
 
 

 

 
Fast random wave generation in numerical tanks 

Aggelos S. Dimakopoulos, Tristan de Lataillade and Chris E. Kees 

HRPP776 1 

Fast random wave generation in 
numerical tanks 
Aggelos S. Dimakopoulos 1, Tristan de Lataillade 1 and 
Chris E. Kees 2 
1 HR Wallingford, Howbery Park, Wallingford, Oxfordshire OX10 8BA, UK 
2 ERDC, 3909 Halls Ferry Rd, Vicksburg, MS 39180, United States 
 
 
Corresponding author: Aggelos Dimakopoulos, a.dimakopoulos@hrwallingford.com. 

Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics,  
Volume 172, Issue 1, PP 1-11 (March 2019) 

 

Abstract 
Generating and absorbing random waves in numerical models is a challenging problem, in particular when 
meaningful wave statistics should be generated to meet design sea state requirements. The methodology 
presented herein allows for the generation of random wave fields (free surface elevation and velocities) to be 
reconstructed in time and in space by using window processing from a reference time series. It is 
demonstrated that the methodology is efficient in reproducing long non-repeating wave sequences by using 
only O(101)- O(102) wave components, rather than O(103)- O(104) required by a direct reconstruction from 
a single spectrum. This reduces the computational times required for the development of wave-train time 
series elements by 40 times. Errors in instantaneous surface elevation and particle velocity between 
windowed and non-windowed reconstruction techniques were less than 0.4% and 0.2% respectively in the 
cases considered. The technique was combined with the relaxation zone method typically used in numerical 
wave tanks for generating waves. The simulations were performed using Proteus, a rapidly developing CFD 
– FEM toolkit for modelling fluid structure interaction cases. The use of windowed reconstruction reduced the 
overall computational time associated with the simulation of waves in a numerical wave  tank by ~40% and 
~70% for serial and parallel execution. Results of the study show windowed reconstruction to be suitable for 
the representation of long-duration wave trains. Wave height and peak period are conserved within 2% and 
1% respectively. 
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1. Introduction 
Recently, numerical wave tanks in Computational Fluid Dynamics (CFD) models have been increasingly 
employed to assist the design optimisation of coastal structures, along with physical modelling data 
(Richardson et al. 2013, Cuomo et al. 2013). Typical configurations for numerical wave tanks can be found in 
Jacobsen et al (2012), Higuera et al (2013), Chen et al. (2015), Schmitt and Elsaesser, B (2015) and 
Dimakopoulos (2016) using different techniques for generating and absorbing waves such as moving 
paddles, radiation boundary conditions, and relaxation zones.  

In CFD models using the relaxation zone method, free-surface elevation and wave velocities are typically 
calculated within a subdomain adjacent to the offshore boundary.  As a result of the sizable generation 
domain there is a significant computational cost associated with the generation of input surface elevations 
and wave velocities to be applied in both time and space. In order to reduce these costs, Dimakopoulos et al 
(2016) improved and further tested the relaxation zone technique developed by Jacobsen et al (2012). 
Improvements were made by replacing the built-in trigonometric functions with faster approximations based 
on Taylor theory. Numerical benchmarks were performed using 500 wave components for signal 
reconstruction and  showed  that simple optimisation techniques could reduce the computational cost by one 
order of magnitude (~90%). In terms of total simulation time Dimakopoulos et al (2016) proved that 
employing the optimised technique may reduce the total simulation time by ~45%, for a 45 m numerical wave 
tank discretised with 240000 cells. Despite the reductions achieved, the relative computational burden of 
wave generation remains relatively high, as for example increasing the frequency components from 50 to 
500 yields a 40% increase in the total simulation time (Dimakopoulos et al 2016). Generating non-repeating 
wave series of e.g. 1000 waves (typical storm duration)will require more than O(103) wave components to be 
calculated for every time step, and it is evident that this will significantly increase the computational cost 
required. This number will increase even further when considering nonlinear corrections to the random wave 
series, in order to calculate 2nd order nonlinear wave-wave interactions (Tucker 1995; Schaffer 1996; Dalzell 
1999).  

This work proposed a methodology that will enable generation of non-repeating wave sequences using 
significantly fewer frequency components (<< 103) for reconstructing wave field parameters typically used as 
inputs for CFD simulations. This is achieved by pre-processing the free surface elevation time series before 
the start of the simulation using windowing techniques (Harris 1978) that will allow an accurate spectral 
decomposition using a significantly reduced number of components. In this paper it is assumed that spectra 
are discretised using a constant frequency step. The technique could be generalised to include other 
discretisation methods (e.g. see Miles and Funke 1988). 

The methodology is coupled with the computational toolkit Proteus (http://proteustoolkit.org/) to demonstrate 
its use within the frame of a CFD model. Proteus is a rapidly developing, open-source finite-element based 
toolkit that is able to model wave propagation and absorption using a coupled level-set / volume of fluid 
method (Kees et al. 2008, 2009 and 2011). The relaxation zone method is used for wave generation / 
absorption, that has been widely employed for similar purposes in various numerical tools such as CFD 
models (Mayer et al 1998, Jacobsen et al 2012) and depth-integrated models, e.g. BOUSS2D (Nwogu and 
Dirbilek 2001) or FUNWAVE (Shi et al. 2016). It is nevertheless envisaged that the methodology will be 
suitable for generating time series for boundary conditions in similar depth-integrated and other types of 
models, after appropriate modifications (e.g. use of depth integrated velocity rather than particle velocity). As 
Proteus is currently being developed for simulating fluid-structure interaction problems, an additional 
objective is to establish a robust and efficient technique to generate and absorb random waves for this 

http://proteustoolkit.org/
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particular model. Relevant results recently presented in Dimakopoulos et al. (2017a; 2017b) concerning 
wave and current interaction with moving structures (e.g. sliding breakwaters, flow around oscillating 
pipelines, floating objects) reveal the potential for Proteus to be used for assisting the design of marine and 
coastal structures.  

This paper is structured as follows: In Section 2, the methodology of processing and reconstructing a wave 
series to reduce the computational cost associated with the reconstruction is presented in addition to 
coupling of the methodology with the relaxation zone method. In Section 3 the overall benefits of optimisation 
are quantified using simple benchmark cases. In Section 4, validation results are presented in terms of 
random wave propagation and improvement of the overall simulation times are demonstrated. Section 5 
discusses conclusions, potential issues and future work regarding the methodology and the numerical 
modelling approach. 

2. Methodology 
2.1. Reconstruction of components with window method 
According to linear theory, free surface elevation and velocity components for a plane random wave field can 
be calculated using discrete linear reconstruction of components, as shown in equation 1 to 3. 

 

𝜂𝜂(𝑥⃗𝑥, 𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖 cos�𝑘𝑘�⃗ 𝑖𝑖 ∙ 𝑥⃗𝑥 − 𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖�𝑁𝑁
𝑖𝑖=1  (1) 

 

𝑈𝑈ℎ(𝑥⃗𝑥, 𝑧𝑧, 𝑡𝑡) = ∑ 𝑢𝑢ℎ(𝑖𝑖) cos�𝑘𝑘�⃗ 𝑖𝑖 ∙ 𝑥⃗𝑥 − 𝜔𝜔��⃗ 𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖� cosh�𝑘𝑘𝑖𝑖(𝑑𝑑 + 𝑧𝑧)�𝑁𝑁
𝑖𝑖=1  (2) 

 

𝑈𝑈𝑣𝑣(𝑥⃗𝑥, 𝑧𝑧, 𝑡𝑡) = ∑ 𝑢𝑢𝑣𝑣(𝑖𝑖) sin�𝑘𝑘�⃗ 𝑖𝑖 ∙ 𝑥⃗𝑥 − 𝜔𝜔��⃗ 𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖� sinh�𝑘𝑘𝑖𝑖(𝑑𝑑 + 𝑧𝑧)�𝑁𝑁
𝑖𝑖=1  (3) 

 

where 𝜂𝜂 is the free-surface elevation, 𝑥⃗𝑥 the position vector at the wave propagation plane, z is the vertical 
coordinate (vertical axis aligned with gravity), 𝑡𝑡 the time variable,  𝑈𝑈ℎ and 𝑈𝑈𝑣𝑣 is the horizontal and vertical 
velocity, respectively, and  𝑎𝑎𝑖𝑖, 𝑘𝑘�⃗ 𝑖𝑖, 𝜔𝜔𝑖𝑖, 𝜙𝜙𝑖𝑖, 𝑢𝑢ℎ(𝑖𝑖) and 𝑢𝑢𝑣𝑣(𝑖𝑖) are the wave amplitude, wave number vector, angular 
frequency, phase and horizontal and vertical velocity amplitude, respectively, for the 𝑖𝑖-th wave component 
and 𝑁𝑁 is the number of frequency components.  The wave amplitude for each component is calculated from 
the spectral distribution according to equation 4. 

𝑎𝑎𝑖𝑖 = �2𝑆𝑆𝑖𝑖Δ𝑓𝑓𝑖𝑖 (4) 

where 𝑆𝑆𝑖𝑖 and Δ𝑓𝑓𝑖𝑖 are the discrete spectral energy distribution and frequency interval for the 𝑖𝑖-th linear 
component. The discrete spectral energy distribution typically follows established distributions for random 
sea waves e.g. JONSWAP or Pierson-Moskowitch. In this work, the JONSWAP spectrum is used. 

In order to ensure a non-repeating random wave series, the discretisation step of the spectrum in the 
frequency domain (Δ𝑓𝑓) must be set according to equations 5 and 6 (Dean and Dalrymple, 1994). 
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 Δ𝑓𝑓 =
𝑓𝑓𝑝𝑝𝑏𝑏𝐹𝐹−

𝑓𝑓𝑝𝑝
𝑏𝑏𝐹𝐹

𝑁𝑁
 (5) 

 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝛥𝛥𝛥𝛥

 (6) 

 

where 𝑏𝑏𝐹𝐹 is the spectral band factor so that the frequency components belong to the interval �𝑓𝑓𝑝𝑝
𝑏𝑏𝐹𝐹

, 𝑓𝑓𝑝𝑝𝑏𝑏𝐹𝐹�, 

where 𝑓𝑓𝑝𝑝 is the peak frequency of the random wave spectrum and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum duration of a non-
repeating wave sequence.  Since 𝑏𝑏𝐹𝐹 varies within a relatively limited range (typically 2~3), the length of the 
non-repeating sequence is rather controlled by the total number of the frequency components and in 
particular, finer discretisation of the spectrum (using a larger number of wave components) is required to 
achieve larger non-repeating wave sequences. For example, a non-repeating sequence for 1000 waves, 
would approximately require ~1500  and ~2500 frequency components, for 𝑏𝑏𝐹𝐹 equal to 2 and 3, respectively.  

In order to reduce the computational cost, rather than directly processing the time series of free surface 
elevation using Equations 1 and 2 at each timestep, we introduce a novel reconstruction methodology based 
on signal processing using windows, also known as the smoothed periodogram method or Welch’s method 
(Welch 1967).  Window methods are typically used for processing signals and calculating smoothed spectral 
distributions. Herein it is used for pre-processing a free surface elevation time series and generating the 
wave field using a reduced number of frequencies. 

For initialising the process, a non-repeating time series is generated for the free surface elevation using 
Equation 1 with an appropriate number of frequencies components, according to Equation 4. The direct 
reconstruction is performed only once before the initialisation of the simulation and only for the free surface 
elevation. Once generated, the time series should be sub-divided into separate windows, each with a span 
ideally much shorter than the total duration..  Each window is then decomposed into a discrete spectrum by 
using Discrete Fourier Transform (DFT)  after which spectral characteristics (energy, phase) of each window 
are stored in memory to be utilised later for reconstructing free surface elevation and velocities.  Since the 
DFT algorithm requires the signal to be periodic, each window is filtered at the leading and tailing part using 
a cosine taper window (Harris 1978) according to Equation 7: 

 

𝐹𝐹(𝑡𝑡) =

⎩
⎨

⎧ 0.5 �1 + cos𝜋𝜋 �𝑡𝑡−𝑡𝑡1
𝑐𝑐
− 1��                                𝑡𝑡 ≤ 𝑡𝑡1 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 1                                                  𝑡𝑡 ≥ 𝑡𝑡1 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and 𝑡𝑡 ≤ 𝑡𝑡2 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
0.5 �1 + cos𝜋𝜋 �𝑡𝑡2−𝑡𝑡

𝑐𝑐
− 1��                                𝑡𝑡 ≥ 𝑡𝑡2 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

                𝑡𝑡 ∈ [𝑡𝑡1, 𝑡𝑡2] (7) 

 

where 𝑡𝑡1, 𝑡𝑡2 are the start and end times of the window interval and 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the duration of the filtering length. 
The windows need to overlap with each other, to avoid loss of energy, as the filtered leading and tailing part 
are filtered. A handover point is set in the overlap area for switching to the next window and this is defined 
following requirement for coupling with the relaxation zone (see Section 2.4). A graphical representation of 
the process is shown in Figure 1.  
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Figure 1: An example of spectral windowing method applied to reconstruct a random signal. Time series 
represented with dashed and solid lines red colour correspond to consecutive windows. The overlap area is 
highlighted with light grey, filtered areas with dark grey and the overlap point with a vertical dashed line. 

 

Due to the shorter span interval of each window, less frequency components are necessary to ensure high 
fidelity reconstruction of the time series.  The reconstructed free surface elevation and wave velocities are 
calculated by equations 8-10, respectively.   

𝜂𝜂(𝑥⃗𝑥, 𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖
𝑁𝑁𝑁𝑁(𝑡𝑡) cos�𝑘𝑘�⃗ 𝑖𝑖 ∙ 𝑥⃗𝑥 − 𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖

𝑁𝑁𝑁𝑁(𝑡𝑡)�𝑁𝑁
𝑖𝑖=1  (8) 

 

𝑈𝑈ℎ(𝑥⃗𝑥, 𝑧𝑧, 𝑡𝑡) = ∑ 𝑢𝑢ℎ(𝑖𝑖)
𝑁𝑁𝑁𝑁(𝑡𝑡) cos�𝑘𝑘�⃗ 𝑖𝑖 ∙ 𝑥⃗𝑥 − 𝜔𝜔��⃗ 𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖

𝑁𝑁𝑁𝑁(𝑡𝑡)� cosh�𝑘𝑘𝑖𝑖(𝑑𝑑 + 𝑧𝑧)�𝑁𝑁
𝑖𝑖=1  (9) 

 

𝑈𝑈𝑣𝑣(𝑥⃗𝑥, 𝑧𝑧, 𝑡𝑡) = ∑ 𝑢𝑢𝑣𝑣(𝑖𝑖)
𝑁𝑁𝑁𝑁(𝑡𝑡) sin�𝑘𝑘�⃗ 𝑖𝑖 ∙ 𝑥⃗𝑥 − 𝜔𝜔��⃗ 𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖

𝑁𝑁𝑁𝑁(𝑡𝑡)� sinh�𝑘𝑘𝑖𝑖(𝑑𝑑 + 𝑧𝑧)�𝑁𝑁
𝑖𝑖=1  (10) 

 
 
 

where 𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁,  𝜙𝜙𝑖𝑖
𝑁𝑁𝑁𝑁(𝑡𝑡), 𝑢𝑢ℎ(𝑖𝑖)

𝑁𝑁𝑁𝑁(𝑡𝑡) and 𝑢𝑢𝑣𝑣(𝑖𝑖)
𝑁𝑁𝑁𝑁(𝑡𝑡) are the wave amplitude, phase, horizontal and vertical velocity 

amplitude, respectively, for the 𝑖𝑖-th wave component and the 𝑁𝑁𝑁𝑁(𝑡𝑡)-th window.  The index 𝑁𝑁𝑁𝑁(𝑡𝑡) depends 
on the time variable.  

To further enhance computational speed the optimisations discussed in Dimakopoulos et al 2016 were 
applied. Furthermore, the hyperbolic functions in the wave velocity profiles are also approximated using a 
fast 10th order Taylor approximation. The approximation for the hyperbolic functions is applied up to a relative 
depth of one wavelength of component. Below this depth, velocities the wave dynamics are set to zero, as 
wave kinematics are expected to be relatively insignificant.  
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2.2. Relaxation zone method 
Wave generation and absorption is achieved using the relaxation zone method. The role of the relaxation 
zone is to gradually diffuse the boundary conditions within transitional areas using suitably selected 
weighting functions. This has been proven to absorb waves propagating outside of the numerical domain, 
both at the inlet (active absorption) and the outlet (passive absorption), so long as an appropriate length is 
used for the transitional zones (typically one or two wavelengths). In Proteus, only the velocity field 
corresponding to boundary conditions is imposed through the relaxation zone using appropriate penalty 
terms in the fluid momentum equations (equation 11) 

 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ (𝒖𝒖 ⋅ ∇)𝑢𝑢 = 1
𝜌𝜌

(∇𝑝𝑝 + ∇𝜏𝜏) + 𝒈𝒈 + 𝛼𝛼(𝒖𝒖 − 𝒖𝒖𝒕𝒕) (11) 

 

where 𝑡𝑡 is the time variable, 𝒖𝒖 and 𝒖𝒖𝑻𝑻 are the field and boundary velocity vectors, respectively, 𝑝𝑝 the 
pressure, 𝜏𝜏 the shear stress, 𝒈𝒈 the gravity vector, 𝜌𝜌 the density, 𝛼𝛼 is the penalty term coefficient and ∇=

� ∂
∂x

, ∂
∂y

, ∂
∂z

 � , with 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 being the spatial coordinates. Note that penalty terms are essentially source terms 

that create a tendency to the solution to converge to a known value. Using larger penalty coefficients 
increases this tendency. 

In order to determine the impact of the penalty term to the momentum equations, a dimensional analysis is 
performed according to the following assumptions for dimensional scaling: 

 

 𝑡𝑡′ =  𝑡𝑡 ⋅ 𝑇𝑇, where T is the wave period 

 (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) = 𝑐𝑐𝑐𝑐 ⋅ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) where 𝑐𝑐 is the wave celerity  

 (𝒖𝒖′,𝒖𝒖′𝒕𝒕) = 𝑈𝑈(𝒖𝒖,𝒖𝒖𝒕𝒕) where 𝑈𝑈 is a typical magnitude of the particle velocity 

 �𝜏𝜏′, 𝑝𝑝′𝑑𝑑�~𝜌𝜌𝑈𝑈2(𝜏𝜏, 𝑝𝑝𝑑𝑑)  where 𝑝𝑝𝑑𝑑 = 𝑝𝑝 − 𝜌𝜌(𝑔𝑔 ⋅ 𝒙𝒙), with 𝒙𝒙 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 

 𝑎𝑎′ = 𝑎𝑎 ⋅ 𝑇𝑇 

 

Note that the dimensional analysis is applied in the water phase, where wave propagation takes place. 
Applying these scaling consideration results in equation 12, which is a non-dimensional form of equation 11: 

 

𝜕𝜕𝒖𝒖′

𝜕𝜕𝜕𝜕
+ 𝑈𝑈

𝑐𝑐
(𝒖𝒖′ ⋅ ∇)𝑢𝑢′ = 𝑈𝑈

𝑐𝑐
(∇𝑝𝑝𝑑𝑑′ + ∇𝜏𝜏′) + 𝑎𝑎′(𝒖𝒖′ − 𝒖𝒖′𝒕𝒕) (12) 

 

According to the dimensional analysis all variables in Equation 12 are 𝑂𝑂(1) and therefore the relative 
importance of each equation term depends on the coefficients used for the dimensional scaling. Note that for 
nonbreaking waves, the particle velocity is always smaller than the celerity, so 0 < 𝑈𝑈

𝑐𝑐
< 1. Since 𝑈𝑈

𝑐𝑐
 is also 

generally 𝑂𝑂(1) or less, the relative importance of the penalty term is controlled by 𝑎𝑎′. When 𝑎𝑎′ ≃ 0, then the 
penalty term has no influence over the momentum equation, hence the velocity is calculated by the 
numerical solution. When 𝑎𝑎′ ≫ 1, the penalty term is dominant, and therefore the solution for the velocity will 
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converge to 𝒖𝒖′ = 𝒖𝒖′𝒕𝒕. Note that 𝒖𝒖′𝒕𝒕  can be either calculated from wave theories, thus acting as active wave 
absorption, or set to zero for passively absorbing outgoing waves at the outlet.  

The non-dimensional term 𝑎𝑎′ is equivalent to the dissipation term used in Nwogu and Demirbilek (2001) for 
the BOUSS2D model, where in essence they propose that 𝑎𝑎′ = 30 is sufficient for imposing 𝒖𝒖′ = 𝒖𝒖′𝒕𝒕 at the 
computational nodes next to the outlet boundary. At the interface of the relaxation zone and the numerical 
domain the solution is calculated by the momentum equation without the penalty terms, therefore 𝑎𝑎′ = 0. The 
transition from 𝑎𝑎′ = 0 to 𝑎𝑎′ ≫ 1 in the relaxation zone is achieved by using a suitable function. By rewriting 
equation 11 to take into account the analysis above, it is shown that: 

 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ (𝒖𝒖 ⋅ ∇)𝑢𝑢 = 1
𝜌𝜌

(∇𝑝𝑝 + ∇𝜏𝜏) + 𝒈𝒈 + 𝜎𝜎𝜎𝜎′

𝑇𝑇
(𝒖𝒖 − 𝒖𝒖𝒕𝒕) (13) 

 

where 𝜎𝜎 is a relaxation function varying from 0 to 1 along the length of the relaxation zone. There are various 
forms of this function proposed in the literature, herein we will use the one proposed in Jacobsen et al. 
(2012) as it has been shown to efficiently absorb waves by both Jacobsen et al (2012) and Dimakopoulos et 
al. (2016).  

Equation 10 is numerically implemented using the existing capability of Proteus for modelling flows in porous 
regions (Dimakopoulos et al 2017a), as the penalty term could be alternatively be considered as a Darcy-
type term for porous losses. The relaxation zones are defined as separate porous domains, where the 
porosity is assumed to be unity and the porous dissipation terms are set according to the penalty terms in 
Equation 10. Note that 𝒖𝒖𝒕𝒕 in the air phase is set by default to zero. 

2.3. Coupling window reconstruction with relaxation zone 
According to the window reconstruction method (Section 2.2), as the simulation advances in time, free 
surface elevation and velocities are calculated as shown in Equation 6 and Equation 7, respectively.  The 
phase and amplitude of linear wave components depend on the active time window.  The active window is 
tracked by comparing the simulation time against the original free surface elevation time series.  As the 
original time series is provided for a single point in space, the spatial dependency term 𝑘𝑘�⃗ ⋅  𝑥⃗𝑥 is constant for 
all linear components and can therefore be eliminated during the window processing stage, by conveniently 
setting the location of the series to coincide with the wave generation boundary. 

However, when using the relaxation zone method, the influence of the spatial dependency term must be 
taken into account, as the analytical solution is calculated for every mesh cell inside the relaxation zone.  
The spatial variability is then introduced as a phase lag in the calculation of each linear component for both 
free surface and velocity, according to the following equations: 

 

𝜂𝜂(𝑥⃗𝑥, 𝑡𝑡) = 𝑎𝑎𝑖𝑖
𝑁𝑁𝑁𝑁(𝑡𝑡) cos�−𝜔𝜔𝑖𝑖�𝑡𝑡 − 𝑡𝑡𝐿𝐿(𝑖𝑖)� + 𝜙𝜙𝑖𝑖

𝑁𝑁𝑁𝑁(𝑡𝑡)� (14) 

 

𝑈𝑈ℎ(𝑥⃗𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑢𝑢ℎ(𝑖𝑖)
𝑁𝑁𝑁𝑁(𝑡𝑡) cos�−𝜔𝜔𝑖𝑖�𝑡𝑡 − 𝑡𝑡𝐿𝐿(𝑖𝑖)� + 𝜙𝜙𝑖𝑖

𝑁𝑁𝑁𝑁(𝑡𝑡)� cosh�𝑘𝑘𝑖𝑖(𝑑𝑑 + 𝑧𝑧)� (15) 
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𝑈𝑈𝑣𝑣(𝑥⃗𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑢𝑢𝑣𝑣(𝑖𝑖)
𝑁𝑁𝑁𝑁(𝑡𝑡) sin�−𝜔𝜔𝑖𝑖�𝑡𝑡 − 𝑡𝑡𝐿𝐿(𝑖𝑖)� + 𝜙𝜙𝑖𝑖

𝑁𝑁𝑁𝑁(𝑡𝑡)� sinh�𝑘𝑘𝑖𝑖(𝑑𝑑 + 𝑧𝑧)� (16) 

 

where 𝑡𝑡𝐿𝐿(𝑖𝑖) = 𝑘𝑘�⃗ 𝑖𝑖 ∙ 𝑥⃗𝑥/𝜔𝜔𝑖𝑖 is the temporal lag due to the change of spatial coordinates.  The temporal lag 𝑡𝑡𝐿𝐿(𝑖𝑖) 
depends on the frequency component and the spatial coordinates and increases moving further away from 
the generation boundary and / or using higher wave frequency components to reconstruct the wave field.   

A graphical representation of the effect of the temporal lag term in the window method is shown in Figure 2.  
In the top panel, the black solid-dot line represents the temporal lag between the wave generation boundary 
for a given location in the relaxation zone for the i-th frequency component.  As the simulation time crosses 
the handover point between two overlapping windows (see bottom panel), the wave field at the generation 
boundary is calculated from the spectral properties of the subsequent window. Due to the temporal lag, the 
wave field in a downstream part of the relaxation zone may still need to be computed using the spectral 
properties of the previous window.  This may eventually cause inconsistencies during the reconstruction of 
the wave field in the relaxation zone.  

 

Figure 2: Effect of the temporal lag in window processing. Top: numerical wave tank with boundary (𝑡𝑡) and 
internal (𝑡𝑡-𝑡𝑡𝐿𝐿) points in the generation / absorption zones. Bottom: Temporal lag between 𝑡𝑡 and 𝑡𝑡-𝑡𝑡𝐿𝐿 in the 
context of the window method for wave generation 

 

In order to eliminate these inconsistencies, either of the two following conditions should be met for the 
maximum value the temporal lag (𝑡𝑡𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚)) in the relaxation zone: 

 𝑡𝑡 − 𝑡𝑡𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚) and 𝑡𝑡 belong to the same window; or 

 𝑡𝑡 − 𝑡𝑡𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚) and 𝑡𝑡 belong to adjacent windows and are both found in the common overlap area, excluding 
filtered areas 

The second requirement can be only met if the following restriction is valid 

 

𝑡𝑡𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚) ≤
𝑇𝑇𝑜𝑜
2
− 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (17) 
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where 𝑇𝑇𝑜𝑜 and  𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 are the duration of the overlap and filtering areas, respectively, in Figure 2.  

The recommended values of tL(max), Tfilt, To depend on the configuration of the numerical tank and the 
number of frequency components. It was found that for a typical configuration (length of generation zone is 
0.5 to 1 wavelength and up to 64 frequency components),setting Tfilt and To to 0.7 and 0.1 of the total 
window duration, respectively, meets equation 17 and ensures a smooth evolution of the time series. These 
values were adopted during the benchmark and the numerical wave tank tests presented further below. 

3. Demonstration and Benchmarking of the 
Windowed Reconstruction Method 

The window reconstruction methodology in Section 2 is benchmarked against direct reconstruction, in terms 
of both speed and accuracy. Random waves of significant wave height 𝐻𝐻𝑠𝑠=0.0125 m and period 𝑇𝑇𝑝𝑝 = 1.94  s 
were modelled.  Subsequently, the free surface elevation was constructed using band factor 𝑏𝑏𝐹𝐹 = 2 and 
𝑁𝑁 =2000 frequency components to create a statistically meaningful time series of free surface elevation 
corresponding to 1000 waves, according to recommendations from Section 2.1 (Equation 4). Different 
realisations of the benchmark were performed by using a range of parameters for windowed reconstruction. 
In particular we considered 𝑁𝑁𝑊𝑊 =16,32 and 64 waves per window and 𝑁𝑁𝐹𝐹 =8, 16, 32 and 64 reconstruction 
frequency per window. Wave phases in Equation 1 were randomly allocated once before initialising the 
benchmarks and then introduced to each benchmark, for consistency. Subsequently the free-surface 
elevation and velocities were reconstructed using i) direct reconstruction with 2000 frequency components ii) 
windowed reconstruction using all possible combinations of frequency components and waves per 
reconstruction window mentioned above (12 in total). We calculated the maximum errors of the free-surface 
and velocities according to the Equation (18). 

 

𝐸𝐸(𝑚𝑚𝑚𝑚𝑚𝑚) = max �|𝐹𝐹𝑤𝑤(𝑡𝑡𝑖𝑖)−𝐹𝐹𝑑𝑑(𝑡𝑡𝑖𝑖)|
𝐹𝐹𝑠𝑠

�  (%) (18) 

 

where 𝐹𝐹𝑤𝑤(𝑡𝑡𝑖𝑖) and 𝐹𝐹𝑑𝑑(𝑡𝑡𝑖𝑖) are variables (free-surface, velocity) reconstructed with the window method and 
direct method respectively and 𝐹𝐹𝑠𝑠 is a normalisation factor equal to the significant wave height 𝐻𝐻𝑠𝑠 and 
corresponding particle velocity 𝐻𝐻𝑠𝑠 ∗

2𝜋𝜋
𝑇𝑇

, for the free-surface elevation and velocities, respectively. Results in 

terms of free-surface elevation errors and speed up are shown in Figure 3 and Figure 4.  
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Figure 3: Maximum errors for the window reconstruction method plotted against 𝑁𝑁𝐹𝐹/𝑁𝑁𝑊𝑊 for all benchmark 
tests.  

 

Figure 4: Speed up achieved with the window reconstruction method for the free-surface elevation 
calculations, plotted against the number of frequency components per window. 
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In terms of errors, it is observed that for  𝑁𝑁𝐹𝐹
𝑁𝑁𝑊𝑊

≥ 2, a low error is maintained (~0.4% for free-surface elevation 

and ~0.2% for velocities). For lower ratios, maximum errors are unreasonable, whilst for higher ratios 
improvement in errors is not particularly meaningful (~0.1% or less). Calculation speed-up solely depends on 
the number of reconstruction frequencies, and reduces with the decrease of frequencies (Figure 4). Based 
on the results of this benchmark, a recommended set of parameters would be 𝑁𝑁𝐹𝐹 =32 and 𝑁𝑁𝑊𝑊 =16. In 
theory, further reducing 𝑁𝑁𝑊𝑊 would allow  𝑁𝑁𝐹𝐹  and associated speed-up to be reduced. This nevertheless is 
not recommended, as getting 𝑁𝑁𝑊𝑊 close or less than ~10 may compromise the integration of the windowed 
reconstruction method within the relaxation zone concept which was discussed in Section 2.4. In this case 
𝑡𝑡𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚) will increase due to the shorter wave components whilst 𝑇𝑇𝑜𝑜 and Tfilt will decrease due to the shorter 
window size, thus making difficult to accommodate the criterion set in Equation 17. 

These benchmarks did not use the Taylor approximations for the trigonometric and hyperbolic functions 
mentioned in Section 2.1 and Dimakopoulos et al (2016), so the resulting speed-up is purely due to the 
different reconstruction technique. By switching on the Taylor approximations the speed-up is further 
improved by a factor of ~2. The maximum errors of the wave height are not significantly affected, being 
0.3%, whilst the maximum velocity error at the free-surface is increased 1.1%.  

Note that this improvements only refer to the speed-up in the calculations performed in the relaxation zone 
method. The overall speed-up of the simulation is less than the one reported in this section and it will be 
reported in the next section, along with the random wave results.  

The window reconstruction method was therefore successfully applied for a linear reconstruction of 
components for random waves which is the predominant method used in both CFD and physical modelling 
studies. There is an ongoing discussion in the research and engineering community for the use of 2nd order 
nonlinear correction for wave generation (Orszaghova et al. 2014), which would require the generation of 
wave components outside of the primary frequency band (see Tucker 1995, Schaffer 1996 and Dalzell 
1999). The number of operations for performing the calculation of these components would be O(N2) rather 
than O(N), thus severely aggravating computational cost. In this case, the window method could be 
employed to significantly reduce computational cost. A potential way forward would  be to assume separate 
representative frequency bands and process each frequency band with the windowed reconstruction 
method, using different window properties, tailored to the characteristic frequencies of each band. Inclusion 
of nonlinear corrections will be pursued as future work. 

4. Numerical tests 
Random waves were generated by using the window reconstruction method described in Section 2. A 
numerical wave tank was used with operational length of 15 m and total height of 2 m. Random waves were 
generated with peak period 𝑇𝑇𝑝𝑝 =1.94 s (mean period 𝑇𝑇𝑚𝑚 ≃1.76 s), significant wave height of 0.15 m at water 
depth 𝑑𝑑 =1 m. The configuration of the wave flume is presented in Figure 2 (top panel). The generation and 
absorption zones are 5 m and 10 m long corresponding to one and two wavelengths, respectively, calculated 
using the peak period. The mesh is uniform consisting of triangular elements with constant element size of 
0.025 m. The time step was restricted using a maximum Courant number of 0.5.  

Initially, simulations were performed to compare the overall computational cost by using both the direct and 
the windowed reconstruction method. The aforementioned numerical tank was used, assuming a coarser 
mesh (0.05 s) and  a short simulation duration. The simulations were run both in serial and parallel execution 
and results of the net time per 1 s of simulation are shown in Table 1. These values do not include any 
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initialisation time, so the calculation was performed only for the time advancing loop of the algorithm. In any 
case, initialisation costs are similar, as these are mostly controlled by the extent of the mesh refinement and 
are typically a very small proportion of the overall simulation time.  

 

Table 1: Computational cost in seconds per second of simulation for direct and window reconstruction 
methods 

Execution method Direct method 
(s/s) 

Window method 
(s/s) 

Serial 618 390 

Parallel (12 processors)  202 66 

 

It is observed that the window reconstruction method yields an improvement of 40% and 70% to the total 
simulation time for serial and parallel execution respectively. The improvement is much better for parallel 
simulation. This is expected, as the mesh cells are equally distributed to each processor by the current CFD 
model and the processors containing the relaxation zone cells will face a larger computational burden, 
particularly for the direct reconstruction case. This computational burden is moderated by employing the 
window reconstruction method. This could be further improved by tackling load imbalance by using 
algorithms that can dynamically allocate mesh cells to each processor so that the workload is equally 
distributed, but such improvements are not discussed here in. 

The overall computational cost improvements depend on the relative size of the relaxation zone with respect 
to the total domain size. In our case, the relaxation zone takes up 17% of the overall domain, which is 
representative of a typical configuration for simulating engineering applications. Results suggest significant 
improvement in computational costs, particularly for parallel runs, thus demonstrating the advantages of the 
use of the window reconstruction method. 

Subsequently, we extended the parallel runs up to 10 s, in order to perform a comparison between the direct 
and the window reconstruction method. We recorded the free-surface evolution at x=7.5 m and results are 
presented in Figure 5 and we can see very good agreement between two methods. Slight differences 
observed can be due to the differences between the two methods, but also because the position of the 
triangular mesh elements may be slightly different between the two cases, due to the way that the triangular 
mesh generation is performed.  
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Figure 5: Free-surface elevation recorded in the numerical wave tank (x=7.5) for the direct and the  

 

A more meaningful assessment of the performance of the window reconstruction method can be achieved by 
performing a long simulation and calculating wave spectra and statistics. The simulation was run for 800 s 
(~470 waves) and free-surface elevation was recorded in the flume. Figure 6 shows comparison of the free-
surface elevation between Proteus and the analytical reconstruction calculations using Equation 6. The free 
surface elevation is shown at four locations i) end of the generation zone (x=0), ii) x=5 m ii) x=7.5 m and iii) 
x=10 m. The RMS errors for the particular time window are 7.2 % 9.7%, 10.8% and 12.2% for each location, 
respectively.  

 

Figure 6: Random wave generation and propagation in a numerical wave flume (𝐻𝐻𝑠𝑠 =0.15 m, 𝑇𝑇𝑝𝑝 =1.94 s). 
Top left: end of the relaxation zone (𝑥𝑥 =0), top right 𝑥𝑥 =5 m, bottom left 𝑥𝑥 = 7.5 m, bottom right 𝑥𝑥 =10 m. 
Dashed lines and solid lines correspond to results from Proteus and theoretical calculation using direct 
reconstruction method. RMS error is calculated from 10 s to 240 s. 
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To further investigate the capability of the model in generating random, non-repeating sequences, the wave 
height distribution following a wave-by-wave analysis is presented against �− ln(1 − 𝑃𝑃ℎ), where 𝑃𝑃ℎ is the 
probability of exceedance of each wave height in the top panel of Figure 7. The distribution is plotted at the 
same four locations as in Figure 5, and the statistical analysis is performed for the last 700 s (~400 waves).  
It is observed that the wave height statistics obey the Raleigh distribution, with the distribution being 
practically linear. It is also observed that wave heights are slightly reduced further away from the generation 
zone, which is probably due to numerical diffusion.   

 

Figure 7: Top: Statistical distribution of wave heights in the random wave series (𝐻𝐻𝑠𝑠 =0.15 m, 𝑇𝑇𝑝𝑝 =1.94). 
Bottom: Spectral energy distribution, compared to the JONSWAP spectrum 

 

The associated spectral distribution is presented in the bottom panel of Figure 7. The agreement with the 
theoretical JONSWAP spectrum is satisfactory, with the discrepancies owing to the relatively limited number 
of waves simulated. The spectral energy reduction is also evident further away from the generation, probably 
due to numerical diffusion. Following a 4-probe spectral analysis, the average reflection along the operating 
domain of the flume coefficient was found to be 7%.  The spectrum shows that the peak period and overall 
shape of the spectrum are captured very well, with the peak period predicted at 1.96 s (1% error). Some 
deviations are observed in the longer and short frequency areas. These are expected as most of the waves 



 
 

 

 
Fast random wave generation in numerical tanks 

Aggelos S. Dimakopoulos, Tristan de Lataillade and Chris E. Kees 

HRPP776 15 

will be in the nonlinear regime and therefore will be subject to nonlinear interactions that will alter the shape 
of the original spectrum.  

After applying a zero crossing analysis, the conservation of significant wave height 𝐻𝐻𝑠𝑠 (average height of the 
highest third of the wave sequence) are presented in Table 2 for each location.  Overall, the errors observed 
in Table 2 are less that the RMS errors in Figure 6 and this is probably because the RMS errors also include 
dispersion errors concerning the accuracy of the prediction of the wave celerity. Indeed, in Figure 6 there is a 
noticeable shift of the time series in the internal locations (𝑥𝑥 ≥ 10 m). In the context of modelling wave 
structure interaction processes, dispersion errors are not that significant, as long as there is a satisfactory 
conservation of the wave height and the peak period (shown in Figure 7). Wave period is relatively well 
predicted whilst wave height appears to be reduced by 2% on average.  

Errors in wave height are generally caused by numerical diffusion errors, as these contribute to energy loss 
(e.g. see Dimakopoulos 2016). These tend to increase further away from the generation zone, and this 
tendency is apparent in our case, subject to some fluctuations due to the randomness of the signal.  

 

Table 2: Peak period and zero crossing significant wave height and (T_p=1.94 s and H_s=0.15 m) 

Location 𝑻𝑻𝒑𝒑 (s) 

(theoretical) 

𝑻𝑻𝒑𝒑 (s) 

(Proteus) 

Error 

(%) 

𝑯𝑯𝟑𝟑(s) 

(theoretical) 

𝑯𝑯𝟑𝟑 (s) 

(Proteus) 

Error (%) 

𝒙𝒙 =0 

1.94 1.96 1.0 

0.148 0.146 -1.4 

𝒙𝒙 =5 m 0.148 0.145 -2.0 

𝒙𝒙 =7.5 m 0.148 0.142 -4.1 

𝒙𝒙 =10 m 0.148 0.147 -0.7 

Mean 0.1480 0.1450 -2.0 

 

5. Discussion and recommendations 
In this paper, a methodology for generating long non-repeating sequences of random waves and associated 
field variables (free-surface, velocity) is presented, suitable for use in computational models. The 
methodology utilises spectral window processing and it is proven that this allows the reconstruction of wave 
sequences comprising 1000 wave events by using O(10) frequencies rather than O(1000), which yields 
significant reductions in calculation times. By additionally applying optimisations techniques for reducing the 
time involved in calculating trigonometric and hyperbolic functions (e.g. see Dimakopoulos et al. 2016), the 
calculation times are further reduced, thus making the methodology approximately two orders of magnitude 
faster than a direct reconstruction method using standard C++ trigonometric and hyperbolic functions. In any 
case, the approximation errors remain low, with the maximum error against the original reconstruction 
technique being 1.1% or less.  
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This methodology was developed within the frame of an open-source CFD toolkit, Proteus, based on the 
finite element method. The toolkit is able to model two-phase incompressible free-surface flow using a 
coupled VOF-level set scheme. The methodology for fast wave generation presented herein is most suitable 
for relaxation zone methods, as in this case the calculation of the wave field is performed in multiple cells in 
the domain. A relaxation zone method is therefore employed in the current model. Numerical tests were 
performed simulating long random wave sequences in order to investigate the overall benefit of in terms of 
the simulation time and the coherency of the wave field in the wave flume. In general, results are 
satisfactory, as the target wave field match reasonably well the theoretical one imposed as a boundary 
condition and the spectral and statistical characteristics were reasonably well maintained in particular for the 
most energetic part of the wave series. In addition, the use of the window reconstruction method allows for a 
reduction from 40% to 70% to the total simulation time for the case study tested herein, which is 
representative of a typical numerical wave tank used for engineering applications.  
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