the number of SWAN models and the number of events that required simulation in each 
model (of the order of 200,000 or more per region). Rather than attempt to run SWAN 2D for all of these 
events a statistical model emulation method was therefore employed. 

A statistical emulator is similar in concept to a traditional “look-up table” approach used in coastal flood 
forecasting systems, for example. The process involves running the SWAN 2D model for a subset of events 
(known as the design points). Interpolation techniques are then applied to predict the results for other events 
(not run in SWAN 2D). Traditional look-up table approaches are typically applied using regular or recti-linear 
grids and linear interpolation techniques. As the output from SWAN is generally not a linear function of the 
inputs, these traditional look-up tables can be inefficient and require a large number of design point 
simulations. There has, however, been extensive research into more sophisticated interpolation techniques, 
in particular Gaussian Process Emulators (GPE’s), Kennedy et al., (2006), for example. These more 
sophisticated approaches have been shown to be efficient when used in the context of wave transformation 
modelling, Camus et al. (2011a). Figure 9 shows the computational efficiency gains that are possible when 
comparing an emulator to a traditional “look-up table” of the SWAN wave model. Within Figure 9, the same 
root mean squared error (RMSE) was achievable with 200 separate event simulations of the SWAN model 
using a GPE when compared to 17000 simulations using a traditional look-up table approach. To obtain 
these RMSE statistics the SWAN model was run for the full data set to establish the benchmark.  

To select the design points used to fit the emulator and hence used to define the boundary conditions for the 
SWAN model, the Maximum Dissimilarity Algorithm (MDA) was applied using a previously established 
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methodology, (Camus et al., 2011a, 2011b). The use of the MDA ensures the multivariate parameter space 
is captured efficiently. Figure 10 shows an example of the design points output from the MDA (larger dots) in 
relation to the full space covered by the Monte-Carlo realisations. 

The emulator approach was used to translate the large sample of offshore Monte-Carlo events through to 
the nearshore wave points located on (approximately) the -5mODN contour. A series of separate emulators 
was created for each nearshore wave point (1km resolution). A more detailed description of the emulator 
approach is provided in Appendix 2. Example output from the emulator at a nearshore point is shown in 
Figure 11.  

Verification of the wave transformation modelling process was undertaken by comparing nearshore wave 
conditions with measurements at selected locations, using the Regional Coastal Monitoring Programme 
wave buoys. An example of this process is shown in Figure 12 It is of note that within Figure 12, departures 
from the one-to-one prediction line can arise as a result of uncertainties relating to the offshore hindcast 
WaveWatch III data (Figure 5), model structural uncertainties associated with SWAN and model structural 
uncertainties associated with the emulator. Detailed analysis that considers the multiple sources of 
uncertainty and how these propagate through the modelling chain has, however, not been undertaken. It is 
recommended that this type of analysis is conducted in future research. 

 

Figure 9: Comparison of the performance of a Gaussian process emulator fitted to varying numbers of 
SWAN simulations (solid line) with a traditional “look-up” table approach based on 17,000 simulations 
(dashed line) 
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Figure 10: The emulator design points (larger dots), output from the MDA overlaid on the extrapolated MC 
samples 
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Figure 11: Example output from the SWAN emulator at a specific nearshore point  
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Figure 12: Comparison of the output from the wave transformation process and nearshore measured wave 
data 

 

6. Example application 
6.1. Case study application 
To demonstrate the application of the method to estimate wave overtopping rates, two particular structures 
have been selected from the EA’s Asset Information Management System (AIMS). Both sites are located in 
the South west. The first comprises a smoothly sloping stone wall with vertical upstand, located in Exmouth 
(Figure 13). The second is a shingle beach fronting a promenade in Lyme Regis (Figure 14).  

A wave overtopping response function has been applied. The overtopping method requires sea conditions at 
the toe of the structure. It is thus necessary to transform the sea conditions from the nearshore to the 
structure toe. There are a range of methods that can be applied to undertake this transformation, 
Goda, (2000) and Battjes & Jansen (1978). This latter method is used for the calculation of surf zone 
breaking in both SWAN 1D and 2D and SWAN 1D and was applied for this study. The profile information 
was extracted using an automated routine applied to the Surf zone DEM composite compiled by the EA. This 
formed the bathymetric input to the SWAN 1D Model (Figure 15) and enabled the translation of the 
nearshore wave conditions through to the structure toe. 

To translate the data at the toe of the flood defence structures to overtopping discharges for use in flood 
inundation analysis, the BAYONET wave overtopping model was applied. BAYONET Kingston et al (2008) is 
a neural network overtopping tool. It is based on the widely used CLASH overtopping database and follows 
the general model of the CLASH neural network, van Gent et al. (2007) but incorporates additional 
information relating to uncertainty. The Monte-Carlo realisations at the nearshore point have been 
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transformed through SWAN 1D and BAYONET into peak overtopping rates. The overtopping rate samples 
were then ranked and empirical return periods assigned. These results have then been analysed to 
determine an empirical distribution of overtopping rates as shown in Figure 16. Given site-specific structural 
geometry, it is straightforward to undertake this analysis for any structure along the coastline of England. 

6.2. Comparison of the robust statistical approach with the joint 
probability contours 

To demonstrate the difference between the routinely applied JPC approach and the robust statistical method 
applied here, a series of comparisons have been made. A set of ‘100-year’ JPC conditions was extracted 
that satisfy the relevant criteria (Equation 1) (large points on Figure 16). These were applied to the same 
wave transformation and overtopping process, and the resulting outputs, in terms of wave overtopping rate, 
are shown for two defences in Figure 16. In these particular examples, the ‘worst case 100-year design 
event’, defined in terms of the JPC approach, without any correction factors having been applied, provides 
estimates of overtopping rates that actually have return periods of 40 and 16 years, respectively. This 
demonstrates the limitations of the routinely applied AND JPC approach and highlights the importance of 
applying correction factors should this approach be adopted. 

 

7. Discussion of results 
Extreme multivariate data sets have been generated around the coast of England at a 1km resolution.  The 
methodology applied has significant advantages over the JPC method that is routinely applied in practice for 
detailed site-specific flood risk analysis and the design of coastal structures. It is particularly important to 
note probabilities of failure are expressed directly in terms of the response variable/s of interest. This is in 
contrast to the traditional approach that expresses probabilities of extreme sea conditions, which suffers from 
ambiguity and does not directly relate to the response of interest. 

The outputs from this study can be applied within a wide range of studies including, structural design, flood 
risk analysis and related climate change impact assessment, for example. It is relatively straightforward to 
translate the nearshore (-5m contour) extreme event data through the surf zone and into overtopping rates 
for a range of nearshore structures and hence to determine statistically robust return period overtopping 
estimates around the entire coastline. 

In addition, it is apparent the SWAN emulation approach, due to its computational efficiency, has the 
potential to be incorporated within coastal flood forecasting systems. Ensemble and probabilistic forecasting 
is readily achievable with this type of approach. 

Specific combinations of wave height, period and water level conditions may be required for deterministic 
“design event” purposes. It is a trivial process, having determined the empirical return period estimates of the 
response function of interest using the robust statistical approach, to extract specific combinations of the sea 
conditions that do actually yield 100-year estimates of the required response function, be this overtopping 
rate or any other relevant structural response function.  It is suggested that it is preferable to adopt design 
events whose return period is defined in terms of the response function of interest, rather than applying the 
joint probability contour approach with associated error correction factors. This is because there is no 
ambiguity associated with the univariate response function return period and it is defined in terms of the 
variable of interest. The analysis undertaken here can potentially be used to support this type of approach.   
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As with any coastal modelling analysis of this type, there are substantial uncertainties associated with the 
multivariate extreme value analysis undertaken here. For example, the offshore wave and wind condition 
data has been derived from a model hindcast of the WWIII model. An insight to uncertainties associated with 
this data set can be gained through comparison with offshore measurement data (Figure 5).  

For flood risk analysis, it is necessary to extrapolate historical data to extreme values. It is well-known that 
significant uncertainties can be introduced at this stage. Standard methods for assessing confidence in the 
extremes of each (marginal) variable are available that take account of the variability of the data and the 
length of record being analysed. For example, the widely applied guidance on extreme sea levels 
(Environment Agency, 2011a) gives confidence intervals for the extrapolated extreme sea levels at each 
location around the coast. For multivariate extreme value analysis it is necessary to capture the uncertainties 
associated with the marginal extremes and the dependence model.  

The SWAN model has been used to transfer the offshore waves to the nearshore. Where nearshore wave 
measurements exist, these models have been calibrated to reduce the uncertainties. Additional uncertainty 
is introduced by the use of the emulator. Combined uncertainties from the offshore boundary condition 
waves, SWAN model and emulator are illustrated in Figure 12. Overtopping formulae are known to contain 
substantial uncertainty (Kingston et al., 2008) and are sensitive to input data relating to toe levels and crest 
levels, for example. 

In principle it is desirable to quantify uncertainties associated with the various model components and 
appropriately communicate this uncertainty and further research into these aspects is recommended. Given 
the many different sources of uncertainty and complexity involved in defining them and propagating them 
through the modelling chain, it has not been possible to undertake this analysis on the study described here. 
Further work to quantify uncertainties is, however, desirable. In addition, extending this to formal sensitivity 
analysis using well used methods (Saltelli et al., 2004), can aid insights into the dominant sources of 
uncertainty and where future priorities lie for model and data improvements. 
 

 

 

Figure 13: Exmouth 

 

Figure 14: Lyme Regis 
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Figure 15: SWAN 1D profile example 
 

 

 Defence number 8470 Defence number 13954 

 Return period: 
years 

Overtopping 
rate: (l/s)/m 

Return period: 
years 

Overtopping 
rate: (l/s)/m 

Uncorrected JPC  
(100-years JPC) 40 0.12 16 2 

Robust risk based 100 0.315 100 3.4 

Figure 16: Results from the traditional Joint exceedance contour method (100-year joint probability) overlaid 
on the empirical distribution of wave overtopping rates from the multivariate simulation, highlighting the 
known error 
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8. Conclusions 
The limitations of the JPC approach, widely used in practice for coastal flood risk analysis and the design of 
coastal structures, have been described. These limitations have been demonstrated with reference to 
alternative contouring methods using a conceptual data set. The results have highlighted the ambiguity and 
potential confusion that can arise using the traditional JPC approach. 

A multivariate extreme value analysis of offshore waves, winds and sea levels has then been undertaken 
around the coast of England. A robust statistical method has been applied at 24 different locations. The 
output of the multivariate extremes analysis comprises a Monte-Carlo sample of approximately 0.2 million 
events. To robustly estimate the return period of response variables like overtopping rate, or economic 
damage for flood risk analysis, for example, it is, in principle, necessary to transform all of these events 
through to the nearshore and then to overtopping and subsequent flood inundation.  

To undertake the offshore to nearshore wave transformation 24 separate SWAN wave models have been set 
up.  To minimise the computational effort involved in transforming all of the Monte-Carlo events through the 
SWAN models, a series of emulators have been developed that provide nearshore outputs at a 1km 
resolution approximately along the -5mODN contour. A nearshore data set comprising many thousands of 
extreme wave and water level events has therefore been created. To demonstrate the application of this 
data set, wave overtopping rates have been calculated for two structures located on the South Coast. These 
results have been compared with the results obtained by applying the widely applied JPC method where the 
known limitations have been observed.  

It is suggested the methodology adopted here can be applied for the purposes of traditional deterministic 
design and optimised risk based design. 
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Appendix 1. Alternative definitions of multivariate 
events 
A number of methods for defining joint events have been summarised (Serinaldi, 2014) . These methods 
have been used to provide a range of multivariate return period estimates for the same event, Table 1. The 
definition of each method is provided below, adopting an existing naming convention (Serinaldi, 2014). 

𝑝𝑝AND = Pr(𝑋𝑋1 > 𝑥𝑥1 ∩ 𝑋𝑋2 > 𝑥𝑥2) 

𝑝𝑝OR = Pr(𝑋𝑋1 > 𝑥𝑥1 ∪ 𝑋𝑋2 > 𝑥𝑥2) 

𝑝𝑝COND1 = Pr(𝑋𝑋1 > 𝑥𝑥1|𝑋𝑋2 > 𝑥𝑥2) 

𝑝𝑝COND2 = Pr(𝑋𝑋1 > 𝑥𝑥1|𝑋𝑋2 ≤ 𝑥𝑥2) 

𝑝𝑝COND3 = Pr(𝑋𝑋1 > 𝑥𝑥1|𝑋𝑋2 = 𝑥𝑥2) 

𝑝𝑝Kendal AND = Pr [𝑝𝑝AND(𝑋𝑋1,𝑋𝑋2) > 𝑝𝑝AND(𝑥𝑥1, 𝑥𝑥2)] 

 

where 𝑝𝑝AND(𝑥𝑥1, 𝑥𝑥2) = Pr(𝑋𝑋1 > 𝑥𝑥1 ∩ 𝑋𝑋2 > 𝑥𝑥2). 

Appendix 2. Gaussian process emulator description 
Gaussian process emulators have been used to predict the SWAN model output at each nearshore point for 
every event in the large offshore simulated dataset. A separate emulator has been applied for each 
nearshore point and for each output variable of interest. Let 𝑧𝑧 = 𝑓𝑓(𝒙𝒙) represent the SWAN-2D output for a 
single nearshore variable as a function of the offshore variables 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑝𝑝). The Gaussian process 
emulator approximates the unknown function 𝑓𝑓(𝒙𝒙) by treating it as a random Gaussian process. The 
statistical model is defined by a mean function 𝒉𝒉(𝒙𝒙) satisfying 

E[𝑓𝑓(𝒙𝒙)|𝜷𝜷] = 𝒉𝒉(𝒙𝒙)𝑇𝑇𝜷𝜷 

and a covariance function 𝑐𝑐(𝒙𝒙,𝒙𝒙′) satisfying 

Cov[𝑓𝑓(𝒙𝒙), 𝑓𝑓(𝒙𝒙′)|𝜎𝜎2] = 𝜎𝜎2𝑐𝑐(𝒙𝒙,𝒙𝒙′) 

where 𝜷𝜷 and 𝜎𝜎2 are parameters. The mean function is typically taken to be a linear function of the input 
variables. For this analysis, the Gaussian covariance function is used which is defined by 

c(𝒙𝒙,𝒙𝒙′) = exp�−∑ 𝜃𝜃𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑝𝑝
𝑖𝑖=1 �    

for smoothing parameters 𝜃𝜃𝑖𝑖. 

A Bayesian formulation has been used to estimate the function output probabilistically given the 𝑛𝑛 known 
outputs at the design points. For a simulated offshore event 𝒙𝒙, the best estimate of 𝑓𝑓(𝒙𝒙) in light of the known 
model outputs is given by: 

𝒉𝒉(𝒙𝒙)𝑇𝑇𝜷𝜷 + 𝒕𝒕(𝒙𝒙)𝑇𝑇𝐴𝐴−1(𝒛𝒛 − 𝐻𝐻𝜷𝜷) 
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where 

𝒕𝒕(𝒙𝒙)𝑇𝑇 =  [c(𝒙𝒙,𝒙𝒙𝟏𝟏), … , c(𝒙𝒙,𝒙𝒙𝑛𝑛)]  

𝐴𝐴 =  �c�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗��𝑖𝑖,𝑗𝑗=1
𝑛𝑛 , 

𝒛𝒛𝑇𝑇 =  [𝑓𝑓(𝒙𝒙1), … , 𝑓𝑓(𝒙𝒙𝑛𝑛)], 

𝐻𝐻𝑇𝑇 = [𝒉𝒉(𝒙𝒙1), … ,𝒉𝒉(𝒙𝒙𝑛𝑛)]. 

If applied to one of the design events 𝒙𝒙𝒊𝒊, this formula returns the known SWAN output with zero error. The 
prediction equation is applied for every offshore event to produce a large simulated dataset of nearshore 
events.  
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