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Summary

This report describes the theoretical and experimental background
to the design methods for roof gutters and gutter outlets that are
contained in a revised version of British Standard Code of Practice
CP 308. The report is divided into two parts.

Part 1 describes theoretical solutions for smooth level gutters of rec-
tangular, trapezoidal and half-round cross-sectional shape. The effects
of resistance, bends and slope are then considered. The theoretical
solutions are modified so as to provide a consistent factor of

safety, and are presented in forms that are suitable for design.

Part II is concerned with the capacity of rectangular and circular
outlets in gutters and box-receivers. The results of an experimental
study of 77 different configurations are analysed, and used to
produce suitable design formulae for the Code of Practice.






Symbols

A = Cross-sectional area of flow
Ap = Plan area of outlet
a = (i) Acceleration of fluid (Part II)

(i) Strength of sink in potential flow (Appendix B)

B = Surface width of flow

By = Sole width of gutter

B = Depth-averaged width of flow in gutter = Aly)

b = (i) Effective side-slope of gutter, such that width
increases b units per unit increase in depth (Parts I and II)
(ii) Strength of vortex in potential flow (Appendix B)

C = Discharge coefficient of drain pipe

Ca = Discharge coefficient of outlet for orifice-flow

Cg = Discharge coefficient of gutter

Cw = Discharge coefficient of outlet for weir-flow

c = Constant for cross-sectional shape of gutter; equation (65)

D = Diameter of outlet

D, = Top diameter of outlet

D, = Bottom diameter of outlet

e = Aspect ratio of rectangular gutter based on depth of
flow at outlet (= Bs/yo)

F, = Froude Number at outlet of gutter

f = Quantity in analysis of sloping gutters; equation (131)

G = SSO/)\; non-dimensional quantity

g = Acceleration due to gravity

H = Total head above weir or orifice

h = Static head above weir or orifice

I = Exponent in approximate solution for effect of resistance
in gutters; equations (92) and (95)

J = Non-dimensional quantity for capacity of rectangular and
trapezoidal gutters; equation (23)

K = (i) Non-dimensional quantity for capacity of half-round

gutters (Part I); equation (56)
(ii) Constant describing effect of lateral inflow on resis-
tance (Part I); equation (115)

k = (i) Head loss coefficient at bend in gutter (Part I)
(ii) Constant in equation for capacity of drain pipes (Part
II and Appendix B); equation (208)

kg = Equivalent sand roughness
L = (i) Length of gutter (Part D
(ii) Length of outlet measured along centre-line of
gutter (Part II)
c = Distance of critical section from upstream end of gutter

2 = YolYe
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=
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= Flow force due to fluid pressure and momentum

= Exponent for cross-sectional shape of gutter; equation
(65)

= Number of measurements
= Manning’s resistance coefficient

= Wetted perimeter of flow

Ratio of depth of flow at upstream end of gutter to
depth of flow at outlet (= yu/yo)

Value of p for a freely-discharging gutter

= Discharge

= Theoretical discharge in gutter for a freely-discharging
flow with a specified value of total head

= Theoretical discharge at weir for a specified value of
total head

= Rate of inflow per unit length of gutter

= (i) Hydraulic radius (= A/P) (Part I)
(ii) Radius of curvature of flow (Part II and Appendix B)

= Reynolds Number (= 4VR/»)
= Radius of half-round gutter

= Standard error

= Friction slope

= Bed slope of channel
= x/L

= yulYe

= Non-dimensional quantity in analysis of resistance effects
in level gutters; equation (100)

= byo/ By

= (i) Velocity of flow
(ii) Non-dimensional quantity in analysis of resistance
effects in level gutters, equation (101)

= Bs/Bu
= (i) Top width of gutter (Part I)

(ii)) Width of outlet measured normal to centre-line of
gutter (Part II)

= By/B

=1+ 1.5F;
= Distance along gutter measured from upstream end

o}

= Distance of point of maximum depth from upstream
end of gutter

= Depth-averaged widths of flow on either side of gutter
outlet

Depth of flow measured normal to invert of gutter
Depth of freeboard

Overall depth of gutter

Maximum depth of flow in gutter



Superscripts

Subscripts

Depth of flow in gutter at outlet

Depth of flow at upstream end of gutter

Maximum depth up to which flow at outlet is of weir-
type
Distance of centroid of area below fluid surface

= Notional depths derived from discharge; equations (28)
and (203)
= Ratio of top width of gutter with restricted discharge to

top width of gutter with same flow but discharging
freely (= W/W.)

= (1) Non-dimensional resistance parameter (Part D;
equation (89)
(ii) Coriolis energy coefficient (Part II)

= Limiting value of « for a gutter wide in relation to the
depth of flow

1 — G/Gq

Discharge coefficient for partial width of gutter

Discharge coefficient for unrestricted flow

1 — x,/L

i 1 - Sf/ So
(i) Measure of surface roughness; equation (115)

1 — YmlYo

Half-angle subtended by water surface at centre of half-
round gutter

Darcy-Weisbach friction factor

Kinematic viscosity

Standard deviation

hfye — 1

Angle between streamline and normal to radius

=Y/yC - 1

= Value of quantity T including effect of friction

Value of quantity T including effect of bend

Critical depth
Design
Effective

= Maximum

= Normal depth
= Qutlet
Rectangular

= Triangular
= Upstream
= Non-dimensional
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PART 1

Introduction to parts I and II

The capacity of a gutter depends upon the flow conditions at the
outlet, and the way in which the flow profile varies along the length
of the gutter. Lateral inflow from roofs or other surfaces is the
principal distinguishing feature of flow in gutters, and it has been
found that in level gutters it is the most important factor affecting
the flow profile. The theoretical equations governing non-uniform
flow with spatially-varying discharge are well established(!1: 16), and
can be solved directly for certain special cases. Beijm measured the
capacities of level half-round and rectangular gutters, and found that
they agreed quite well with the predicted capacities obtained by
neglecting the effects of hydraulic resistance.

Guidance on the design of roof gutters was provided in a series of
digests by the then Building Research Station (BRS)(7’ 8,9, 10);

the quoted capacities of eaves gutters were based on the results of
experiments(12 _In 1974 a British Standard Code of Practice CP 308:
1974 “Drainage of Roofs and Paved Areas” was published, and
incorporated some of the design methods proposed by BRS. Eaves
gutters for small buildings were designed on the basis of the BRS
experimental results(lz), but valley gutters and gutters for larger
buildin%s were designed according to the theoretical method developed
by Beij D for rectangular gutters. Design methods recommended in -
other countries include those given by Martin@®3) in Australia and
Schwarz and Culligan(zs) in South Africa.

In 1976 it was decided to revise CP 308 in order to improve its
layout and to include new work on the meteorological and
hydraulics aspects of the design methods. This report describes the
hydraulics section of the work and is divided into two parts. Part 1
concerns the determination of the flow profile in gutters of different
cross-sectional shapes, and is based on theoretical solutions of the
gradually-varied flow equation. Part II concerns the determination of
flow conditions at gutter outlets, and is based on an analysis of a
large number of experiments which were carried out by the British
Hydromechanics Research Association(13) under an extramural
contract placed by the Hydraulics Research Station.

FLOW IN GUTTERS

Governing equations .

The general equation describing steady gradually-varied flow in a
channel with lateral inflow is obtained by considering the balance
between the forces acting on a small element of the fluid. The
derivation of the equation is given in standard texts(11s 16), and
may be written (see “Symbols” for the definitions of the symbols
used)

dy _ So — S¢ — 2aQleA?)
dx 1 — BQ¥@A?)

In this form the equation contains the following assumptions:

(1)

(a) the lateral inflow q initially has no component of momentum
in the direction of flow in the channel.

(b) pressures in the fluid are hydrostatic (ie the streamlines are not
curved).

(c) the velocity over a cross-section is uniform (ie the energy and
momentum coefficients are equal to unity).



Beij(l) determined theoretical flow profiles in certain types of level
gutter (S, = 0) by neglecting the effects of resistance (putting S¢g=0)
and integrating equation (1) directly. The same results can be
obtained more directly by considering the balance between the flow
force exerted by the fluid at the upstream and downstream ends

of the gutter. The flow force M acting at a channel cross-section

is given by

M=pgA§+p%2 2)

where y is the distance from the surface of the fluid to the centroid
of its cross-sectional area; the first term is the force due to the
hydrostatic pressure and the second term is the force due to the
flux of momentum through the cross-section. Since the weight of
the fluid has no component along a level gutter and since frictional
effects are neglected, it follows that the flow force M,; at the up-
stream end of the gutter must equal the flow force M, at the outlet.
At the upstream end the velocity is zero so that from equation (2)
2
gAu§u=ngVo+& 3)
A
where Q is the discharge at the outlet. If flow conditions at the
outlet are expressed in terms of the dimensionless Froude Number
F, defined by

For = 2o % )
g A}
equation (3) may be written
_ _ A’
Ay ¥y =4y, + F2 —2 3)

By
Equation (5) shows that the relationship between the depth of flow
yy at the upstream end and the corresponding depth Vo at the out-
let depends only upon the cross-sectional shape of the gutter and
the Froude Number F,, for the case in which So = 0 and S¢ = 0;
it should be noted that the length of a gutter does not here affect
its capacity.

3 Smooth level gutters

Trapezoidal gutters 3.1 The cross-sectional shape of a trapezoidal gutter may be described
by two parameters: the width Bg of the sole of the gutter and its
effective sideslope b. The effective side-slope b is defined such that
the width of flow increases b units per unit increase in depth (see
Fig 1a). The values of B, A and y for a trapezoidal gutter are
therefore given by

B =B +by (6a)
A =B+ by (6b)
— _ (Bg +by/3)y

2 (B, + by/2)y

Substituting these relationships in equation (5) gives

(6¢)



Half-round gutters 3.2

1

1 (Bg + = by )lvy
Ly Bt loyy =Ly B+ Loy R 2 2
3 (B, + b yy)
N
If ratio p and u are defined such that
y
p=22 (®)
Yo
by,
u —
5 €))

S

equation (7) can then be written in a simpler non-dimensional form
as
2 1 3 1 ¢+ % W
pP+ipu=l+-u+2_ _ < F? 10

3 3 1+uw °© (102)
For a given shape of gutter and for given conditions at the outlet
(ie yq and F), equation (10a) enables the value of the ratio
p (= yu/yo) to be determined. Unfortunately a direct solution is
difficult because the equation is a cubic in p, but it can be re-arranged
as a quadratic in u

wdp -L_1g-2 ! 4
3p 2 2Fo)+u(—3‘P3+p2—§_2F02)

+ (> —1-2F)=0 (10b)

Values for a graphical plot can therefore be obtained by treating
p and F, as the independent variables and solving for u; results
are shown in Figure 2.

Rectangular and triangular gutters may be treated as special types
of trapezoidal gutter. For a rectangular gutter b = 0 and u = 0,
so that equation (10a) becomes

p=(l+2F2)" (11)

Thus for a level rectangular gutter discharging freely (F, = 1), the
depth at the upstream end is 1.732 times the depth at the outlet
(neglecting the effects of resistance).

For a triangular gutter the sole width By = 0, but b is finite.
Reverting to equation (7) it may be shown that

1/3
p=(+2 JO% (12)

Thus for a level triangular gutter discharging freely, the depth at the
upstream end is 1.357 times that at the outlet (neglecting the
effects of resistance). Equations (11) and (12) are plotted in Figure
2, and it may be seen that the curves for trapezoidal gutters lie
between those for rectangular and triangular gutters.

British Standard half-round gutters(4’ 5, 6) may be of two types:

frue half-round and nominal half-round (see Figures 1b and Ic). Only
a very small error is incurred if the cross-section of a nominal half-
round gutter is assumed to be an arc of a circle (see Figure 1c).
The cross-sectional shape of a half-round gutter may be defined by
two parameters: the radius r and the angle 6 (in radians) such that

g =cos? (1 — %) (13)



Flow profiles 3.3

The values of B, A and y for such a gutter are given by

B = 2r sing (14a)
A= % r* (29 — sin 29) (14b)
I & sing — 26 coso + 1 sin36)

y =_2 6 (14c)

(26 — sin26)

Substituting these results in equation (5) gives the following relation-
ship between the values of § at the upstream and downstream ends
of the gutter

3 3

. 1 . e .
> sinf; — 26u cosf,, + 3 s1n3(9u = ) sing , — 20

5 cosf o

)
1_:92 (20, — sin26 )

4 siné

+ % sin3(:?0 + (15)
If this equation is solved by trial-and-error, the results can be con-
verted by means of equation (13) to give values of the ratio

p (= yu/yo) for different values of the Froude Number F0 at the
outlet. Figure 2 shows curves for true half-round and nominal
half-round gutters when just flowing full at their upstream ends;

it may be seen from these curves that half-round gutters are approx-
imately equivalent to trapezoidal gutters having a value of u = 1
(see equation 9).

The results obtained in 3.1 and 3.2 only deal with the conditions

at the upstream and downstream ends of a gutter, and do not
specify how the lateral inflow enters the gutter (except that initially
it should have no momentum in the direction of flow). The relation-
ship between the depths of flow at the upstream and downstream
ends of a gutter is therefore the same whether or not the inflow is
uniform along its length.

The flow profile in a smooth level gutter can be found by generalis-
ing equation (3) so that it applies to an arbitrary point along the
gutter where the discharge is Q and the depth and cross-sectional
area are respectively y and A:

2
Q—O (16)
o :
Combining this with equation (4) and expressing the result in non-
dimensional form gives

= 2 —
gAYy +% = gAY, t

— A =
(f‘—)"a &) + F.2 0y Q 3 = Yo 2 (Ao A
) e —= # F3* )y ) a7
Ao Yo B¥o ™ Q Vo © By, Ao) an
As an example of its application, this result simplifies in the case of
a rectangular gutter to

&y +2F @y =1+ 2F2) (O (18)
Yo Qo Yo

Thus the ratio ¥/¥, at any point depends only upon the Froude
Number at the outlet and the ratio of the discharge at that point to
the discharge at the outlet. If the lateral inflow is uniform, the

ratio Q/Q, may be replaced by the ratio x/L where L is the length
of the gutter, and x is the distance from the upstream end of the
gutter to the point in question. The equivalent result for a triangular
gutter is



4
General 4.1

Capacity of trapezoidal
gutters 4.2

& +3 p 2 Q2 =(1+§F2 Y \2
yo 2 [s) Qo) 2 [s) ) (yo) (19)
Figure 3a shows the flow profiles in rectangular and triangular gutters
when they discharge freely at their downstream ends (F, = 1.0).
When the discharge from the gutters is restricted, the profiles become
flatter as shown in Fig 3b for the case of F, = 0.5.

Design of gutters with free discharge

Beij(l) carried out experiments on level rectangular and half-round
gutters discharging freely at their downstream ends. The depths
measured at the upstream ends of the rectangular gutters were
compared with the depths predicted by equations (11) and (4).

As expected the measured depths were all greater than the theoretical
depths obtained by neglecting the effects of resistance. The differ-
ences were however relatively small and varied between about 5%
and 20% with an average of about 8%; the 152mm wide gutter

that was used had a length of 9.6m, and the 76mm wide gutters

had lengths varying between 2.1m and 6.7m.

CP 308: 19743) recommends that for a freely-discharging gutter
the upstream depth of flow should be assumed to be twice the
critical depth at the outlet, ie that a value of p = 2 should be
used. For rectangular gutters this recommendation provides a safety
factor (in terms of upstream depth) of 15% compared with the
theoretical value of p = 1.732, and is on the safe side compared with
almost all Beij’s measurements. However, the same design figure

of p=12is recommended in CP 308: 1974 for all types of gutter
so that in the case of a triangular gutter there is an equivalent
safety factor of 47%. The relative difference between rectangular
and triangular gutters is even more marked in terms of discharge
capacity, the theoretical safety factors being 24% and 164%
respectively.

When the revision of CP 308 began, it was decided that the method
of design should be altered so that the same theoretical safety factor
would be applied to the discharge capacities of gutters of different
cross-sectional shapes. A safety factor of 24% was chosen so that the
design capacity of a rectangular gutter would be unchanged from that
given in CP 308: 1974; the new method of design however leads

to more economical design of trapezoidal and triangular gutters.

It is recommended in CP 308 that outlets to gutters should be large
enough to allow the flow to discharge freely at the downstream end
(so that Fy = 1). A typical design problem therefore involves
finding the capacity of a freely-discharging gutter with specified
dimensions and cross-sectional shape. The design depth of flow yy,
at the upstream end of a gutter is found by subtracting the free-
board yg from the overall depth Vg The freeboard is intended to
allow for the effect of splashing and waves, and is in addition to
the safety factor considered in 4.1; the figure recommended in

CP 308 for yg is 2/7 of Vg UP to a maximum of 75mm.

Starting from equation (4), the discharge capacity Q, of a freely-
discharging gutter is given by
A 3
Q, = VE ) (20)
By
5



The values of A, and B, are not initially known, and therefore need
to be expressed in terms of ¥y, and the specified cross-sectional
shape of the gutter.Let ratio P, and v be defined such that

y
P ==L (21)
Yo
— BS
V== (22)
Bu

where the subscript ¢ denotes the value for a freely-discharging
gutter in which the depth Vo at the outlet is equal to the critical
depth V.- It can then be shown that

1
% _|a ks o 0.4387 J (23)
Ve Bu Yu3/2 8pa:: (L =% PcY)

where the factor J is equal to unity for a rectangular gutter. It is
still necessary to determine the relationship between p; and v,
but this may be done by means of the results obtained in 3.1. Since

_ by,
B

u = (@) cu) (y_o) =0 -V (24)
s Yu Bs' vy PY
equation (10b) may be solved to give

22p03—5£ (25)
—{pd+pd —10p+5{ + pov/ §ps —6pF+9p+16p2 —30p2 +1 of

v=

Equations (23) and (25) taken together enable the theoretical cap-
acity of a freely-discharging, level, trapezoidal gutter to be determined
directly from its dimensions. The upstream flow depth y,, is

found by subtracting the freeboard allowance from the overall

depth of the gutter. The value of the ratio v can then be calculated
since the sole width By is known, and the width of flow B, is
determined by Yy and the cross-sectional shape of the gutter. The
variation of the dimensionless quantity J in equation (23) with the
shape factor v is shown in Figure 4.

As described in 4.1 it was decided that the new design method
should provide a safety factor of 24% in terms of discharge so that
it would give the same result for a rectangular gutter as the existing
method in CP 308: 1974. The exact value of the ratio between the
design capacity (given by Pe = 2, v = 1 for a rectangular gutter) and
the theoretical capacity may be shown to be 3075 /21'5 = 0.8059

= 1/1.241. Applying this factor gives the design curves that are
shown in Figure 5 and in which the relevant units are mm and 1/s.

Although the above approach enables the capacity of a gutter to be
estimated directly, it was found that it did not fit in well with some
other parts of the code. Therefore in the final stages of the drafting
it was decided to adopt an alternative approach that gave the same
results, but in a way that was easier to follow. In this method the
designer first has to determine the ratio of the depths of flow at
the upstream and downstream ends of the gutter (ie the value of pc)s
which depends upon the cross-sectional shape of the gutter. Having
thereby found the depth Yo at the downstream end, he then calcul-
ates the discharge at the outlet from equation (20). This approach
is similar to the one in CP 308: 1974, and should therefore be
simpler to understand for designers who are familiar with the
previous code.



Sizing of trapezoidal
gutters 4.3

The relationship between the theoretical value of p, and the shape
factor v of the gutter is found from equation (25) and is shown in
Figure 5b. It is now necessary to modify the theoretical curve so

that it will incorporate the required discharge factor. The design

curve must give the same upstream depth of flow y,, as the theoretical
curve but at a discharge which is 0.806 that predicted by equation
(23). The value of v is the same in both cases so that equation

(23) gives

1-v+2pqv P [Pe [SLZVTRY | _ 3us (26)
1 — v+ 2p.v Ped 1 — v+ pegV 4 -

where p.q is the design value of the ratio. The relation between
p. and v is fixed by equation (25), so that values of pyq can be
found by trial-and-error. The resulting design curve for p.q is
shown in Figure Sb, which also gives the theoretical and design
curves for p, and p.q as functions of the ratio BS/B0 (see 5.1).

An alternative design problem to the one considered in 4.2 is that
in which the discharge Q is specified and it is required to find the
upstream depth of flow y,,. In order to solve the problem it is first
necessary to choose suitable values for the sole width B and the
effective side-slope b; in the case of a valley gutter these quantities
are often determined by the cross-sectional shape of the roof.

Since the gutter is assumed to discharge freely, equation (4) may
be written
W' _ A

g By

It is now convenient to define a notional depth Z based on the
specified discharge Q such that

27

2
Z = (Q_0)1/5 (28)
g
Defining the ratios
y
P, = & (21)
Yo
by,
u= — 9
B 9)

s

where the subscript ¢ denotes the value for a freely-discharging
gutter, and using equations (6a), (6b) and (28) enables equation
(27) to be written in the form

<

Z—o- . (11 + u);/3 (29)
1+ Luy €823
1+ 7 u) (Z )

Substituting equation (9) in equation (29) and re-arranging gives

B
=1+ u)l/s (9)3/5

Z (30)

1+ %u)3/5 “

The unknown upstream depth y,, can be related to Bg by combining
equations (21) and (9) to give
Yu

=Pt B
7 = G €3



Half-round gutters 4.4

The relationship between p; and u that is needed to complete the

solution is found by putting Fy =1 in equation (10b) so that
_ — {p3+3p2 —10{ + V/{p S —6p S +9p st +16p —30p.+10}

205} (

Equations (30), (31) and (32) together enable the upstream depth of

flow y,; to be calculated for a freely-discharging gutter in which Q,

B and b are specified. A general graphical solution can be construc-

ted by choosing p. as the independent variable. A value of 8

first assumed (between the limits of 1.732 for a rectangular gutter

and 1.357 for a triangular gutter), and the corresponding value of

u found from equation (32). Together with the chosen value of b,

this enables the corresponding values of BS/Z and yu/Z to be

calculated from equations (30) and (31). The process may then be

repeated for other values of b and then for other values of Pe:

Rectangular and triangular gutters need to be treated as special cases

since the above equations are not valid when u = 0 or b = 0. However

it is simple to show that for a rectangular gutter

= _\/_§_ (33)
(By/Z)*3
and that for a triangular gutter

32)

N’;

y 1/5
u - (513 8IS
Z 2 b2/5
Theoretical curves of yu/Z Versus BS/Z for different values of b
are shown in Figure 6a.

(34)

In order to use this method for design it is necessary to modify the
theoretical curves so that gutters designed according to them have
design capacities that are 80.6% of their theoretical capacities (see
4.2). This can be done by multiplying all the theoretical values of
yu/Z and B /Z by the ratlo 0 80604 = 1, 090, since from equation
(28) Z is proport1ona1 to Q . The resulting design curves are
shown in Figure 6b.

During the final stages of the drafting of the Code it was decided
to shorten the text and reduce the number of design methods. The
results obtained in this section have not therefore been included in
the new Code.

The theoretical relationship between the depths of flow at the up-
stream and downstream ends of a freely-discharging half-round

gutter is found by putting Fo = 1 in equation (15). Eaves gutters
are normally designed to just flow full at the upstream end, so

that for a true half-round gutter the upstream angle 9, = 7/2 (= 90°)
in equation (13). Solving equation (15) by trial-an d-error gives at
the downstream end the theoretical value 6, = 1.217 (= 69.8°).
The corresponding values for a nominal half round gutter (see

Figure 1c) just ﬂowmg full at its upstream end are o, = 1.403

(= 80.4°) and 6, = 1.103 (= 63.2°). The discharge Q,, correspon-
ding to a value of 8, is found by means of equations (4) (14a) and
(14b) to be

- Fo ((2,
Q 4_3

Substituting the above values of 0, in equation (35) gives for a true
half-round gutter with free discharge Fy=1)

V(er® (35)

sind o

— §in26 )3 g
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Q, = 0.6159 V(g®) (36)

while for a nominal half-round gutter the equivalent result is
Q= 0.4384 /(gr’) 37

Capacities of half-round gutters have been measured by Beij(l),
Crabb et al(lz) and Marsh(22). Beij(l) found that his measurements
for true half-round gutters were approximated by

Qg = 0.52 V(&) (38)

which is similar in form to equation (36) but with a coefficient

that is 84% of the theoretical one. Table 1 shows a compatison
between the measurements of Crabb et al(12) and Marsh! 2) and

the theoretical capacities predicted by equations (36) and (37). It
can be seen that the ratios of the measured to the theoretical
capacities are all fairly close to the figure of 80.6% that was
adopted for the design of trapezoidal gutters in the revised version
of CP 308 (see 4.2). It does appear however that nominal half-round
gutters generally have higher relative‘cagacities than true half-

round gutters. Beij(l) and Crabb et al1?) poth found that varying
the length of a gutter had little effect on its capacity; this suggests
that theeffects of frictional resistance were relatively small. It is
likely that the differences between the three sets of experimental
results occurred because splashing and turbulence in the gutters made
it difficult to determine the limits of overtopping precisely.

As mentioned above, no allowance for freeboard is normally made
when designing eaves gutters. It was therefore decided that the
factor of safety applied to the theoretical solutions should be
somewhat higher for half-round eaves gutters than for trapezoidal
valley gutters so as to give design capacities that were on the safe
side compared with all the experimental measurements. A suitable
factor was obtained by assuming the depth of flow at the down-
stream end of a freely-discharging gutter to be 5/9 the overall
depth of the gutter; this gives design capacities that are respectively
72.9% and 71.8% of the theoretical capacities of true and nominal
half-round gutters (compared with the figure of 80.6% used for
trapezoidal gutters). Equations for the design capacities are found
from equation (35) using a value of 64 = 1.110 (= 63.6°) for
true half-round gutters and a value of 8, = 1.004 (= 57.59) for
nominal half-round gutters. Expressing the results in terms of the
top width W of the gutter (see Figures 1b and 1¢) and using the
system of units (mm and 1/s) adopted in CP 308 gives for true
haif-round gutters

Q, = 7.861 x 10 W32 (39)
and for nominal half-round gutters

Q, = 5.511 x 107 W32 (40)

If true half-round gutters are used as valley or parapet wall gutters,
CP 308 recommends that an allowance of 2/7 the overall depth

of the gutter should be made for freeboard. Thus the depth of
flow at the upstream end of the gutter corresponds to an angle

0y = 1.281 (= 73.4°) in equation (13). Solving equation (15)

for the case of a freely-discharging gutter gives at the downstream
end a corresponding value of 64 = 1.015 (= 58.29). Substituting
this value in equation (35) gives for the theoretical capacity of a
true half-round valley gutter

Q, = 0.3276 V(&) @1)
9



Since CP 308 recommends the same amount of freeboard for all
types of valley gutter, the same discharge factor of 80.6% has been
used for half-round gutters as for trapezoidal gutters (see 4.2).
Therefore in terms of the top width W, the design equation for
freely-discharging true half-round gutters is

Q, = 4.623 x 107 W52 (42)

where the appropriate units are I/s and mm.

5 Design of gutters with restricted discharge

Trapezoidal gutters 5.1 Although CP 308 recommends that outlets should be sufficiently
large to allow gutters to discharge freely, this may not be practicable
or economic if the gutter has a considerably larger capacity than
the design rate of flow; this can occur where the dimensions of a
gutter are determined by the cross-sectional shape of the roof. In
such cases it may be convenient to use a smaller size of outlet that
prevents the gutter from discharging freely, and thereby causes some
backing up of the flow.

In order to design a gutter with restricted discharge it is first neces-
sary to assume a rate of flow and then to calculate the head needed
to pass that flow through the outlet (using design equations such

as those given in Part II). The relationship between the unknown
depth of flow at the upstream end of the gutter and the known
conditions at the outlet can be determined by means of the method
described below. If the upstream depth exceeds the allowable depth
in the gutter it is necessary to repeat the procedure with a lower
rate of flow.

It will be assumed that the discharge Q0 has been specified and that
the depth of flow Yo at the outlet has been calculated. The values
of B, and A, that correspond to Yo are determined by the cross-
sectional shape of the gutter which is also assumed to have been
specified. The Froude Number F, at the downstream end can

then be determined from equation (4); if F0 > 1 the outlet does
not in fact restrict the discharge of the gutter which may therefore
be designed according to the methods given in 4.2 and 4.3.

Ratios p, w and X are now defined such that

y

p=-4 (8)
Yo
By

w=_8S “43)
B,

X=1+3 F. 2 44)

2 (8]

where By is the sole width of the gutter. As described above the
values of w and X are known and the problem is to find the cor-
responding value of p. From equation (9) it follows that

u=l-w (45)
w

Equation (10b) can therefore be solved to give

10



_ 24p*—
fp? —3p7+2X] + v [p° | p° —6p* +9p—4{ + 4X{2p° 37 +1¢ ]

The resulting variation of p with w and F is shown plotted in
Figure 7a.

(46)

It is now necessary to modify the theoretical curves of p versus F,
and w in Figure 7a so that they are suitable for the design of
gutters with restricted discharge. At the limit when Fj = 1, the
design curves must be consistent with those for freely-discharging
gutters (see Figure 5b), and must therefore give capacities that are
0.806 of the theoretical capacities. At the other limit when Fy - 0,
the water surface in the gutter will be horizontal in both the design
and the theoretical cases. It therefore follows that there will be no
reduction from the theoretical to the design capacity at the limit
when Fg - 1. The way in which the discharge factor is varied from
0.806 to 1 for values of F between 1 and O is a matter of choice,
but is subject to one important condition. This condition requires
that, for a given discharge, the depth of flow at the upstream end
of a gutter must increase steadily as the depth of flow at the down-
stream end is increased. If this requirement is not satisfied a gutter
with restricted discharge could be found to have a higher design
capacity than one which discharges freely. Although this condition
might seem easy to satisfy, it in fact proved crucial when defining
the shape of the design curves of p versus Fy and w.

As explained above the limiting values of p versus w for freely-
discharging gutters must be consistent with the design values in 4.2
which were obtained in terms of p versus v = Bs/Bu (the use of v
is unsuitable here because B is initially unknown). However it is
simple to show from equation (6) that

B vp

v l1+vpp =V @7
This enables the curves of p versus w for freely-discharging gutters
to be obtained as shown in Figure 5b. Also it is known that when
Fo—> 0 the value of p must > 1 for all values of w. The problem
is therefore to define the shape of the design curves of p versus F
and w between these end points in a satisfactory way. The procedure
described below is unfortunately rather complex, and is included
here only for completeness. As there is no single “correct” set of
design curves, it is perhaps sufficient to be aware that the procedure
satisfies the condition described above.

The first step is to determine from the theoretical solution how
the upstream depth of flow y, varies when the discharge Q at the
outlet is kept constant and the Froude Number F at the outlet is
reduced. For this purpose it is useful to consider the ratio

t=70 (48)

Ye
where y, is the value of critical depth corresponding to the discharge
Q; if Q is kept constant, y, also remains constant. The theoretical
relationship between p = yu/yo, Fo and w has already been determined
in equation (46); the required value of t can therefore be found if
p is multiplied by the ratio

¢e=Yo (49)
Ve
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Now it can be shown from equations (4) and (6) that

Q53w2+(1—w)§; Wl 3
2w+ (1 — w) F,’

so that ¢, like p, can be found as a function of F, and w. Multiplying
p from equation (46) by ¢ from equation (50) then gives the required
ratio t as a function of Fo and w. The theoretical curves are shown
in Figure 7b, and it can be seen that, although yu/yc increases as F
decreases below 1, the curves are very flat between FO =1 and

F, = 0.75. Therefore the capacity of a gutter with restricted dis-
charge will be only slightly lower than that of a freely-discharging
gutter provided Fo > 0.75.

=L (50)

The curves in Figure 7b are not in their most suitable form because
when F, is decreased as the result of an increase in the downstream
depth y, (with Qykept constant), the value of w = B/B, also
changes. A better method of presenting the results would therefore
be to express them in terms of the ratio B,/B, rather than w,
where B is the width of flow corresponding to ¥ For constant
discharge the value of By/B., would not then change when F, is
altered. Defining

w.=_58 51
c B, (51)
it is found from equation (6) that
L= &: a1a-—-—w (52)
w (1 - Wc)

Substituting in equation (50) gives

(1 —w.? s
%' f w =F2 (53)

(I —wy \w, ] o

From this it can be shown that curves of yu/yc against F for
constant values of BS/Bc are slightly flatter than those for constant
values of BS/BO. However the calculations involved in producing
curves of constant Bs/Bc are difficult, and it was decided to use
those in Figure 7b for constant BS/B0 when obtaining the design
curves.

The next step is to modify the theoretical curves in Figure 7b so as
to give design curves which incorporate the required discharge factors
at F0 =1 and F, = 0. Although there is no one “correct” way

of doing this, it is necessary to ensure that the design values of
yu/yc increase steadily as F0 is decreased below 1. A suitable
equation connecting the theoretical value of t to the design value

tq which satisfies this condition is

fa_ 1 +3tc—d - Iz sin (ﬂ) 54
t te 2

where the subscript ¢ refers to the values for freely-discharging
gutters, and the different t are all for the same values of w = BS/B0
and F,. Other scaling equations can be used provided that they also
satisfy the above condition. Having obtained the design value of tq
as a function of F, and w, it is now possible to reverse the proc-
edure that was used when obtaining the theoretical curves of t

in Figure 7b. Thus the design value of pg> which is the object of
the exercise, is given by

12



t
pg =2 (55)

L
The ratio® = yofyc has already been determined as a function of Fo
and w from equation (50), and, since this relationship is only con-
cerned with conditions at the outlet, it applies to both the theoretical
and the design cases. The resulting curves of py versus F, and w
are shown in Figure 7c, and are the ones included in the revised
version of CP 308.

True half-round gutters 5.2 If a half-round gutter is prevented from discharging freely, the
normal design problem involves finding a suitable value for the top
width W of the gutter given the discharge Q and the corresponding
depth of flow y, at the outlet; the value of W needs to be such
that the depth of freeboard at the upstream end is equal to 2/7
the overall depth of the gutter as recommended in CP 308. The
problem can be solved by first considering the theoretical solution,
and then applying suitable factors so that the results are consistent
with the design method for freely-discharging half-round valley
gutters given in 4.4,

The theoretical solution for the case of a true half-round gutter
with restricted discharge is given by equations (13), (15) and (395).
After allowing for the required amount of freeboard (y¢ = W/7), the
design depth of flow at the upstream end of the gutter corresponds
to a value of 6, = 1.281 (5 73.49) in equation (13). Equation
(15) therefore defines the relationship between the Froude Number
F.. and the corresponding angle 0 , at the downstream end of the
gutter. Equation (35) may be re-arranged in the form

Q, F. ( (20, — sin,P) %
__0_ ___ =K = -0 [ o7 T 5/2
Vieyy) 4 3 sinf % N 0) (56)

In the design problem the value of the quantity K is known since
Q and y, are specified. From equation 13)

r = 1 1w

3; - (1 — cosf ) ) g 67N

since for a true half-round gutter W = 2r. The theoretical solution
may therefore be presented as a graphical plot of the non-dimensional
quantity K against the ratio W/yo; Points on the curve are obtained
by first choosing a value of F, and then solving equation (15) by
trial-and-error to find the corresponding value of 6 4 (since the value
of 6, is known). The ratios r/y, and Wiy, are found from
equation (57) and then substituted in equation (56) to give the
value of K. The shape of the theoretical curve of W/y, versus K is
shown in Figure 8a; when the depth y, is just low enough to allow
the gutter to discharge freely F, =1, and K and W/y, have values
of 2.135 and 4.232 respectively (see point A on Figure 8a). The
continuation of the curve to the right of the point A is found by
re-arranging equation (41) in the form

Q . W {572
0 ___ =0.3276 (— 58
Gy ) (2y0) (58)

The theoretical solution now needs to be modified so that it is con-
sistent with the design method used in CP 308 for freely-discharging
half-round valley gutters (see 4.4). In this latter case the gutter is
assumed to reach its capacity at a rate of flow that is 80.6% of the
theoretical maximum rate of flow; since the design capacity is less,
the design value of the depth y, will also be somewhat lower than
the theoretical value of y,. Thus if the equation for the design
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capacity (equation (42)) is substituted in equation (35), it can

be shown that the design value of 8o is 0.956 (= 54. 89) compared
with the theoretical value given in 4. 4 of 1.015 (= 58.29). It can
thereby be shown that, in the design case, the co-ordinates of the
point B in Figure 8a at which the gutter just discharges freely

are K = 2.269 and W/y, = 4.728. Thus in order to move from the
theoretical point A to the design point B it is necessary to modify
the theoretical values of both K and W/y in Figure 8a. The problem
of determining the shape of the design curve to the left of point

B is similar to that encountered in the case of trapezoidal gutters
with restricted discharge (see 5.1), and as before there is no
completely rigorous way of doing it. The procedure adopted is
described below.

As in the case of the trapezoidal gutter it is necessary to ensure
that the design curve does not give rise to an anomaly whereby the
size of the gutter appears to decrease when the depth at the outlet
is increased. Consider first the ratio W/W where W is the size of

a gutter with restricted discharge and Wc is the size of a gutter
carrying the same flow but.just discharging freely. Now

v _

W~ G G €2 (59)
C C yC

Substltutmg from equation (56) then gives

vV _w. V¥ K

o = (5) (CS) (225

W, yo) Wc) () (60)

where K is the value of the discharge parameter for the gutter with
restricted discharge and K. that of the gutter discharging freely.
Values of W/y and K from the theoretical curve in Figure 8a
enable W/W_ to be plotted in Figure 8b as a function of K/K,. As
expected W/W increases steadily as K/K is decreased, but it is
interesting to note that the curve is extremely flat for values of
K/K. > 0.6.

It is now required to produce a design curve of W/W Versus K/K

from the theoretical curve in Figure 8b. Clearly the des1gn curve

must also pass through the point (1, 1) when the gutter discharges

freely. When K > 0, W/y - 2.8 in both the theoretical and the

design cases; the value equals 2.8 because of the provision of free-

board equal to 2/7 the overall depth of the gutter. Writing

=W (61)
We

and using the subscript d to denote design values, it follows from

equation (60) that

z
A—( )(yCd)( cd \2/5

) as K> 0 (62)
£ Ye de c
Substituting the values obtained above gives
fd _ (4232, 2269105 _
- (4 728) (2 135) 0.9172 as K - 0 (63)

In order to scale from z to zg for values of K/K between O and 1
the following equation was used -

z

4 = 09172 + 0.0828 sin* @ K (64)
z 2 K,
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where the square root power was chosen so as to ensure that values
of zy would increase uniformly as K/K, was decreased below unity.
Other types of scaling function could be used provided that they
satisfy this requirement and give the correct values at the end points.
Having obtained the value of z4 for a particular value of K/K, the
corresponding design value of W/yo was then found from equation
(60).

The results of this procedure are shown plotted as the design curve
in Figure 8a. At a late stage in the drafting of the revised CP 308
it was decided to omit this result because half-round gutters are
seldom used as valley gutters and are therefore seldom designed
for restricted discharge.

Gutters of non-standard cross-sectional shape

Exact theoretical results have been obtained in the previous sections
for trapezoidal and half-round gutters, and corresponding results can
in general be found for any gutter whose cross-sectional shape can

be described by a single equation over the range of depths required.
As an example, the surface width B of certain types of gutter may
be related to the depth of flow y by a power-law equation such as

A = 2’n+ 3 (65b)

Particular cases of m = 0, 1, 2 correspond respectively to rectangular,
triangular and parabolic cross-sectional shapes. Results will not
however be given here since rectangular and triangular gutters are
covered by the general case of trapezoidal gutters, and gutters with
other values of m are seldom used.

If the cross-sectional shape of a gutter cannot be described by a
single equation, approximate results may be obtained if it is repres-
ented by an equivalent trapezoidal gutter having equal values of B
and A at a particular depth of flow y. It can easily be shown that
the sole width B and the effective side-slope b of the equivalent
gutter are given by

B. = B(2A _

=BG -1 (66)

_ 2B A

b=2=(1 — 2~ 67
y( By) 67)

The equivalent gutter will normally only have the same values of

A and B as the real gutter at one particular depth. If the sides of
the real gutter become steeper with increasing depth, the value of b
for the equivalent gutter will tend to decrease as y increases. In 3.1
it was shown that, for a given depth of flow at the downstream end,
a rectangular gutter (b = 0) has a greater upstream depth of flow
than a triangular gutter (b > 0). Therefore, if the sides of the real
gutter become steeper with increasing depth, the values of A and B
used in equations (66) and (67) should be those corresponding to
the maximum depth of flow in the real gutter, which is the depth
yy at the upstream end. If, conversely, the sides become flatter as
the depth increases, the values of A and B in equations (66) and
(67) should correspond to the minimum depth of flow, which is
the depth y, at the downstream end. Approximate but conservative
designs for non-standard gutters may then be obtained by using the
previous results for trapezoidal gutters.
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7 Effect of bends in gutters

If a length of gutter contains an angle or bend, some energy will
normally be lost as the flow changes its direction. This energy loss
will cause some backing-up of the flow at the upstream end of the
gutter, and therefore will result in a reduction in the capacity of
the gutter. The effect of energy loss at a bend in a smooth level
gutter can be determined using the basic equations given in Section
2.

The case of a rectangular gutter of width B, and length L having a
bend at a distance x from the upstream end (see Figure 9) will be
considered first; it will be assumed for convenience that the rate of
lateral inflow is uniform along the length of the gutter. The depths
of flow just upstream and downstream of the bend are y, and y,
respectively, and it is assumed that the velocity distribution across
the gutter is uniform at these points and at the outlet. Considering
the balance between the flow forces at the outlet and at section
1 (just downstream of the bend) gives from equations (2) and 6)
2 2
;QO =L g By,? +2%
sYo 2 BSY1

L og By yy* +

X 2
> &) (68)

where Q0 is the discharge at the outlet. Introducing the Froude
Number F, defined by equation (4) and the ratios

p=2u ®)
Yo
py =Y (82)
Yo
p, =Yz (8b)
Yo
s =% 69
L (69)

enables equation (68) to be written as

i (1+2F?) =p,° + 2F? & (68a)

The energy loss at a bend is conventionally expressed as a proportion
k of the velocity head of the flow entering the bend. Considering
the total energy of the flow just upstream and downstream of the
bend in the gutter therefore gives

2
B — B = +2) @ + 0= W (70)
g 2g 2g
Using equations (4) and (8), this may be written as
2 a2 212!
1 Fo's® _ 1 Fo's
P2 + = (1 — k) =p; +- 9 (71)
2 p.? 1 2 p,?

Finally, the balance between the flow forces at section 2 and the
upstream end of the gutter gives

1 2 F02s2 1
5P t—— =" p? 72
7 = D, ) p (72)

If the values of k, F, and s (the position of the bend) are fixed,
there are three unknowns p, p; and p,; the value of p can be found
by eliminating p; and p, since there are three independent equations
(68a),(71) and (72). A direct solution is possible for the case in
which the gutter discharges freely (Fy=1landp = P> see 4.2) and
the head loss coefficient k = 1 (an appropriate value for a sharp 90°
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bend). It can then be shown that

s=V {3 - p?)2 -g (73)

= 90 +p2Y ., 4G — p,Y))
p + )Y,
¢ 16p,? 3(1 + p;?) s 74

The relationship between p. and s can thus be found by choosing
appropriate values of the ratio p,. For a freely-discharging rectangular
gutter it can be shown from equations (4), (6) and (21)that its
capacity is given by

_y
Q, = By vE (%)32 (75)
c
Since a straight rectangular gutter has a theoretical value of p, = /3
(see 3.1), it follows that the capacity Qg of the same gutter with
a bend is given by

% - /3y (76)
Q Pe

The variation of the ratio Q,'/Q, with the position of the bend is
shown in Figure 10.

A similar method of solution can be used for the case of a smooth
level triangular gutter. The balance between the flow forces at the
outlet and at section 1 just downstream of the bend gives

3 .
1+ 2 FOp® = b + 2 B a7

The loss of energy at the bend is given by equation (70) which may
be written

252 F 242
p, + (1 —k) 4;24 =p t 4‘;14 (78)

while the balance of flow forces between section 2 and the upstream
end gives

p:* + 2 FJs* = p'py’ (79)

Taking as before the case in which Fy, =1, k = 1 and p = p, it
is possible to express the ratios p. and s in terms only of the ratio
p; so that

s =p, /(%Pl—a; (80)

P =[ 02+ 1) 23 +p2 G =209 z 12p,? g 13 (1)

12p,? 2 52p + 1)

It can be shown from equations (4), (6) and (21)that the capacity
Q. of a freely-discharging triangular gutter is

Qo = 2b VE (L )52 (82)
2p.

The theoretical value of p, for a straight triangular gutter is (5/2)1/3

(see 3.1), so that the capacity Q" of the same gutter with a bend

is given by

Qo 2pc (83)
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Theory 8.1

The variation of the ratio Q,’/Q, with the position of the bend is
shown in Figure 10. Curves for trapezoidal and half-round gutters
can be expected to lie between those for rectangular and trian-
gular gutters because the results in previous sections have shown
that the first two types of gutter are intermediate in character
between the last two types. The closeness of the two curves in
Figure 10 indicates that a single curve might be used for all
normal types of gutter with little loss of accuracy.

Results from this Section are not included in the revised version of

CP 308 because they are specific to the case of a freely-discharging
gutter in which the head loss coefficient k = 1. In addition the assum-
ption of a uniform velocity distribution across the gutter down-
stream of the bend is unlikely to be valid when the bend is close

to the outlet. The method is however of interest and provides a means
of determining effective values of the head loss coefficient k

from experimental data.

Resistance effects in level gutters

The effect of hydraulic resistance on the capacity of level gutters
is normally small, and can often be neglected since the design
recommendations in CP 308 already apply a safety factor to the
theoretical capacities obtained neglecting friction (see 4.1). It is
shown below that frictional effects become more important as the
length of a gutter is increased in relation to the depth of flow.
Long lengths of gutter between outlets are sometimes used on
large industrial buildings with clear internal spans (such as aircraft
hangars), and it was therefore necessary to include in CP 308

a method for checking the effects of resistance in such cases.

The general equation describing steady gradually-varied flow in a
gutter is given by equation (1). The friction slope Sy may be
evaluated from the Darcy-Weisbach equation

S, = AV2 _AQ’P 84
f~ 8eR ~ 8gaAs (84)

where X is a friction factor whose value varies with the Reynolds
Number of the flow, the degree of turbulence in the flow and the
relative roughness of the channel. Substituting equation (84) in
equation (1) and putting S, = O for a level gutter gives

dy _ (pQ? /8 + 2AqQ) (85)

dx (BQ* — gA?)

It will be assumed that the friction coefficient A does not vary along
the length of the gutter, and that the rate of lateral inflow q is
uniform so that

q B (86)
where Q, is the discharge at the outlet and L is the length of the
gutter. Equation (85) can be written in a non-dimensional form

by expressing the variable quantities A, B, P, Q x, y as ratios of
the values which they have at the outlet. Using equation (4)
therefore gives
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For the case of a rectangular gutter this may be written in the form

dyx_ a (P/Py)s* + 2yss

@7

Is # — ya [F2 (88)
where p

S (89)
v+ =YY, (90)
s =T (69)

For convenience the asterisk for y« will now be dropped, but it
should be remembered that in the remainder of this section y is
a non-dimensional quantity.

Equation (88) cannot be integrated directly, but Li(20) was able to
obtain an approximate solution by assuming the quantity (P/P,)s

to have a constant value. In fact the value of this quantity varies from
0 at the upstream end of the gutter to 1 at the outlet, so Li

assumed it to have an average constant value of %. Equation (88) can
then be integrated and gives the following result for the value of

p = yu’/y0 at the upstream end of the gutter

' I
p = [1 + (8 + 3&) F02] T (91)
where
-4+
= ——— 2
! 8 + 3a ©2)

and y,’ is the non-dimensional depth of flow at the upstream end
taking into account the effect of friction. This approximate solution
has the advantage that when ¢ = 0 (ie A = 0), it coincides with the
theoretical value of p for a smooth gutter (equation (11)). The
proportionate increase in p due to friction, (p'—p)/p, is shown
plotted as a function of « and Fyin Figure 1la.

For the case of a triangular gutter, equation (87) gives

a (P/P)s? + y2s

dy _ [Py)s® +y ©3)
ds ys? — y¢/F?

Li?9 was again able to solve this equation approximately by
assuming the quantity (P/Po)s2 to have a constant value of %, and

obtained

' 6 +5 It
p = [1+ 6130 g2 94)
where

_ 2+ a
L =2"¢% 95
t 6 + Sa ©3)

When o = 0, p’ coincides with the theoretical value of p for 2
smooth gutter (equation (12)). The proportionate increase in p due
to friction, (p'—p)/p, is shown plotted as a function of « and F
in Figure 11b. Comparison of Figures 11a and 11b shows that

the curves for rectangular and triangular gutters are very similar.
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The approximate solutions obtained by Li depend upon assuming
the quantity (P/Po)s2 to have a constant value of % (similar types
of solution could be obtained for other values of the constant).
It can be shown that this assumption tends to underestimate the
energy loss near the outlet, where it is greatest, but overestimate
the energy loss further upstream. Therefore it was decided to
obtain some numerical solutions of the exact equations for the
flow profiles in order to provide a check of Li’s approximate
results. The calculations were carried out with an HP 67 programmable
calculator, and involved use of a second-order difference scheme
which gave the same level of accuracy as a first-order scheme in
about one-third of the time.

The flow profile in a rectangular gutter is determined by equation
(88) which may be written as

d_S _ S2 . y3 /FO2

dy a(e + 2y)/(e + 2))s? + 2ys (96)

where

e=_% (97)
Yo

The flow profile is therefore affected by the quantity e which is

a measure of the aspect ratio of the channel; for the case of a wide
rectangular gutter e - <o, so that in equation (96) the factor

(e + 2y)/(e + 2) » 1. It may be noted that the effect of the aspect
ratio is not taken into account in Li’s method. The numerical
solution was carried out by specifying the values of F, and e at
the outlet, where y = 1 and s = 1, and then working in the
upstream direction. Since the flow profiles rise steeply upstream of the
outlet, a numerical scheme based on the use of equal increments

As in the horizontal direction would not be very accurate; the
method was therefore based on the inverse slope ds/dy and the use
of equal increments Ay in the vertical direction. If the horizontal
and vertical co-ordinates at two adjacent nodes are (sn, yn) and
(Sp+1» Yp+1)» With n increasing in the direction of flow, then
Taylor’s theorem gives to the second-order

B dS 1 2
Sn = S+l ¥ OV — Ypa) (E)nﬂ + 7 Vn — Yn+1)? (gy—z)nﬂ (98)

Since the calculations proceed in the upstream direction, the first
and second derivatives are evaluated at the downstream node n+l;
from equation (96) it can be shown that

d’s _ 1 du av

=3 =1 ydU_ ¢ydv

dy? V2 ( dy dy) (9)

where

U =5 - g—az (100a)

(o]

dUu _ ds 3y2

= =2 (&) _ ¥~

dy dy) F2 (100b)

V o =a @FX W) 4oy (101a)
e+ 2

av

— =2 a(—e+2ys+ di+2 as

dy g e+2)7 y (dy) Bl e * | (101b)

At the outlet of a freely-discharging gutter the slope ds/dy is zero,
so in order to get the calculations started it was assumed that
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y = 1.000001 when s = 0; the error introduced by this assumption
was shown to be very small. Calculations proceeded in the upstream
direction using equations (98) to (101) and a fixed increment

Ay =V, — Yp+1- The value of Ay was chosen so that there was a
minimum of 100 increments between the outlet and the upstream
end of the gutter; 100 increments correspond to a running-time on
the HP 67 of about 20 minutes.

When the calculations approach the upstream boundary it is necessary
to alter the numerical scheme so as to make the calculations
terminate at the point s = 0. The values of y are increased steadily
by the amount Ay until the calculated value of s just becomes
negative; the calculations then return to the previous node whose
co-ordinates are (S;, v;). The value of p' at the upstream end of the
gutter is found by puttingn = 0, s, = 0 and y, = p' in equation
(98) and solving as a quadratic to give

' = (ds/dy) 2s, (d%s/dy?); |2
P Yy to— L 1 — =
(@s/dy?); } (as/dy)y? : : b3

The program was checked by comparing the computed values of p
for smooth gutters (e = 0) with the theoretical values given by
equation (11); the errors in the calculated values of the quantity

(p — 1) were all less than 0.35% when Ay was chosen to give

at least 100 increments between the outlet and the upstream end
of the gutter. As described above, the effect of the friction term

@ in equation (96) depends to a certain extent on the aspect ratio
e of the gutter. Two cases were therefore considered, that of a
wide rectangular gutter (e — *°) and that of a gutter having a value
of e = 3; the latter corresponds to a gutter whose overall depth
(including a suitable allowance for freeboard) is approximately equal
to its width Bg. Results were obtained for various values of «

and F, and are shown in Table 2a and Figure 1la, where they are
compared with those obtained by Li20),

A similar type of program was used to obtain numerical solutions
for the effect of resistance in triangular gutters. The flow profile
in a triangular gutter is given by equation (93) which may be
written as

ds _ §2 — y5/F02

103
dy as® +ys (103)

It should be noted that the aspect ratio of the gutter does not
appear in this equation (cf equation (96) for rectangular gutters)
since in triangular gutters the wetted perimeter P is always directly
proportional to the depth of flow y. The numerical solution of
equation (103) was obtained in a similar way to the solution
described above for rectangular gutters, and used a second-order
difference scheme based on equation (98). The second derivative
d?s/dy? in equation (98) is given by

d’s _ 1 , dU’ dav’

=_1 (v QU _ 4V 104

where

U =g - Y 105a
7 ( )

du’ _ ds S5v4

dU =25 @8y _Jy

v =G X (105b)

V' =as® +ys (1062)
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Friction factors for
gutters 8.2

dv’_ 2as + ds

dy ( y) (dy) +s (106b)
Equation (102) was used, as before, to terminate the calculations at
the upstream end of the gutter s = 0. The program was first checked
against the theoretical values of p given by equation (12) for smooth
triangular gutters (@« = 0). Choosing the size of Ay so as to give

a minimum of 100 increments between the outlet and the upstream
end of the gutter produced results that, in terms of the quantity

(p — 1), were accurate to within 0.25% of the exact values. The
calculations were then repeated for various values of a and FO;
results are shown in Table 2b and Figure 11b, where they are
compared with those obtained by Li.

Since the values of p’' given by the numerical method are very close
to the exact values, they provide a means of determining the
accuracy of Li’s approximate solutions, equations (91) and (94).
Tables 2a and 2b and Figures 11a and 11b show that Li’s method des-
cribes the theoretical results quite well, but tends to underestimate some-
what the effects of resistance. It is interesting to note from Table

2a that the aspect ratio e of a rectangular gutter can have a signifi-
cant effect on the proportionate increase in p’; the effect is

largest when the gutter is deep in relation to its width. Also the
numerically- determined results show that the proportionate increase
in the upstream depth, (p'—p)/p, is a maximum when the Froude
Number is about 0.8, and not when F, = 1.0 as indicated by

Li’s solutions. However, if one considers changes in the ratio
(p'—p)/(p—1), then one finds that the effect of resistance increases
steadily as the Froude Number is decreased.

There is a large amount of experimental data concerning friction
factors for channels with constant discharge, and summaries of
the results are given in standard texts such as Henderson(16),
Briefly, it has been found that the non-dimensional friction factor
X\ defined in equation (84) depends upon the relative roughness of
the channel and upon the Reynolds Number R, where

R = VR (107)
14
For R, < 2000 approximately, the flow is laminar and
A =04 (108)
R,

A transition between laminar and smooth-turbulent flow normally
occurs when the Reynolds Number is in the range 2000 < R, <
5000. The roughness of the channel does not affect the value of
the friction factor in smooth-turbulent flow and A is given by

n=0316 g R < 108 (109)
R,

1 - RevA

—— =201 d

I ogi0 (=) for Ry > 10 (110)

Equation (109) is known as the Blasius equation. A further transition
to rough-turbulent flow occurs at a Reynolds Number which depends
upon the equivalent sand roughness kg of the channel. In fully
rough-turbulent flow the Reynolds Number does not influence

the value of A which is given by
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—L =2 log, (lsz) (111)

L
V2 .
where k is the equivalent sand roughness of the surface. The trans-
ition between smooth- and rough-turbulent flow depends upon the
type of roughness, but for many surfaces including those of
commercial pipes it can be represented by the Colebrook-White
equation
L = = kS' 2.52
Ix T 2 leme AR Y Ref/i) (112)
There is a very limited amount of data concerning friction factors
for channels with lateral inflow, and it is often assumed that
appropriate values of A can be calculated from the equations that
apply to channels with constant discharge. Yen, Wenzel and Yoon(26
showed that this assumption is not generally valid, and that the
friction factor required in the momentum equation is different from
that required in the energy equation. In the case of the momentum
equation (which is used in the present study, see Section 2) the
friction factor should relate to the shear stress acting around the
perimeter of the channel and not to the energy gradient of the flow.
Yen, Wenzel and Yoon(26) analysed the results of experiments on
overland flow produced by rainfall, and found that the friction
factors calculated from the momentum equation were greater than
those obtained from pipe test data. The results are not directly
applicable to gutters because the depths of flow were small with
Reynolds Numbers between 900 and 10% . Typical values of Reynolds
Number at the downstream end of a roof gutter lie in the range
2x10* <R, <5x 105, although it should be noted that the
Reynolds Number varies along the gutter and is zero at the upstream
end.

Keulegan(lg) analysed some unpublished data of Beij on flow profiles
in sloping gutters in order to obtain estimates of the effective value
of A. The best fit to the data was given by

s = 1280

Re

which surprisingly has the form of the laminar flow equation,
equation (108), but with a much larger numerator on the right-hand
side. For a value of R, = 5 x 10*, equation (113) gives A = 0.026
which is somewhat higher than the corresponding figure of A =
0.021 given by equation (109). The higher values of A produced by
equation (113) are presumably due to the additional turbulence
caused by the lateral inflow. The inflow does not however appear
to produce a transition to rough-turbulent flow since the form of
equation (113) is very different from that of equation (111).
Keulegan did not find any systematic variation of A with the rate
of inflow, but this may be because the extra dissipation due to the
lateral inflow depends upon the ratio q/Q which remains constant
irrespective of the absolute value of q. Equation (113) is assumed
to be valid up to the point at which it crosses the Blasius equation,
equation (109), which occurs at a value of R, = 6.5 x 10*. At
higher Reynolds Numbers it is assumed that the friction factor is
the same as it would be if there were no lateral inflow. The data
used by Keulegan exhibit quite a large scatter and the equation

of the line which forms an upper bound to the values of A is
approximately

(113)

A = 400 (114)
Re0.85
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Design curves 8.3

This gives a value of X\ = 0.041 at R, = 5 x 10*, and crosses the
smooth-turbulent line at about R, = 1.4 x 10°.

Fox and Goodwill!#} obtained numerical solutions of equation (1)
and compared them with some experimental results. The authors
proposed a modified version of Powell’s equation in the form

ﬁ=—2.62 logso % +%+K% (115)
where ¢ is a measure of the surface roughness of the channel, and
the third term in the bracket depends upon the lateral inflow;

u is the mean velocity of the lateral inflow and V that of the
flow along the channel. Details of the values of A and the constant
K were not however given. Gill(!3) obtained approximate solutions
of equation (1) for subcritical flows in sloping gutters using a
series-type expansion in powers of the quantity Foz. Agreement
between the theory and some experiments that were carried out
was patchy, and it was found necessary to use a value of A = 0.08
instead of the value of A = 0.026 given by the Blasius equation,
equation (109); the corresponding figures predicted by equations
(113) and (114) would be x = 0.059 and A = 0.082 respectively.
Lin et al®! adopted a different approach by assuming that the
friction factor was given correctly by the equations for flow with
constant discharge, and that the apparent increase in A was due

to the non-uniform velocity distribution in the channel caused by
the lateral inflow. This method was applied to the data used by
Keulegan(19), and gave values of the momentum coefficient as high
as 4.7, which seems improbable.

Equation (113) appears to be a reasonable fit to the limited amount
of experimental data that are available, while equation (114) could
be used for design when it is important not to underestimate the
effects of friction. Data from the various experiments described above
are generally consistent in showing that lateral inflow produces

a larger increase in A at low Reynolds Numbers than it does at high
Reynolds Numbers,

As described in 8.1, it was necessary to include in CP 308 a method
for determining the effect of resistance in long gutters. The increase
in the upstream depth of flow due to resistance can be calculated
theoretically as described in 8.1, and Figures 11a and 11b show that
the resulting curves for rectangular and triangular gutters are very
similar. Since half-round and trapezoidal gutters are intermediate

in character between rectangular and triangular gutters, it is

possible 1o define a single set of curves that are sufficiently accurate
for the design of nearly all types of gutter.

The major problem is, however, the choice of a suitable value of the
friction factor A when calculating the value of a from equation (89).
In order to simplify the design method it was decided to use a

fixed value of A = 0.04. According to equation (113) this corresponds
to a Reynolds Number of about 3 x 10*, which might typically
occur near the outlet of a rectangular gutter with a sole width of
0.15m and an aspect ratio of e = 5. Larger gutters would have smaller
values of A, but the use of a fixed value of A = 0.04 should not

lead to serious overdesign since the effects of resistance will be

small in most practical cases. If one considers the case of a freely-
discharging rectangular gutter with e = 5 (a typical value), it can be
shown that A = 0.04 is equivalent to a Manning’s n of 0.011 when
the sole width By = 0.1m and to n = 0.015 when By = 0.5m.
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The value of a in Equation (89) depends also upon the ratio
PO/BO. Gutters tend to be relatively wide in relation to their
depth, and the worst case that might normally occur is that of a
relatively deep rectangular gutter having an aspect ration ¢ = 3
(see equation (97)). This gives a value of P /B, = 5/3; most

other types of gutter will have values of PO/B0 that are closer to
unity. If it is then assumed that A = 0.04, it can be shown from
equation (89) that L/y = 120a. This simplifies the presentation
of the results obtamed in 8.1 since the increase in upstream depth
can now be expressed in terms of L/y, and F, only. The resulting
design curve for CP 308 is shown in Figure 12a and provides a
small margin of safety compared with the numerically-determined
results given in Table 2.

When designing level gutters, it is reasonable to neglect the effects
of resistance if they increase the upstream depth of flow by less
than about 5%, since the standard design method in CP 308
already includes a factor of safety (see 4.1). From Figure 12a it
can be seen that a 5% increase will not occur unless L/y > 100
approximately. In terms of the overall depth Ve of the gutter

the limit is approximately equivalent to L/y, > 50, and this has
been adopted in CP 308 as the criterion for dec;dmg whether the
effect of resistance needs to be taken into account.

The application of Figure 12a to the case of half-round gutters is
more difficult than to that of trapezoidal gutters, so a table of
capacity reduction factors has been included in CP 308 for use
when the length of an eaves gutter is more than 50 times its overall
depth Vg The figures in the table were obtained by the following
procedure First it was assumed that, with resistance taken into
account, the gutter was just flowing full at its upstream end. A
value for the proportionate increase in the upstream depth due to
resistance was then chosen. This gave the upstream depth of flow that
would occur in a smooth gutter if it were carrying a flow equal

to the reduced capacity of the rough gutter. The corresponding
depth at the downstream end was then found from the theoretical
solution for smooth gutters (equation (15)with equation (13)). The
reduced capacity Q of the rough gutter was calculated from
equation (35), and compared with the theoretical discharge Q for
a similar smooth gutter just flowing full at its upstream end
(equations (36) and (37)). Figure 12a was used next to find the
value of L/y that corresponded to the chosen value of the propor-
tionate increase in upstream depth. This ratio was then converted
to an equivalent value of L/y, and plotted against the value of the
capacity reduction factor Q, ﬁ) Results for true half-round gutters
are shown in Figure 12b, but nomlnal half-round gutters were
found to give closely similar values. As described above, it was
decided in CP 308 to neglect the effect of resistance if the length
of the gutter was less than 50 times its overall depth. Figure 12b
also shows the design curve that was adopted for CP 308, and
from which the capacity reduction factors in the revised code were
obtained.

9 Freely-discharging sloping gutters

General 9.1  Gutters around the periphery of a building are normally set either
level or at a nominal fall (< 1/350) in order to prevent the
ponding of water. However, unusual roof layouts may sometimes
require the use of steeper gutters, and it is therefore of interest to
know how the capacity of a gutter is affected by slope.
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Flow profiles in sloping gutters can be determined by integrating
the gradually-varied flow equation
dy — So — Sf — 2qQ/A*)

dx 1 — BQ?/(gA?)

The form of the equation prevents direct solutions, so integration
normally has to be carried out numerically. The principal features
of flow profiles in sloping gutters can however be found by con-
sidering the special case of a wide rectangular channel in which the
wetted perimeter P approximately equals the width B, of the gutter.
Equation (1) can be written in a more suitable form %y defining
two notional depths of flow y, and y,: ¥, is the depth that

would occur if the flow were at crit.icgl depth, and y,, is the depth
if the flow were at normal depth (ie S¢ = S). From equations

(4) and (84) it can be shown that for a wide rectangular channel

(1)

Q@ _ o3 = (380 3
257 Ve ()\ Wn (116)
where Q is the discharge at a point distance x from the upstream
end. Thus if the quantity 8S /A > 1, the normal-depth line along
the gutter will lie below the critical-depth line, and vice versa.
Substituting equations (116) and (84) in equation (1) and assuming
the rate of lateral inflow to be uniform gives

1y _ g Jey dey
dy - g y SoX ¥
dx o

Q (117)
1 — (510_)3
y

The third term of the numerator inside the bracket represents the
effect of the lateral inflow, and has an important influence on the
shape of the flow profiles, three examples of which are shown
diagrammatically in Figure 13.

If the gutter has a mild slope (8So/?\ < 1), the flow profile crosses
the normal-depth line and reaches a maximum depth upstream of
the outlet (Figure 13a); the position of the maximum depends upon
the value of 880/7\, and moves to the upstream end of the gutter
as the slope tends to zero. If the gutter has a steep slope

(8S./x > 1), the flow is supercritical at the outlet if the gutter is
sufficiently long (Figure 13b). In this case the flow is subcritical
near the upstream end, and passes smoothly through critical depth
before becoming supercritical; the depth of flow does not reach

a maximum but increases steadily towards the outlet. If the gutter
is shorter, the flow does not have sufficient distance in which to
become supercritical (Figure 13c); the depth increases to a maxi-
mum upstream of the outlet and then decreases again.

The three profiles considered in Figure 13 indicate that flow in a
sloping gutter will remain subcritical provided that its length

is less than a certain figure determined by the slope and roughness
of the gutter. The general criterion dividing subcritical and super-
critical flow can be found from equation (1). Since the denominator
on the right-hand side of the equation is zero when the flow passes
through critical depth, the numerator must also be zero otherwise
there would be a discontinuity in the flow profile. If a critical
section occurs at a distance L. from the upstream end of the
gutter, then it follows from equations (1) and (84) that

2Q.2P 2
o= Q°3° — oS =0 (118)
8gA. gA L,

where it is assumed that the rate of lateral inflow is uniform. Since
the flow is at critical depth
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B.Q’

=1 119
ZA, (119)
so that equation (118) may be written
2°C
_ ( Bc)
L.= == (120)
g A ¢
o
8 B,

If the length of the gutter is less than L, the flow will be sub-
critical even though the slope might be sufficient to produce super-
critical flow in a similar channel carrying a constant discharge;

the difference in behaviour is due to the effect which the lateral
inflow has on the flow in the gutter.

The exact equations for flow in sloping gutters are not amenable
to further simplification, but useful results can be obtained by
considering channels whose cross-sectional shape can be described
by means of a powerlaw of the form

B = cy™ (652)
A= Loyt (65b)

It will also be assumed that the channels are relatively wide com-
pared with the depth of flow so that the wetted perimeter P can
be taken to be equal to the width of flow B; if necessary, errors
resulting from this assumption can be corrected by using an effec-
tive friction factor A given by

-4 P ‘
Ae = A B 121
Using equations (65) and (119) it is now possible to relate the critical
length L. in equation (120) directly to the rate of lateral inflow q

(assumedc uniform along the gutter). The general result is
2m+3 2
L = 2 2m+1 qa 2m+1 (122)
N A m
8o (1 — =) (m+1)™ Vg
8S,

which for the case of a rectangulargutter (m = 0, ¢ = By) gives

Ler = 8q’ - (123)
B ZS 3 (1 — 3
g B>S,® ( 8S0)
and for a triangular gutter (m = 1, ¢ = b) gives
1
Lct=[ 8¢ . ] /3 o
b2S.5 (1 — 5
g b?S,° ( 880)

Trapezoidal gutters are intermediate in character between rectangular
and triangular gutters, and therefore will have effective values of

m that lie between O and 1. Equation (65) also enables equation
(120) to be expressed in non-dimensional form as
?\Lc _ %)

(125)
8y,

(m+1) (S—ig - D

The quantities 7\Lc/8yC and 880/)\ will also be found to occur in
the results obtained in the following sections.
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Approximate solutions 9.2 Two approximate solutions of the gradually-varied flow equation,
equation (1),can be obtained by assuming that the flow is either
close to normal depth or close to critical depth. These solutions
are useful in providing a general picture of the way in which the
depth of flow in a gutter varies as the slope is altered.

If the flow is close to normal depth, the friction slope Sy differs
from the bed-slope S, of the gutter by only a small amount e

so that
Sg=85 (1 —¢) (126)
where e is small. From equation (1) e is given by
2
e=L Ja-B%dr . 2Qq (127)
So gA3 gA

A first-order solution can be obtained by letting ¢ = 0, which gives
rise to a flow profile that coincides with the normal-depth line
(see Figure 13). This first-order solution may then be used to
calculate the corresponding value of e from equation (127).
Substituting in equation (84) gives to the second-order in e

8gA3S
Q—(l—e)(g 072 (128)

Clearly the assumptlon that e is small will not be valid at the
upstream end, but it will be reasonable near the downstream end of
a steep gutter in which the flow becomes supercritical (see Figure
13b). A second-order solution for the depth of flow y at a point

x from the upstream end can be found from equation (128) when
the gutter is wide and of the type described by equation (65); the
result that is obtained after a certain amount of algebra is

1 i
_ (fy2)2mt3 2 1-G) . G ~(1+2m)\2m+3
y = (&5 [ ! +(2m+3)S0 omt3) T @i & )
h (129)
whnere SSO
f = (m+1)2 g2 (131)

gc’G
It is now convenient to express the value of y as a ratio of the

depth y,. that would occur if the flow at the same point were at
critical depth. Substituting equation (65) in equation (4) gives

G fx{l 2m+3 (132)

so that 1 _(2mt+4)
Y =g@m+3) | ;4 2 cm+3) )} (1-G) , G
Ve (2m+3) (2m+3) (m+l)

(SYC )] (133)

When a gutter is long enough for the flow to become supercritical
the maximum depth y.,, occurs at the outlet (x = L); this is the
condition to which equation (133) approximates most nearly
since the flow there is close to normal depth. Thus

.1 _C2m+4)
Ym o g@m+3) |14+ 2  g@m3) Y(1-G) , G
Yo (2m+3) (2m+3)  (m+l)
_1] (134)
s

28



where
= AL
Y

o

and y. is the depth at the outlet if the flow there were to be at
criticaj) depth; note that o is the limiting value of a (equation (89))
for a wide gutter.

o (135)

(e,¢]

A similar approach can be used for the case in which the slope of a
gutter is not quite steep enough to produce supercritical flow at

the outlet. The flow in the gutter is then subcritical and the maxi-
mum depth, which is located just upstream of the outlet, is only
slightly greater than the critical depth at the outlet (see Figure

13c). At the point of maximum depth X = X1, Y = VYm and

dy/dx = 0. Therefore from equations (1) and (84)
AQ,..2P 2

o 2 m g -——~QT =0 (136)
8gA g8A Xm

where the subscript m denotes the values of the quantities at the
point X = X} it is assumed here that the rate of lateral inflow is
uniform along the gutter. At the outlet the flow is at critical
depth so that

B0Q02 =
gA,’
Describing the cross-sectional shape of the gutter by equation (65), and

assuming it to be wide in relation to the depth of flow (so that
P ~ B), then gives

1 (4a)

2m+3

(Xfm-)z v 2 (m (me) ~ ¢ m 0 (137)

(m+l)ay Vo Yo

where v, is the depth of flow at the outlet (equal to critical depth),
and G and a are given by equations (130) and (135) respectively.
For a given value of ag (fixed by the properties of the gutter and
by the discharge that it carries), there is a limiting value of G

(ie slope S,) for which the maximum depth is located at the outlet
and just equals the critical depth. From equation (137) it may be
seen that this limiting value G is given by

G =1+ —2 138
@ (m+l)ao (138)

This agrees with equation (125) for the case where the critical section
is located at the outlet so that L, = L and y, = Vo When G is
slightly less than G, the flow in the gutter is subcritical and

G _

G -1 _ 1392
Gy 8 ( )
*m-q _s (139b)
L

Ym = 1 44 (139¢)
Yo

where the quantities §, § and n are all small. Substituting in equation
(137) and retaining terms up to the first-order in v, 8 and e gives

2 —5) — - =
(1 —28)+ (ot Do (1 +7 —8) = Gy(1 — g + (2m+3)n) = 0 (140)

Equating terms of zero-order leads again to equation (138). Equating
the first-order terms in v, § and e and using equation (138) gives

G8 — [1+ 2(m+1)Go]n = (Gq t 1)6 (141)
Since the quantity & > 0 it follows that
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G, 8
[1 + 2(m+1)G,]

which thus provides an upper limit for the value of n in relation
to the value of g. Substituting for g and G, from equations (139a)
and (138) gives finally

VA

(142)

n

Ym < g4 |2 = @G = D, (143)
Vo (m+1)[4 + (2m+3)a,]

Although this approximate result is expressed as an inequality (the
equality only applies when ym/yo = 1), it is useful since it

indicates how the ratio Y /v~ varies when ay is fixed and G is
reduced below the limiting veﬁue of G,. It is mterestmg to note that
the same quantities m, G and ay also appear in equation (134),
which applies when the flow is ciosa to normal depth.

The approximate results obtained in the previous section suggest
that the variation of the maximum depth of flow Vm in a sloping
gutter can be presented as a plot of the ratio ymly against the
non-dimensional quantities G and a; y, is the dep% of flow at
the outlet if the flow there were at critical depth, which is the
case when G is less than the limiting value G,. Although exact
results have not been obtained they provide sufficient information
to enable the shape of the curves to be estimated.

Figure 14a demonstrates the case of a wide rectangular gutter

(m = 0) where curves of ym/y0 versus G are plotted for constant
values of a,. For large values of G (ie for steep slopes), the flow
at the outlet is supercritical and the maximum depth there is

only slightly greater than the normal depth; this part of the curve
is approximated by equation (134). The value of Vm /y increases
as G (ie the slope) is decreased, but equation (134) tends to under-
estimate the amount of the increase when the flow is no longer
close to normal depth. This can be seen from Flgure 14a since
each curve must pass through the point y =1,G=0G

where G is the limiting value given s:xam?l by equatlon (1938)

The shape of the curves for G < G,, is indicated by equation (143)
which provides an upper limit for the value of Ym/Yo- Results

have already been obtained in Section 8.1 for the case when G = 0,
ay > 0 (ie a level, non-smooth gutter), and Figure 1la thus
enables the upper ends of the curves to be located. Equation (143)
no longer applies when G is significantly less than G, but it is
apparent from Figure 14a that the curves must be concave upwards
for G < G_,. Estimated shapes for the complete curves are shown
dashed in lglgure 14a. An equivalent set of curves for the case of a
wide triangular gutter (m = 1) is shown in Figure 14b, and it can
be seen that they exhibit the same features as those for the
rectangular gutter.

The shapes of the curves in Figures 14a and 14b suggest a simple
approximation that could be used for designing sloping gutters
when the flow in them is subcritical (ie when G < G o) As
described above the curves of - /y versus G are concave upwards
for G < G, so that a safe apprommatlon to the maximum depth
of flow can be obtained by assuming that each curve is in fact a
straight line between the point where G = 0 and the point where
G = G, and y,/y, = 1 (see Figure 14c). If the value of ym/y0
at G = 0 is equal to p, then it follows that

y .

mo o 1) G0 S

Yo o

Substituting for G and G, from equations (130) and (138) gives
finally
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(145)
Yo + 16y,

(m+1) L
It is recommended in CP 308 that a design figure of p = 2 be used
for level rectangular gutters (G = 0), so that equation (145) then
becomes

8S
&n=2_g o_g (146)
Yo A+ 16 20

L

88
m-pip- %——0

The equivalent design figure for a level triangular gutter is approx-
imately p = 1.5 (accurate value 1.480) so that equation (145)
then gives

48
Ym- g5 }_Og 147)
Yo A+ 820

L

Equations (146) and (147) provide a possible means of designing
sloping gutters, and give safe estimates of the maximum depth of
flow. They are only valid if the flow in the gutter is subcritical,
and therefore should not be used if they give values of ym/y0 < 1.
The results were obtained for wide gutters in which P = B, but an
effective value of A (as given by equation (121)) can be used if
this assumption is not reasonable; suitable values of P and B could
be calculated for a depth intermediate between y, and y.,.
However the error caused by assuming the channel to be wide is
unlikely to be significant compared with the error in choosing a
suitable value for the friction factor A (see 8.2).

The design method described above has not been included in the
revised version of CP 308 because the method has not been
checked experimentally. The Code states that a sloping gutter will
have a higher capacity than a similar level gutter, but recommends
that this increase should be viewed as an additional factor of safety.
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Description of tests

It has been shown in Part I that the capacity of a gutter depends
partly upon the capacity of the outlet to which it discharges. If
the head required to pass flow through an outlet is less than the
corresponding critical depth in the gutter, the flow is able to dis-
charge freely from the gutter. However, if the outlet requires a
head that is greater than critical depth, the flow will back up
along the gutter and its capacity will be reduced. The purpose of
the tests carried out for HRS by the British Hydromechanics
Research Association (BHRA) was to determine the head-discharge
relationship for various types of outlet in gutters and box-receivers.
Full details of the tests and the experimental arrangement are
given by Crow and Barnes (13), and will only be summarised
briefly here.

Since the tests were concerned with flow conditions near the out-
let, it was unnecessary to reproduce the effect of lateral inflow
along the gutter. The experimental arrangement is shown in
Figure 15 and 16, and consisted of two channels each approxi-
mately 2.5m long connected to a central section in which the
outlets and the box-receivers were mounted. Independently
variable flows were introduced at the upstream ends of the
channels which were long enough to produce uniform flow con-
ditions at the outlet. Two cross-sectional shapes of channel were
used in the tests: one was rectangular with a width of 152.4mm,
and the other was trapezoidal with a sole width of 152.4mm and
equal side slopes of 2 units horizontal to 1 unit vertical (see
Figures 17a, b). The tests were designed to study the effects of
the following factors:

(a) The plan shape of the outlet (either rectangular or
circular)

(b) The cross-sectional shape of the outlet (sharp-edged,
round-edged or tapered)

(c) The size of the outlet relative to the size of the
channel

(d) The position of the outlet in the channel or box-
receiver

(e} Flows from one direction, and equal or unequal flows
from opposite directions

H The cross-sectional shape of the channel (either
rectangular or trapezoidal)

A total of 77 different conditions were tested, and these are
summarised in Table 3.

The capacity of an outlet depends upon the length of downpipe
to which it is connected. If the downpipe is short, a control
section occurs at or near the level of the outlet in the gutter or
box-receiver, and this determines the capacity of the outlet. If

the downpipe is longer, the flow may entrain air in the downpipe
and thereby cause it to run full. When this occurs the flow is no
longer controlled at the outlet, but is subject to the full head
between the gutter and the bottom of the downpipe. Although the
capacity of the outlet increases considerably when this occurs, the
“priming” of the downpipe tends to be intermittent and cannot be
relied upon to occur. Outlets for roof gutters are therefore normally
sized on the basis that the flow is controlled at the outlet itself.
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In order to prevent priming occurring in the tests, only short
downpipes were connected to the outlets; the length of the
downpipes was made equal to the hydraulic diameter of the out-
let (i.e. = 4 x plan area of outlet/wetted perimeter of outlet, see
Fig. 16).

The rectangular outlets tested were all sharp-edged, but with the
circular outlets comparisons were made between sharp-edged, round-
edged and tapered outlets (see Figure 17). CP 308 : 1974 3)
states that it is possible to taper an outlet without reducing its
capacity provided that the amount of taper does not exceed
certain limits; the type of outlet that was tested (Figure 17¢)
corresponds to this limiting taper. The radius of curvature of the
round-edged outlets (Figure 17d) was specified in terms of the
diameter of the outlet, and chosen so that the ratio between the
top and bottom diameters was equal to that of the tapered out-
lets.

Depths of flow along each length of channel were measured by
means of six pressure tappings connected to gauge wells equipped
with vernier point gauges (see Figure 15b). Water levels in the box-
receivers were measured using two pressure tappings in the base of
the box and three scales mounted around the sides (see Figure 15b).

Theoretical background

Kalinske (18) carried out experiments on the capacity of vertical
drain and overflow pipes. Drain pipes are those which are installed
flush with the base of a tank or channel, while overflow pipes are
those which project above the base. The tests were carried out in
a large cylindrical tank, and care was taken to ensure that the flow
towards the outlet was radial. Kalinske tested pipes with internal
diameters of 44mm, 94mm and 148mm, and in the case where the
downpipes did not flow full obtained the following relation.

Q = CH2\/gD (148)

where Q is the discharge, H is the head above the outlet, D is the
diameter and C is a dimensionless number. The values of C showed
a fair amount of scatter, and varied between 4.3 and 3.3 for drain
pipes and between 4.8 and 4.0 for overflow pipes. The head H is
equal to the total head above the outlet since it was measured far
away from the outlet where the velocity of the flow was effectively
zero. The form of Eqn (148) is surprising because it does not
correspond to the form that might be expected if the flow were of
weir-type (Q o DH!*3) or of orifice-type (Q « D2H?-5). A possible
explanation is that critical-depth flow occurs upstream of the outlet
so that the effective weir length is greater than the perimeter of the
outlet; this possibility is considered in greater detail in Appendix A.
Although Kalinske’s results are of interest, they cannot be applied
directly to the case of outlets in gutters because the approach
conditions of the flow are very different.

Measurements of the capacity of a circular outlet connected to the
sole of a gutter were made by Bonnington(z). The gutter was 1.37m
long, and the flow was introduced at its upstream end. The gutter
was of trapezoidal cross-section (sole width of 114mm, and equal
side-slopes of 2 units horizontal to 1 unit vertical), and the dia-
meter of the sharp-edged outlet was 74mm. Two distinct types of
flow were found to occur. At low heads (< D/4 approximately)

the flow was of weir-type and given by
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Q = 0.65 \/g («D) h3/2 (149)

This equation is, however, open to doubt because analysis of the
measurements indicates that the flow in the gutter was super-
critical with a Froude Number of about 1.3; this is not consistent
with the existence of a critical-depth control around the perimeter
of the outlet. At higher heads the flow was subcritical and of
orifice-type. When swirl was prevented the capacity was given by

Q= 0.67 A V2gh (150)

where A is the plan area of the outlet. When swirl occurred the
capacity of the outlet was reduced to

Q= 0.52 A v2gh (151)

In Eqns (149), (150) and (151) the head h was the static head
measured by a pressure tapping located 152mm upstream of the
outlet.

The equations given in CP 308: 1974(3) for the capacity of circular
outlets are based on Bonnington’s results described above, but the
coefficients are somewhat reduced so as to give convenient values
when the equations are expressed in metric units. The values of
the coefficients used in CP 308: 1974 are 0.643 in Eqn (149),
0.606 in Eqn (150), and 0.454 in Eqn (151). In the code these
equations apply both to an outlet in the sole of a gutter and to
an outlet in a box-receiver, even though the approach conditions
are different in the two cases. In the case of a box-receiver the
flow moves only slowly around the sides so that the static head
nearly equals the total head (as in the case of Kalinske’s results,
Eqn (148)). In a gutter, by contrast, the velocity of the flow
approaching an outlet may account for a significant proportion of
the total head. Since the equations in CP 308: 1974 use the actual
depth of flow, it might have been expected that different values
of the constants would have been needed in the two cases. This
aspect is considered again in the light of the BHRA results.

As described in Section 10 the measurements that were made in
the BHRA tests included water level profiles along the channels,
and it is interesting to compare these with the corresponding
theoretical profiles. The flow in a channel may be described by the
gradually-varied flow equation, Eqn (1), subject to the conditions
listed in Section 2. Since the channel is level (§,= 0) and the
lateral inflow q is zero, Eqn (1) becomes

-S
e (152)
gA3
Substituting for Sf from Eqn (84) and re-arranging gives
_A P
dy _ 8 B (153)
d 3
oA
BQ?
If the Froude Number at the outlet is Fo then
2 B° .
F °= 4)
3
[s) ng
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where the subscript o denotes the values of A and B that corres-
pond to the depth y, at the outlet. Substituting in (153) then
gives

AP
dy _ - (154)
3
R
.. A B

For the case of a rectangular channel with a sole width of B, Eqn
(154) becomes

A 2
d _8—(1+B_y)
S A
F2
o yO

If y is the depth of flow at a distance x, = L—x upstream of the
outlet, and if ratios y, and e are defined such that

Ye =— (90)

e =t (97)

! _yzf _1
1 )
== A dx = — dy, (156)

2y.
1 1+

This can be integrated exactly provided that )\ is assumed to be
constant, and gives

N A [(Y.,3—1) NN
X, F 2 3 4
(y::: = 1) (F ) + 63) 2Y¢ +e
FEsEs L 0 _—
2= & log, () (157)

This equation therefore enables an average value of A to be calcu-
lated from the measured flow profile along a channel. If the
width of the rectangular channel is large compared with the depth
of flow, e » e and Eqn (156) then gives

_8Y0 (Y*4 - 1)
X [—41;—2 ~ e - D (158)

A similar method can also be applied to the general case of a
trapezoidal channel. If the channel has equal side-slopes of b/2 (see
Eqn (6a), then it can be shown from (154) that

(1+uw L —1 ] y
8y, AL AN A A I £
Y [[{Foz(l + )3} 1 59

1
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1-“23’*6+1(3 Ly wy® 13 3,1 ¢
' 482 54 & 2 42 T4 8
3 2
y* Y* y
+ A * -
{3au 2a%u? B33 Iy log. (1 + auy*)} (1602)
" 1
IZ —L (a2 ) log, (1 + auy, ) (160b)
a a‘u
3 3 1
Asl—t > -5 160
2a 432 833 ( c)
v, ® = (90)
yO
b
=_-9 9
“ 7B, ©)
4+ p2 %
a =) (160d)

Eqn (157) was applied to some of the measurements obtained in
the BHRA tests with the rectangular channel, and calculated values
of \ are given in Table 4. Tests in which the flow discharged freely
(F0 = 1) were chosen because they gave larger values of the ratio
y,» and therefore minimised the effect which standing waves in

the channel had on the measurements of the depth of flow; the
values of y_ at the downstream end were calculated from the dis-
charge assuming that the flow was at critical depth. The calculated
values of A are compared in Table 4 with those predicted by the
Blasius equation, Eqn 109, which is appropriate because the channel
had a smooth finish and the Reynolds Number R, was of the order
of 2 x 10* to 1 x 10°; the values of R_ were determined for the mean
depth in the channel, i.e. (yo t+y, )/2. fhe calculated values are
somewhat higher than the predicted values, but the agreement is
reasonable considering the sensitivity of Eqn (157) to any errors

in the values of Voo

When plotted logarithmically the results of the BHRA tests generally
have the form shown in Figure 18. At low heads the flow is of
weir-type while at higher heads the flow is of orifice-type with

Q @ h 05, Weir-type flow occurs as a result of the existence of a
control section at which the flow passes through critical depth. In
the present tests the control section could either be located across
the gutter a short distance upstream of the outlet or around the
perimeter of the outlet itself. Crow & Barnes (13) plotted the
critical-depth lines for the gutters together with the experimental values
of discharge and head, and thereby showed that the control section
occurred in the gutter for all but the smallest outlets. Figure 18a
shows typical plots of discharge Q versus static head h (measured

at tapping A in Figure 15b), while Figure 18b shows the corres-
ponding plots of Q versus total head H. The values of H were
calculated assuming the velocity distribution of the flow to be
uniform across the channel so that
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where A is the cross-sectional area of flow corresponding to the
depth h. The equation of the critical depth line connecting the

discharge Q to the critical depth y_ and the corresponding minimum
total head (or specific energy) H_ 1s found by solving the equations

(161)

A 3 1/2
Q= (& (162)
BC
A
H = +_¢ (163
C yC 2Bc )

where the subscript ¢ denotes values at the critical depth. In the
experiments the measurementsof static head h in the weir-flow
region sometimes lay a little above or below the theoretical critical
depth line given by Eqns (162) and (163). Possible reasons for
these discrepancies are considered below.

Measurements of the velocity distribution in the gutter were made
at the start of the tests,and these indicated that the energy
coefficient o« had a value of about 1.10 which agrees with previously
published data (see Chow (11D p. 28). If the value of « is greater
than unity, Eqn (163) remains the same but Eqn (162) is altered
to

3 %

Q=( ) (162a)

g C
ozBC
Thus if the value of « in a rectangular channel is 1.10, it can be
shown that the actual value of critical depth will be about 3%
greater than that given by Eqn (162).

Discrepancies between measured and theoretical depths are also
likely to occur if the control section is not located exactly at the
pressure tapping where the head h is measured. Measurements by
Rouse ) of flow at a free overfall show that curvature of the
flow causes the depth at the brink to be about 0.715 of the
critical depth y . The critical section occurs at a distance of about
3-4 y_ upstream of the brink so that its position varies with dis-
charge. A similar type of behaviour can be expected to occur just
upstream of an outlet in a gutter. The pressure tapping in the
gutter will therefore tend to underestimate or overestimate the
critical depth,depending upon whether the critical section is located
upstream or downstream of the tapping.

Errors in the depth of flow measured by a pressure tapping will
also be caused by the curvature of the flow as it draws down to-
wards the outlet. The effect of this curvature can be estimated as
follows. The flow profile along a wide, rectangular gutter discharging
freely (F, =1, y, =v_) is given by Eqn (158) which may be
written in the form

4 3
Yy — (% + 2 (164)
y 4

c [

If the depth is y at a distance x, upstream of the critical section,
and if y is only slightly greater t]han the critical depth y, SO that

y=y, (I +w) (165)
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then substituting in Eqn (164) gives to the second-order in w

>\x1/2

= (=21
w (l2yc) (166)

The radius of curvature R of the water surface is given by

d 2 3/2
1+ ()
{ dx }
R='—0f (167)
dx?

Substituting for dy/dx and d?y/dx? from Eqn (155) and evaluating
at the point X, upstream of the critical section gives to the first
order in w

A (168)

The acceleration a of the fluid at the surface due to the curvature
of the flow is
V2 8 Y

a:_

R R (169)

since the flow is close to critical depth. Substituting for R from
Eqn (168) and using Eqn (166) then gives to the first order

1
3 2
a _ 2 MY (170)

The curvature of the flow as it draws down towards the outlet will
cause the pressure at the tapping to be somewhat lower than
hydrostatic. As an example consider the case of a wide rectangular
channel in which A = 0.02 and y_, = 50mm. At a point X, = 25mm
upstream of the critical section the actual depth of flow y is found.
from Eqns (164) and (165) to be 51.4mm. However the curvature
of the flow will, from Eqn (170), reduce the effective value of
gravity to 0.913g. Thus the tapping would record a pressure
equivalent to a hydrostatic depth of water of 47.0mm. This cal-
culation tends to overestimate somewhat the effect of curvature
because it is based on the curvature at the surface which is

greater than the average curvature through the whole depth of the
flow. However it does show how a tapping can indicate that the
flow is supercritical when in fact it is still subcritical.

Although the experimental measurements of static head h do not
always lie exactly on the critical depth line for the reasons described
above, the discrepancies are very much smaller when the results are
plotted in terms of the total head H. The reason for this can be
found by considering the case of a rectangular gutter in which the
static head h is slightly greater than the critical depth y, so that

h =yl +r) (171)

Substituting in Eqn (161) and using Eqns (162) and (163) gives to
the second order in 7

g =1t (172)
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If, for example, the static head is 3% greater than the critical depth,
the total head will be less than 0.1% greater than the minimum
specific energy. Since the measurements of static head tend to show
a certain amount of scatter, it was decided that the plots of dis-
charge Q versus total head H provided the best means of determining
whether or not the flow was controlled by a critical depth section
in the gutter. For outlets in box-receivers there is no effective
difference between static head and total head because the flow in
the box is moving only slowly except in the immediate vicinity of
the outlet.

The experimental results show that the transition between weir-type
flow and orifice-type flow is usually well defined (see Figure 18).
Most of the outlets conformed surprisingly closely to an orifice-
type equation, although some of the round-edged and tapered out-
lets behaved somewhat differently as described in 11.5. Before
analysing the results, it is necessary to decide whether the orifice
equation used should have the form Q @ h %5 or Q « H %%, From
a theoretical point-of-view one might expect the total head H to be
the correct quantity because it takes into account the velocity of
the flow approaching the outlet. If the static head h is used it
implies that the initial velocity head of the flow is lost before it
enters the outlet since it does not contribute to the velocity of
the flow through the vena contracta which forms at the outlet.
Visual observations during the tests suggested that when the flow
was of orifice-type it entered the outlets smoothly with little sign
of energy dissipation. However the choice between h and H must
be made on the basis of the experimental results, and as described
below these tend to support the use of the static head h.

At points well above the transition from weir-type flow to orifice-
type flow, the difference between h and H becomes very small
because the velocity of the flow is low. Therefore in order to
differentiate between the two alternatives, it is necessary to consider
the shapes of the experimental curves just above the point of
transition. Assume first that the orifice equation has the form

Q=C,; A, Vi (173)

where A_ is the plan area of the outlet. If the transition from weir-
flow to orifice-flow were well defined, a logarithmic plot of Q against
h would show a sudden change of slope, as illustrated diagrammati-
cally in Figure 19a. The corresponding total head H is found by
substituting Eqn (173) in Eqn (161) to give

- g1+ (St (174)

where A is the cross-sectional area of the gutter corresponding to
the depth h. When Q is plotted against H (see Figure 19b), this
equation produces a transition curve that is convex upwards and
which approaches the straight line in Figure 19a asymptotically as

H > . If, however, the orifice equation is assumed to have the form

Q=Cy, A, v 2H (175)

then a plot of Q versus H will show a sharp transition as shown in
Figure 19d. The correspnding equation connecting Q and h is
found from Eqns (161) and (175) to be
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which when plotted logarithmically gives a transition curve that is
convex downwards as shown in Figure 19c¢. Comparison of the
experimental results with Figure 19 shows that the majority of
the tests had curves which were closer to those in Figure 19a and
b than those in Figures 19¢ and d. Therefore, despite an initial
preference in favour of total head, it was decided that the results
for orifice-flow should be analysed in terms of static head and
Eqn( 173).

The use of static head has the practical advantage of making the
results easier to apply to the design of gutters. As seen in Part I,
the capacity of a gutter depends upon finding the relationship
between the depths of flow at the upstream and downstream ends
of the gutter; Eqn (173) gives the downstream depth directly
whereas an intermediate step would have been needed to determine
h from H if Eqn (175) had been used. The differences between
equations based on static head and total head do not arise when
one considers outlets in box-receivers; here the depth of flow is
measured at the side of the box where the flow is moving only
slowly so the static head is effectively equal to the total head.

As mentioned in 11.4 some of the round-edged and tapered outlets
exhibited a different type of transition from the sharp-edged out-
lets. A typical example is shown in Figure 20, where it may be
seen that the transition curve has a shape that is convex-downwards
in the plots of both the static head and the total head. However as
the head increases, the curve straightens out and tends towards a
straight line that corresponds to ‘“‘simple” orifice-type flow. Two
possible explanations for this behaviour can be suggested.

Firstly, since the round-edged and tapered outlets provide smoother
entry conditions than the sharp-edged outlets, less of the energy
associated with the velocity of the flow in the gutter may be lost.
This would suggest that an orifice equation involving total head
(Eqn (175)) would be more suitable than one involving static head
(Eqn (173)), and this would partly explain the shape of the
transition curve in Figure 20a (cf Figure 19¢). However the use of
total head would not explain the curved transition in Figure 20b.

The second explanation concerns the position of the vena contracta
which is produced by the outlet, and which causes it to act as an
orifice. If the vena contracta is located a distance z below the
plane of the outlet, then the correct form of the orifice equation
is

Q= CdzAp v/ 2g(h+z) (177

Thus if Eqn (173) is used to analyse the results, the calculated
values of C; will be greater than the “correct” values of C;, given
by Eqn (177). In the case of a sharp-edged outlet, the distance z
will be relatively small because the streamlines that form the vena
contracta have to remain horizontal until they reach the lip of the
outlet. This would explain why Eqn (173) appears to be a good fit
to the experimental data for the sharp-edged outlets. In the case of
a round-edged outlet, the streamlines are able to curve downwards
before separating, and therefore form a vena contracta at a greater
distance below the plane of the outlet. At low heads z will be of the
same order as h, and will therefore give an effective value of C;
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that is significantly higher than C , in Eqn (177). At higher heads
z may increase somewhat, but it 1s likely to become smaller in
relation to h and therefore cause C, to tend towards C ,. Thus

if the experimental data are analysed according to Eqn (f73), the
calculated values of C, will appear to decrease as the head increases.
This behaviour would therefore help to explain the shape of the
curves in Figures 20a and b. Since the distance between the vena
contracta and the plane of the outlet varies with the head and is
difficult to predict, it was decided that the results for the round-
edged and tapered outlets should be analysed in the same way,
using Eqn (173), as the sharp-edged outlets.

Calculation of discharge coefficients

The experimental results, as discussed in Section 11.3, show that
two distinct types of flow can occur in a gutter or box-receiver
containing an outlet. At low heads the flow is of weir-type, but
at higher heads it changes to orifice-type. The measurements in
each test were therefore analysed at HRS to determine best-fit
values of the discharge coefficients corresponding to the two
types of flow.

The analysis of the data for the orifice-flow regime is simpler than
that for the weir-flow regime, and will be considered first. The
discharge equation used for the analysis was

Q= C,4A, V2¢h (173)

where Q is the rate of flow in the gutter, h is the corresponding
static head measured at the tapping immediately upstream of the
outlet (tappings A or B in Figure 15b), A_ is the inlet area of

the outlet measured in plan, and C, is the non-dimensional
discharge coefficient for orifice flow. The values of A_ for the
round-edged and tapered outlets were calculated in terms of their
top diameters. In the case of the outlets in box-receivers, the value
of h used was the depth of water measured by the pressure
tappings and/or the scales on the sides of the box (see Section 10).

The best-fit value of C, for a particular set of measurements depends
to a certain extent on the variable that is chosen as the basis of
the calculations. For example, it would be possible to treat the
discharge Q as the independent variable and h as the dependent
variable, and then minimize the standard deviation in h; this
procedure would however tend to bias the results towards the
values of C; associated with the highest heads. The method adopted
was to calculate from Eqn (173) the value of C, corresponding to
each pair of measurements of Q and h, and then to take the
algebraic mean C, of the values in each particular test. There are
two main advantages of this approach. Firstly, the method is also
suitable for calculating discharge coefficients for results in the
weir-flow regime. Secondly, the standard deviation ¢ of the
individual values of C, provides a convenient measure of the
accuracy of Eqn (173); the value of ¢ for a set of N measurements
is given by

2y _ 2
. =\/z(cd> (z C,) 2N A
N-1

Confidence limits for a particular mean value of C 4 can be expressed
in terms of the standard error S, where
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S, = — (179)

For cases where the flow approached the outlet from two
directions, separate values of C; were calculated for the two flows
using the corresponding measurements of h and Q. The overall
value of C ¢ for the outlet was then obtained by adding the two
individual values.

When the flow is of weir-type, the results indicate that a control
section normally occurs in the gutter and not around the perimeter
of the outlet. It is therefore possible to express the results in terms
of a non-dimensional gutter coefficient Cg such that

Q=¢, Q, (180)

where Q is the measured flow and Q,, is the theoretical flow that
would occur if the outlet did not restrict the discharge of the

gutter; Q_ is therefore the maximum flow in the gutter corresponding
to the measured value of total head H. It may be seen that Cg is
similar but not equal to the Froude Number F_ in Eqn (4). In
Section 11.4 it was decided that the analysis of the weir-flow results
should be based on the total head H rather than on the static head
h. From Eqn (163) the measured value of H has a corresponding
value of critical depth y, given by

— AC
H =y, + (181)

C

It should be noted that since v, is based on H, it is not the same
as the value of critical depth that corresponds to the measured
discharge Q. From Eqn (4) the theoretical discharge ch is given by

3
Q, = \/(g;° ) (182)

where A  and B_ are the area and width of flow corresponding to
Ve Q,, 18 therefore the theoretical discharge that would occur if
a flow, with the same value of total head H that was measured in
the experiments, were able to discharge freely.

For the case of a rectangular gutter of width B_ it is convenient
to introduce non-dimensional forms of the measured discharge Q,
the static head h, and the total head H, such that

_ Q9
NN (183a)
h
h,=— (183b)
BS
H
H= — (183¢)
* Bs

It can then be shown from Eqns (161), (173), (181) and (182) that

_ 1 Q.7
H*—h*”f,z—(z) (184)
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3 3/2
Cg = Q* (2—1'1*) (185)
Individual values of C_ were determined from Eqns (183) to
(185) for each pair of measurements of Q and h, and the algebraic
mean C_ of the values in each particular test then taken; the
corresponding value of the standard deviation ¢ was calculated
from Eqn (178) with Cg replacing C e

The case of weir-type flow in a trapezoidal gutter is a little more
complicated. If the sole width of the gutter is B, and the effective
side-slope is b (Eqn (6)), then from Eqns (161) and (184)
2
Q
H =h + 53— (186)
* T R+ bR)

Next it is necessary to find from Eqn (181) the value of the
critical depth y_ that corresponds to the measured total head H.
Putting

y
Veu = B_C (183d)
S
it can be shown that
2bH, — 3 ++/ (9 + 8bH_ + 4b2 H?)
Finally substituting y., in Eqns (180) and (182) gives
%
1+b 2
c,=q,| LX) (188)

b 3
v, Vel

The mean value C for each test, together with the corresponding
value of the standard deviation o, were calculated in the same way
as described above for the rectangular gutter.

The results for the circular outlets in box-receivers suggest that,
despite the confused flow conditions within the box, weir-type
flow did occur at low heads. Since in this case the flow can be
expected to be controlled at the outlet itself, the results were
expressed in terms of a non-dimensional weir coefficient C, such
that

Q=C, Q, (189)

where Q_ . is the theoretical capacity of a weir corresponding to
the value of total head H measured in the experiments. Assuming
that the flow passes through critical depth around the perimeter of
the outlet, the theoretical discharge Q,, is given by

| 32 Yo 32
Qu=() g H (190)

where D is the top diameter of the outlet. Since the depth of
water in the box-receivers was measured at the sides where the
flow was moving only slowly, the measured static head h was
effectively equal to the total head H. The value of the weir coe-
fficient for each pair of measurements of Q and h was therefore
calculated from
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13

13.1

3/2 Q

_ 191
7D gl/2 h 3/2 ( )

3
Cw =(—2 )
The mean value éw and the standard deviation ¢ for each test
were calculated in the way described above for C g and Cg.

The calculated values of Cd and Cg or Cw in each test are listed,
together with their standard deviations, in Table 3. Values marked
with an asterisk are those for which the experimental points did
not conform very well to the orifice-flow or weir-flow equations.
Values marked with a p are those where there was evidence that
the outlet began to prime when it was deeply submerged.

Discussion of results

The principal conclusions that can be drawn from the results in
Table 3 are that the majority of the larger sharp-edged outlets
conformed closely to the theoretical orifice- flow equation, Eqn
(173), and that the values of C 4 were mostly in the range 0.6 to
0.7. Overall mean values of C, for each of the main types of
outlet are given in the first parts of Tables 5a,b,c. It can be seen
that the plan shape of the outlet (i.e rectangular, square or

circular) had little effect on the overall values of C 10 More
surprisingly perhaps, the circular outlets in the box-receivers had
similar values of C; to those of the circular outlets in the gutters,
even though the approach conditions were very different. However
it was necessary to list the 1” x 1" and 1"¢ sharp-edged outlets
separately in Tables 5a,b because they had significantly higher values
of C, than the other sizes of outlet. The discharge coefficients for
the round-edged and tapered outlets were calculated in terms of
their top diameters. Table 5b shows that the mean value of C, for
the round-edged outlets is about 14% less than that for the sharp-
edged outlets, while the value for the tapered outlets is about 14%
greater.

Some of the tests did not conform so closely to the theoretical
orifice equation, and these are indicated in Table 3 by means of
asterisks. This occurred mostly with the round-edged and tapered
outlets which tended to exhibit a more gradual transition between
weir-flow and orifice-flow; a possible explanation of this behaviour
was discussed in 11.5. The values of C, marked with a p in Table
3 indicate those tests where there was a sudden increase in discharge
for only a small increase in head. This tended to occur with the
smaller outlets when they were deeply submerged, and may have
been due to the outlets priming and causing the short lengths of
downpipe to run full.

The second parts of Tables 5a,b,c indicate how the values of C 4
were influenced by the various factors listed in (a) to (f) of
Section 10. The variations in C, were calculated by comparing
pairs of tests in which all but one of these conditions were the
same. The ‘“‘average variation in C,” is the average percentage
change for the group of tests useg in that particular comparison;
the significance of the average variation can be judged from the
“range” which gives the maximum positive and negative changes
within that group.

The effects of the various factors in Table 5 may be summarised
as follows:
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(a) Plan shape of outlet, Circular outlets generally have slightly
higher discharge coefficients than rectangular outlets of the
same size; the difference is more marked when the outlet is
small.

(b) Cross-sectional shape of outlet, For circular outlets of the
same top diameter, tapered outlets have higher capacities than
sharp-edged outlets, which in turn have higher capacities than
round-edged outlets. For outlets of the same bottom diameter,
sharp-edged outlets have the lowest capacities.

(c) Relative size of outlet, This has the largest effect on the
discharge coefficients of circular outlets; the smaller the out-
let in relation to the gutter, the larger the value of C g - How-
ever the relative size has little effect on rectangular outlets
unless they are very small.

(d) Position of the outlet. Moving a circular outlet further from
a stop-end decreases its capacity significantly. However the
capacity of a circular outlet in a box-receiver may decrease
slightly if it is moved from the centre of the box. Moving an
outlet from the centre-line of the gutter to one side reduces
the capacity if it is rectangular, but increases it if it is circular.

(e) Flow from two directions. The capacity of an outlet is
generally higher when the flow approaches from two directions
rather than one direction.

(f) Cross-sectional shape of gutter. Qverall the capacity of an
outlet varies little whether the gutter is rectangular or trape-
zoidal; however individual cases show quite large variations.

The above summary shows that it is difficult to draw definite
conclusions about the effect of some of the factors. It is probable
that all outlets in gutters are subject to a certain amount of swirl
because the gutters prevent radial flow towards the outlets; Plates

I & II indicate the existence of swirl in two typical tests. Although
rectangular outlets are inherently less efficient than circular outlets
because of their corners, they are likely to produce less swirl in
the approaching flow and be less sensitive to changes in the local
geometry. This is borne out by the results which show greater
variability in the discharge coefficients of the circular outlets. The
various effects noted above in (a) to (f) tend to suggest that the
changes which increase the discharge coefficients are those which
would be expected to reduce the amount of swirl. However the
existence of swirl does not explain why the smaller outlets
generally had higher values of C; than the larger ones. All the out-
lets were tested over approximately the same range of flow depths,
so that in terms of the ratio h/D the smaller outlets were more
deeply submerged than the larger ones. Increasing the submergence
of an outlet tends to straighten the flow lines and thereby increase
the area of the vena contracta and lower the level at which it
forms (see 11.5); both these effects would tend to produce an
apparent increase in the discharge coefficient C 4- Finally it should
be remembered that many of the variations in C, considered
above are relatively small and may not be very significant when
determining design capacities.

Gutter: coefficients 13.2. Observations and photographs of the tests show that the flow
conditions around the gutter outlets were quite complex at low
heads when the flow was of weir-type (see Plates III and IV).
Plate III shows a case where the flow is from only one direction;
the flow enters the outlet smoothly on the upstream side, but on the
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downstream side a plunging jet is formed by the water which has
backed up against the stop-end. Plate IV shows the case of flow
from two directions: plunging jets form on either side of the out-
let at the points where the two flowsmeet. Values of the weir
coefficient C,, calculated from Eqns (189) and (190) were found
to be considerably greater than unity, but in view of the
observations described above it is not surprising that the results
did not correspond to the normal type of weir equation based on
the occurrence of critical depth around the perimeter of the out-
let. As described in Section 12, it was found that the results could
best be expressed in terms of a gutter coefficient Cg applied to
the theoretical discharge Q_, that would occur if a flow with the
same total head H as the measured flow Q were able to discharge
freely (Eqns (180) and (182)).

When flows approached an outlet from two directions it was
found that the depths of water on either side of the outlet were
approximately equal, and were determined by the larger of the
two flows (and not by the combined flow as in the case of the
orifice coefficients). Separate values of C_ for the two flows are
given in Table 3 for tests C,F,H amd J. Where the flows were
unequal, the value of C_ for the larger flow is written above that
for the smaller flow; in these cases, however, the value for the
smaller flow has little significance.

A study of Table 3 shows that the values of C_ are more variable
than the orifice coefficients considered in 13.1.” A general pattern
in the values of C_ can be discerned by considering the amount of
curvature which the geometry of the outlet (in plan) imposeson
the flow: the greater the curvature, the lower the value of Cg. It
can be shown (Appendix B) that the minimum energy required

for a given discharge is greater if the flow is curved than if it is
not. Conversely, for a given total energy, the discharge will be

less if the flow is curved than if it is straight, even though both
flows discharge freely. This argument suggests that a critical-flow
section does occur in the gutter upstream of the outlet, but that
the velocity of flow through the section is non-uniform because of
the curvature produced by the outlet. As a result the discharge is
somewhat less than predicted by the normal critical-flow equation
for uniform flow.

It can be seen from Table 3 that the values of C_ for the largest
outlets were very close to unity, being in the range 0.98 to 0.99.
This indicates that the outlets did not significantly affect or
restrict the flow in the gutter upstream of the outlet. In the case
of the smaller rectangular outlets it is reasonable to assume that
the portion of the flow which discharges directly into the outlet
along its upstream-facing edge is little affected by the geometry of
the outlet. However the remainder of the flow has to converge
inwards towards the sides of the outlet, and this can be expected
to reduce the value of C_. It is therefore suggested that the
overall value of Cg for a rectangular outlet can be expressed in the
form

= Wt Y Y

g —
B

where B is the depth-averaged width of flow (= A/y), W is the
width of the outlet measured normal to the centre-line of the
gutter, and Y,and Y, are the depth-averaged widths of flow on
either side of the outlet (see Figure 21). The quantity y_ is the
unrestricted value of the discharge coefficient C_, which for
convenience can be taken as constant and equalg to 0.985; 74 and

C 2 (192)
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7, are the coefficients corresponding to the widths Y1 and Y2
respectively.

In the case of the tests in the rectangular gutter B was constant
and equal to the sole width of the gutter. The outlets were
positioned either on the centre-line of the gutter so that Y.=Y
or offset so that Y,=0. For these two positions Eqn (192) can
therefore be written

w w
ty, (1 —=) (193)

% =% 5§ B

g

Putting 7, = 0.985, it was therefore possible to calculate a value
of y, for each test.

In the case of the trapezoidal gutter B varied with the depth of

ftow so it was necessary to use an average figure when calculating
7,- A suitable value of the depth-averaged width of flow in each
test was calculated from the formula

= 1
B=BS+ZbyW (194)
where Bs is the sole width of the gutter, b is the effective side
slope (see 3.1), and y_ is the maximum depth up to which weir-
flow persisted in the test. In most of the tests the outlet was
positioned on the centre-line of the gutter so that y., could be
calculated from Eqn (193). However, in Tests E.1 and E.2 the
outlets were offset so that the width Y, in Figure 21 was small
but not zero. Since the curvature of the flow in the width Y, is
small, it is reasonable to assume that the corresponding value of
7, 1is equal to the unrestricted value Y.+ Ean (192) can then be
written

= 1 Yl + Yl 195
Cg"')’o( —E_) ')’1—]—3- ( )

This equation, with y = 0.985, was therefore used to calculate
the values of v, in Tests E.1 and E.2.

As described above the value of v, is believed to depend upon the
amount of curvature of the flow near the:.outlet, and a suitable
measure of this is the ratio Y /Le where L is the effective length
of the outlet measured parallell to the centre-line of the gutter (see
Figure 21). If the flow is from one direction L, is equal to the
actual length L of the outlet; if there are flows from two directions,
the length L has been divided between the flows in proportion to
their magnitudes (see Plate 1V). Calculated values of the quantities

v, and Y /L,e for the rectangular outlets are given in Table 6 and
pfotted in Figure 22. The latter shows that vy, tends to decrease
steadily as the value of Y1/Le is increased. W‘hen Y1 /Le < 0.5, it
appears that the sides of the outlet are long enough to accept the
flow without causing any significant backing-up in the gutter. When
Yl/LE > 0.5 the flow is forced to turn more sharply into the out-
let, and this has the effect of reducing 7,- Although there is a
greater amount of scatter at the higher values of Yl/Le, there do not
seem to be any consistent differences between the various sets of
data.

Tables 3c,d,e show that the values of C_ for the circular outlets are
affected by the following factors: ,

(a) Relative size of the outlet . Decreasing the size of the outlet
decreases Cg.
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(b) Position of the outlet, The value of C_ increases
when the outlet is moved away from a stop-end, and
decreases when it is offset from the centre-line of the
gutter.

(c) Flow from two directions, The value of Cg for the
gutter carrying the larger flow is decreased as the flow
from the other direction is increased.

Thus changes which increase the curvature of the flow at the
outlet reduce the value of C_. It is interesting to note that the
effects on Cg of the above factors are the opposite of their
effects on the orifice coefficient C; (see 13.1).

Unlike the case of the rectangular outlets, it is difficult to devise

a simple theory for predicting the overall value of C_ for a

circular outlet. The values of C  have therefore been plotted in
Figure 23 as a function of the quantity Do/B, where D0 is the
top diameter of the outlet and B is the depth-averaged width of
flow defined by Eqn (194); the values of C_ and D /B are listed
in Table 7. The data for the outlets positioned on the centre-line
of the gutter have been divided into three groups: flow from one
direction (Qp= 0); unequal flows from two directions (Q A = 2Qp);
equal flows from two directions (Q, = Qp)- It can be seen in
Figure 23 that the three sets of results show a similar trend with
C, decreasing as D_/B is decreased; three curves defining the lower
lifnits of the data for the central outlets (but ignoring one doubtful
point) have therefore been drawn. The values of C_ for the offset
outlets are generally somewhat lower than the corresponding values
for the central outlets.

Weir coefficients 13.3  Observations of the tests with the circular outlets in the box-
receivers showed that the flow conditions were very complex at
low heads (see Plate V). Sub-atmospheric pressure between the
falling jet and the side of the box caused the water-level behind
the nappe to be about 20—30mm higher than it was in the centre
of the box. The water-level in the centre of the box also depended
upon whether the jet landed on top of the outlet or in front of
it. When flow was from two directions, oscillations in the positions
of the nappes sometimes caused the water in the centre of the box
to “slosh” backwards and forwards.

For these reasons the results obtained at low heads can only be
approximate. However some of the tests do indicate the occurrence
of weir-type flow and values of the weir coefficient C_ are given

in Table 3f. These values were mainly calculated using the measure-
ments of water level around the sides of the box where the flow
was not affected by the sub-atmospheric pressures behind the nappes;
the readings from the pressure tapping in the base of the box were
used if they did not seem to be affected by the impact of the

jets (see Crow & Barnes (13)).

The calculated values of C,, show a great deal of scatter so it is
difficult to draw firm conclusions. However the discharge
coefficient does seem to increase significantly when the outlet is
moved away from the centre of the box.

14 Design recommendations

Orifice coefficients 14.1  As described in 11.1 CP 308: 1974 recommends the use of two
values of the orifice coefficient C;- If swirl is “prevented” by
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Gutter coefficients

14.2

placing the centre of the outlet not more than one diameter away
from the vertical side of the gutter or box-receiver, then C, =
0.606; if swirl does take place then Cd = 0.454. The results for
the rectangular and circular sharp-edged outlets in Table 3 show
that values of C 4 < 0.606 occurred in 6 out of the 52 tests; of
these six, two values were only marginally less than 0.606, two
were within one standard error (Eqn (179)), and two were within
about two standard errors; the lowest value was C, = 0.522. Table
5 shows that the overall mean values of C, for the sharp-edged
rectangular and circular outlets were 0.647 and 0.657 respectively;
these figures do not include the 1” x 1” and 1” ¢ outlets which
had significantly higher values of C 4

Although the value of C, tended to increase when the circular
outlets were moved closer to the sides of the gutter, there was
a small reduction in the case of the rectangular outlets and the
circular outlets in the box-receivers. It was concluded in 13.1 that
all the outlets were subject to swirl but that the strength of the
swirl depended in a complicated way upon the shape of the out-
let and upon its position in the gutter. Since the overall variations
in C, were generally small, it was decided in the revised version
of C'i’ 308 to use a single value of C ¢ = 0.606 for all sharp-edged
circular outlets; when Q is in 1/s and h is in mm the resulting
discharge equation is

D2 h 05
Q 15 000 (196)
This maintains continuity with the previous version of the code,
and gives a safety factor of about 7% compared to the average
discharge coefficient of 0.647; in the case of the smallest outlets
the safety factor is considerably higher. For rectangular outlets
a slightly lower value of C 3 = 0.595 was adopted in order to give
the following design equation for CP 308

A h 0.5
12 000

Q= (197)
Eqgn (196) can be used for all types of circular outlet if D is
defined as the effective diameter; in the case of sharp-edged outlets
D is equal to the diameter of the outlet. Table 5 shows that the
average value of C, for the round-edged outlets was about 86%
that for the sharp-edged outlets when the coefficient was calculated
using the top diameter D_. The revised version of CP 308 therefore
recommends that D = 0.9 D_ be used for the design of round-
edged outlets of this type (I%igure 17d). For the tapered outlets
(Figure 17¢) it was decided to let D = Do even though this gave

a somewhat higher factor of safety.

CP 308: 1974 recommends the use of a single weir equation for
outlets in gutters and box-receivers; this equation is based on the
perimeter of the outlet and is similar to Eqn (149) but with a
slightly reduced discharge coefficient of 0.643.

As described in 13.2 the present experiments have demonstrated
that weir-type flow in a gutter is normally controlled by the cross-
sectional shape of the gutter and not by the outlet. The gutter
coefficient C, defined by Eqns (180) and (182) ought therefore

to be used when determining the depth of flow upstream of an
outlet. Suitable design curves for rectangular and circular outlets
have been derived from the experimental results that were pre-
sented in 13.2. Figure 24 gives the values of 71 and v, for a
rectangular outlet in terms of the ratios Y, /Le and Y, /Le (see
Figure 21). Comparison with the experimental data in Figure 22
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shows that only two measurements lie significantly below the

design curve. The value of Cg for the outlet is then calculated
from

C = Wit Y1 +n Y
g B

2 (192a)

Note that the value of 7, in Eqn (192) has for convenience been
assumed to be equal to unity. Figure 25 for circular outlets is
based on the curves of C_ versus D, /B drawn in Figure 23, but
gives four design curves for outlets that are central and offset and
for flows from one or two directions.

When the value of Cg for the outlet has been determined from
Figures 24 or25, it can be used to determine the depth of flow
y, in the gutter upstream of the outlet. Unfortunately this
calculation is not straightforward because C_ is a discharge coeffi-
cient and is therefore only indirectly related to the depth of flow.
The first step is to convert Cg into an equivalent value of the
Froude Number F0 defined by

2
P2 = 2al
o gA 3

(]

4

where Q is the discharge in the gutter, and A, and B are the
area and width of flow Corresponding to the depth y,- The dis-

charge Q and the corresponding total head H may therefore be
written

A3 Y
Q=F, V& &°) (4b)
(o]
A
H=y +F? —e¢ (198)
o (o] 2Bo

The coefficient C_is defined as the ratio between the actual dis-
charge Q and the $heoretical discharge Q . for a freely-discharging
flow having the same total head H (see ]%qn (180)). Therefore

A3 %
ch =\/E(B_c) (182)

C

where A  and B, correspond to the critical depth y_; the relation-
ship between H and y_ is

H= + € 181
et (181)
C
It follows therefore that
A 3/2 B
- ¢
Cg-Fo(A—:) (B ) (199)
(o)

It can be shown from the above equations that for the special
case of a rectangular gutter

3 3/2

C =F (———>3
G

= F, (200)
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The corresponding result for a triangular gutter is
5 5/2

¢ =T (g

. (201)

Figure 26 shows a plot of Eqns (200) and (201), and it can be
seen that the curves for rectangular and triangular gutters are very
similar; it can also be shown that results for trapezoidal gutters
lie between these two limiting curves. For purpose of design a
single curve based on that for rectangular gutters may be used
because it provides a small margin of safety for other types of
gutter.

Knowing F_ it is now possible to calculate from Eqn (4) the
depth of flow y_ upstream of the outlet. Although this can be
done directly for rectangular and triangular gutters, a trial-and-
error procedure is necessary for trapezoidal gutters. However this
difficulty can be avoided by means of the following graphical
type of solution. For a trapezoidal gutter (see 3.1), Eqn (4) can
be written in the form

1.3,
Q> _ (Bi+o by ) vy, @,
gF ’ (B, + by,_)

[0}

It is now convenient to define the notional depth Z given by

Q2 1/5
Zo = (El?z— ) (203)-

Egqn (202) then becomes

<

Yo 204
- z (204)

o

3 3
(B + L%y’ %y J B0
Z 2 7 Z
[o] 3] [s]

This suggests that a general graphical solution can be constructed
by plotting Y, /Z0 against BS/Z for different values of the
effective side-slope b. Values of Y, /Z0 and BS/Z can be found by
expressing them in terms of the parameter u defined by

u= by, 9)

From Eqn (204) it can then be shown that

Yo (1+w ® w2

z T (armys (50 (209
o 2

B, (1+w '’ b 35

z,= (1w ) s
o 2

Choosing values of u and b enables the curves in Figure 27 to be
obtained. In the design problem Q, F_ and B, are known, so it is
possible to calculate Z and B /Z_; the curve for the relevant
value of b then gives the ratio Y, /Zo and hence the required depth
of flow Y,- It may be noted that Figure 27 can also be used to
find the value of critical depth ¥, in a freely-discharging gutter by
putting F, = 1 in Eqn (203).
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Weir coefficients 14.3

The process described above can be shortened slightly so as to
avoid the need to convert from C_ to F_. A slightly different
notional depth Z has already beert used for the design of freely-
discharging gutters (see Eqn (28)); the relationship between Z0
and Z is simply

Z° S 07N
7  r 2/5
Z F ¥

Using the design curve in Figure 26 connecting F_ and C_ it is
therefore possible to plot Z0 /Z as a function of 6g as shown in
Figure 28. Thus the value of Z required in Figure 27 can be
found from Eqn (28) and from the value of Cg for the outlet.

When designing an outlet in a gutter it is necessary to determine
whether the flow is of weir-type or orifice-type. The depth of
flow y_ calculated as described above should therefore be com-
pared with the head h given by the relevant orifice equation Egn
(196) or (197). If y, > h, the flow is of weir-type, and is con-
trolled by the gutter; if h > y_ the flow is of orifice-type and is
controlled by the outlet.

The above procedure for calculating the depth of flow upstream of
an outlet is necessary because of the form in which the experi-
mental results have been analysed and presented. Unfortunately
the procedure is most probably too complicated for use by
engineers and architects who cannot be expected to have a
specialist knowledge of hydraulics. It therefore proved necessary in
the revised CP 308 to adopt a simpler method of design for weir-
type flow in gutters. This method, which is described in 14.3,
reverts to the use of a weir-flow equation based on the perimeter
of the outlet, as in CP 308: 1974. From a theoretical point-of-
view this is less satisfactory than the procedure described above,
because it is not well supported by the experimental data. How-
ever the simplified method should give results that err consistently
on the safe side.

When weir-type flow occurs in a box-receiver or on a flat roof, the
flow is controlled by the outlet. The depth of water h in a box or
on a flat roof is effectively equal to the total head H since the
velocity of flow is small except near the outlet itself. The design
equation for such an outlet should therefore be based on Eqn
(191) where C,, Is the weir coefficient.

As described in 13.3 the values of C obtained in the present
experiments are only approximate, and show a large amount of
scatter between a minimum of about 0.35 and a maximum of
about 1.0 (Table 3f). Kalinske’s (13) results for drain pipes (see
11.1) do not fit Eqn (191) exactly, but the explanation proposed
in Appendix A suggests that the effective value of the weir
coefficient is given by

4 H
C =1+— k — 208
> : N (208)

where typically k has a value of about 0.75. This indicates that the
value of C_ is approximately unity at low heads and increases as
the head increases.

Based on these considerations a discharge coefficient for circular
outlets of C_ = 0.787 was adopted in the revised version of
CP 308; when Q is in 1/s and D and h are in mm this gives
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7 500

Q= (209)

For general use D is taken to be the effective diameter described
in 14.1. The corresponding equation in terms of the length L of
the weir is

1.5
Lh

210
24 000 (210

Q:

which is equivalent to a value of C, = 0.773.

It may be noted that Eqn (209) gives only 2/3 of the capacity
predicted by the weir-flow equation in CP 308: 1974. This latter
equation was based on Bonnington’s® experiments with gutter
outlets (see 11.1), and was not checked for outlets in box-
receivers. Also the experimental results may themselves have been
misinterpreted because it is likely that the depth of flow in the
gutter would have been controlled by its cross-sectional shape
rather than by the size of the outlet.

When designing an outlet in a box-receiver or on a flat roof, it is
necessary to determine whether the flow is of weir-type or orifice
type. Comparing the equations recommended in the revised version

of CP 308 (Eqns (196) and (209) )it can be seen that the transition
for a circular outlet occurs when h = D/2: for a rectangular outlet
the corresponding limit (see Eqns (197) and (210))is h = 2A/L, where
A is the plan area of the inlet and L is its wetted perimeter.

As described in 14.2 the preferred method of design for weir-type
flow in gutters proved too complicated for use in the revised
version of CP 308. It was therefore decided to use an equation
based upon the weir coefficient C, and the wetted perimeter of
the outlet rather than the gutter coefficient C_ and the cross-
sectional shape of the gutter. Since it was desirable to have, if
possible, only one type of weir-flow equation in the Code, the
design equations for box-receivers, Eqns(209) and (210),were
checked to see whether they could also be applied to gutters. As
explained above the static head h in a box-receiver is equivalent
to the total head H because the flow is moving only slowly around
the sides of the box. Therefore if Eqn (209) or (210) is used to
find the depth of flow in a gutter, the velocity head ought to be
subtracted from the value of head given by the equation. However
this adds an extra complication to the design procedure so it was
decided to neglect the velocity head term and treat it as an addi-
tional safety factor on the predicted depth of flow.

The adequacy of Eqns (209) and (210) for describing weir-flow in
a gutter was checked by calculating values of the ratio hly ,» Where
h is the static head predicted by Eqns (209) or (210) and y, is
the corresponding depth of flow obtained from the experimental
values of C in Table 3. The values of C_ were converted to
equivalent values of F_ by means of the curves in Figure 26: the
relationship between cﬂscharge Q and the depth of flow y, is
given by Eqn (4b) which for a rectangular gutter becomes

3/2

Q=F, vEB,y, (40)

The values of h/y0 were found to be less than unity in only 5

out of the 39 tests carried out in the rectangular gutter; the
maximum value was 2.02 (Test C.5), the minimum was 0.66 (Test
H.11, a doubtful result), and the average was 1.31. Also in 2 out
of these 5 tests it was found that the predicted value of h was less
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than the corresponding critical depth y_, so that the flow in the
gutter would not in fact have been controlled by the outlet.

Therefore in the revised version of CP 308 it was decided to use
Eqns (209) and (210) for weir-type flow in both box-receivers
and gutters. Although this usage is not very satisfactory from a
theoretical point-of-view, it simplifies the method of design and
should give conservative results in nearly all practical cases.

Conclusions to Parts I and II

British Standard Code of Practice CP 308: Drainage of Roofs and
Paved Areas has recently been revised, and this report explains the
basis of its recommendations on the hydraulics aspects of roof
drainage design. The two quantities that normally need to be
determined in a design are the capacity of the roof gutter and

the capacity of the outlet that drains it.

In order to calculate the capacity of a gutter it is necessary to
determine the relationship between the depths of flow at the
upstream and downstream ends of the gutter. A theoretical solution
for level gutters can be obtained by means of the momentum
principle if the effects of resistance are neglected. Experimental
studies have shown that observed capacities of gutters agree quite
well with those predicted by the theoretical solution. CP 308: 1974
used a simplified version of this solution for valley and parapet-
wall gutters, but relied upon experimental results for half-round
eaves gutters. The design method in the revised version of the code
is based on the full theoretical solution (neglecting friction), and
takes proper account of the cross-sectional shape of the gutter. The
method is therefore more consistent and accurate than the old one,
and leads to more economical design of non-rectangular valley gutters.
The results are presented in graphical form so that most problems
involving gutters with free or restricted discharge can be solved
directly. A new method of determining the effect of resistance in
long gutters is included, and is based on numerical solutions of

the non-uniform flow equations. Two other topics were also studied
although they were not included in the new code. The first was a
theoretical solution for the effect of bends in level gutters; the
second was an approximate method for calculating the capacity of
sloping gutters. Both results require experimental verification.

The depth of flow at the downstream end of a gutter depends upon
the capacity of the outlet; if the depth is too great, the gutter will
be prevented from discharging freely. The capacities of outlets in
gutters and box-receivers depend upon many factors and are best
determined by means of experiment. HRS therefore commissioned
the British Hydromechanics Research Association to test various
types of rectangular and circular outlets in rectangular and trap-
ezoidal gutters; a total of 77 different conditions were studied. The
results of these tests form the basis of the relevant recommendations
in the revised version of CP 308. The main findings were that:

a) Flow at outlets is of weir-type at low heads and of
orifice-type at higher heads.

b) Weir-type flow in a gutter is controlled by the cross-
sectional shape of the gutter and not directly by the
size of the outlet. Curvature of the flow towards the
outlet can cause a backing-up of the flow in the gutter.
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c) If unequal flows approach a gutter outlet from two
directions and the flow is of weir-type, then the depths
of flow on either side of the outlet are approximately
equal and determined by the larger of the two flows.

d) Weir-type flow in box-receivers is controlled by the
size of the outlet. Flow conditions inside the box are
very complex at low heads.

e) Rectangular and circular outlets have very similar values
of orifice coefficient.

f) The depth of flow at a gutter outlet is determined by
the total discharge into the outlet if the flow is of
orifice-type.

g) Swirl occurs at most outlets but does not cause the
value of the orifice coefficient to vary greatly.
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Appendix A

Theory for capacity
of drain pipes The results of Kalinske’s 1® tests on overflow and drain pipes
were found to fit a discharge equation of the form

Q =C ¢* D* H? (A.D)

where H is the head above the outlet. The pipes were tested in a
large cylindrical tank so that the flow towards the outlets was
radial. The head H was measured at the side of the tank and
therefore corresponds to the total head. Values of the dimensionless
constant C showed a certain amount of scatter, but were found

to depend upon the ratio H/D (see Table 8).

The form of Egn (A.1) is unusual because it does not correspond
to the normal types of equation for weir-flow or orifice-flow. In
the case of the drain pipes a possible explanation may be provided
by the behaviour of flow at a free overfall (see Henderson (16,
p.191). If the flow upstream of an overfall is subcritical, it is
found that the flow does not pass through the critical depth y_

at the brink itself, but at a point 3y_— 4y_ upstream of the
brink. This upstream displacement of the critical section is caused
by the vertical curvature of the flow which induces non-hydrostatic
pressures in the fluid. It appears possible that flow at a drain pipe
could behave in a similar type of way to that at a free overfall,
especially if the outlet is large in relation to the depth of flow.

It will now therefore be assumed that the critical section occurs

at a distance ky_ upstream from the lip of the outlet.

The standard theoretical equation for flow over a level weir is
Q=Lgty, 32 (A.2)

where L is the length of the weir. In the present case the effective
diameter of the outlet is D + 2kyc, so that

Q=n (D+ 2ky,) g# y, 32 (A.3)

Since the total head H relative to the weir crest is 3y /2, Eqn
(A.3) becomes

2 3/2 4 H 3/2
=7 (= 1+— k — % DH A4
Q=7 ( 3 ) ( 3 ) ) g (A.4)
Comparing this with Kalinske’s Eqn (A.1) shows that
N 4 H_ D _*
C= — 1+— k — — A5
7 ( 3 ) ( 3 D ) (H ) (A.5)

so that C is a function of H/D and the factor k. If k is assumed
to remain constant, it can be shown that C has a minimum value

of

8
C= 5 Vv 2k (A.6)
when
H 3
— = — A7
D 4k (A.7)



Estimated mean values of C from Kalinske’s results for drain

pipes are given in Table 8. These show that C reaches a minimum
of about 3.5 when H/D = 0.6, and then starts to rise again; accord-
ing to Eqn (A.6) this minimum corresponds to a value of about

k = 0.79. Table 8 also gives the individual values of k calculated
directly from Eqn (A.5). These show that k varies gradually from

a value of about 0.68 when H/D = 0.25 to 0.82 when H/D = 1.2.
The variation in k is however relatively small, and suggests that

the proposed explanation of Kalinske’s results is a plausible one.

58



Curvature of flow at
gutter outlet

Appendix B

The effect of curvature on flow in a gutter will be illustrated by

the example of a spiral vortex. The flow is assumed to be
irrotational and to consist of a sink and a superimposed free

vortex located at the origin of a cylindrical co-ordinate system, in
which t and ¢ are in the horizontal plane and y is in the vertical
direction (see Figure 29). At a general point (r, 6) the sink produces
a radial velocity

dr _ a (B.1)
dt r ’
and the vortex produces a tangential velocity
de b (B.2)
r—= —-—— .
dt r

where a and b are constants which depend upon the strengths of
the sink and the vortex respectively.

A property of the spiral vortex is that all the streamlines crossing
a radius from the origin are parallel; the angle ¢ between a
streamline and the normal to the radius (see Figure 29) is given
by

=t () @)

The velocity V of the flow is found from Eqns (B.1) and (B.2) to
be

1

_( aZ + b?) i

T

\% (B.4)

The equation of a streamline in the spiral vortex can be determined
by integrating Eqns (B.1) and (B.2). If the streamline passes through
the point (ro, 0), then it can be shown that

Ty - o0 tan g (B.5)
r

Since the flow is irrotational the total head H is constant and equal
along each streamline. The depth of flow y is therefore given by

(a? + b?)
= H_- ‘"~ - B.6
y 2gr? G

The discharge Q crossing a radius between r = R, and r = R, is
R
2

Q= R/Vy cos ¢ dr (B.7)

1
Substituting from Eqns (B.3), (B.4) and (B.6) gives

o= blH1 R, b2 R, — R? 5
e R, 4g cos’¢ ‘ .Rf R% (RS
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It will now be assumed that the curvature of the streamlines is
fixed so that the angle ¢ in Eqn (B.3) is a constant. The value

of b may then be varied so as to find the maximum discharge

Q_, that can occur for a given value of total head H. Differentiating
Eqn (B.8) shows that the critical value of b is given by

2 2
R,? R,

R,2— R,?

R
log, KZ (B.9)

4
b? = —gH cos?¢
3 1

Substituting into Eqn (B.8) gives the corresponding maximum
discharge

R, R R 3/2
oy v e [ 81T g
™33 Ry* =R, %) R,

If R is defined as the mean radius of curvature so that

+ R
R= R 2 (B.11)

and if the normal distance between the two outer streamlines is
B (see Figure 29) so that

B=(R, - R,) cosp (B.12)

then Eqn (B.10) can be expressed in the form
32
VeH?  (4R%cos?¢—B?) [10 2Rcoss + B] (B.13)
Q, = 3J/3 v/2RBcos¢ Ee ,QRCOSqﬁ - B

This equation gives the discharge Q,, that will occur if a curved
flow having a total head H is allowed to discharge freely. This can
be compared with the discharge Q o that would occur if a uniform
flow having no curvature is allowed to discharge freely; it is simple
to show that

2 3/2

) B +/gH? (B.14)

Defining the coefficient Cg as the ratio of Q,, and Q,, it follows
that

3/2
1 4R2 2, _ B2 IR +B
Vv S [ sl @19
® 22  BY2RBeosp > {7Rooss — B
When Rcos¢ >>B it can be shown that
v 2 5 e (B.16)
& 8R2cos?¢ 1920 Ricos’y = _

The above example shows that the discharge coefficient C_ for
flow in a spiral vortex decreases as the curvature of the ffow is
increased. Although flow at a gutter outlet tends to be rather
complicated, it does show certain similarities to that in a spiral
vortex. It is therefore reasonable to expect that the discharge
coefficient of a gutter will depend upon the amount of curvature
which the outlet imposes upon the flow.

DDB Dd 650449 5/82
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Table 1 Comparison of measured and theoretical capacities of half-round gutters

Type Size Material Measured Theoretical Measured
\il capacity capacity theoretical
mm 1/s 1/s
102 0.84-0.88 1.13 74%—18%
114 Asbestos | 12-1.16 1.50 75%—78%
True half-round cement ' )
127 1.50-1.59 1.96 77%—81%
152 PvC’ 2.38 3.07 7%
102 Cast-iron” | 0.64-0.66 0.81 79%—82%
76 0.33 0.39 85%
Nominal half-round 102 pvct 0.77 0.81 95%
114 1.01 1.07 95%
127 1.14 1.40 82%

* Crabb et 31(12)
+ Marsh(zz)




Table 2a Effect of resistance in level rectangular gutters

Resistance Aspect Numerical solution Approx soln: eqn (91)
parameter ratio
a e Fo Ay P ®'-p)ip % 1] ®'-p)p %
1.0 0.005 1.7339 1.7320
0.9 0.005 1.6027 1.6186
0 o 0.8 0.005 1.5114 1.5100
(Smooth) (Wide) 0.6 0.0025 1.3125 - 1.3115 —
04 0.0015 1.1494 1.1489
0.2 0.0003 1.03932 1.03923
1.0 0.005 1.8200 4,97 1.8236 5.28
0.8 0.005 1.5916 5.30 1.5864 5.06
1 o0 0.6 0.0025 1.3763 4.86 1.3672 4.25
(Wide) 0.4 0.0015 1.1882 3.37 1.1803 2.73
0.2 0.0003 1.05156 1.18 1.04858 0.90
1.0 0.005 1.8350 5.83 1.8236 5.28
0.9 0.005 1.7163 5.92 1.7033 5.23
1 3 0.8 0.005 1.6006 5.90 1.5864 5.06
0.6 0.0025 1.3805 5.18 1.3672 4.25
0.4 0.0015 1.1894 3.48 1.1803 2.73
0.2 0.0003 1.05164 1.18 1.04858 0.90
1.0 0.005 1.9532 12.65 1.9794 14.28
0.8 0.005 1.7154 13.49 1.7176 13.75
3 o0 0.6 0.0025 1.4785 12.65 1.4655 11.74
(Wide) 0.4 0.0015 1.2550 9.19 1.2382 7.77
0.2 0.0003 1.07471 3.40 1.06678 2.65
1.0 0.005 1.9945 15.03 1.9794 14.28
0.8 0.005 1.7417 15.24 1.7176 13.75
3 3 0.6 0.0025 1.4925 13.71 1.4655 11.74
0.4 0.0015 1.2596 9.59 1.2382 7.77
0.2 0.0003 1.07518 3.45 1.06678 2.65
1.0 0.005 2.0581 18.69 2.1111 21.88
0.8 0.005 1.8121 19.89 1.8292 21.14
5 o 0.6 0.0025 1.5602 18.87 1.5510 18.26
(Wide) 0.4 0.0015 1.3118 14,13 1.2908 12.35
0.2 0.0003 1.09643 5.49 1.08438 4.34
1.0 0.005 2.1217 22.36 2.1111 21.88
0.8 0.005 1.8550 22.73 1.8292 21.14
5 3 0.6 0.0025 1.5837 20.66 1.5510 18.26
0.4 0.0015 1.3203 14.86 1.2908 12.35
0.2 0.0003 1.09743 5.59 1.08438 4.34
0.9 0.005 2.1381 31.96 2.1267 31.39
8 3 0.6 0.0025 1.6977 29.34 1.6627 26.78
0.4 0.0015 1.3990 21.71 1.3622 18.56
0.2 0.0003 1.1287 8.60 1.1097 6.78




Table 2b Effect of resistance in level triangular gutters

Resistance Numerical solution Approx soln: eqn (94)
parameter
a Fo Ay P ('-p)/p % P’ ®'-p)p %
1.0 0.0025 1.3579 1.3572
0.9 0.0020 1.3042 1.3035
0 0.8 0.0015 1.2520 — 1.2515 —
(Smooth) 0.6 0.0010 1.1551 1.1548
0.4 0.0005 1.07451 1.07434
0.2 0.00015 1.01966 1.01961
1.0 0.0025 1.4402 6.06 1.4340 5.66
0.9 0.0020 1.3848 6.18 1.3765 5.60
1 0.8 0.0015 1.3288 6.13 1.3190 5.40
0.6 0.0010 1.2171 5.37 1.2064 4.47
0.4 0.0005 1.1126 3.55 1.1046 2.81
0.2 0.00015 1.03181 1.19 1.02887 0.91
1.0 0.0025 1.5482 14.01 1.5470 13.98
0.8 0.0015 1.4305 14.26 1.4199 13.46
3 0.6 0.0010 1.3040 12.89 1.2875 11.49
0.4 0.0005 1.1726 9.13 1.1562 7.62
0.2 0.00015 1.05412 3.38 1.04643 2.63
1.0 0.0025 1.6247 19.64 1.6320 20.24
0.8 0.0015 1.5019 19.96 1.4964 19.57
5 0.6 0.0010 1.3670 18.34 1.3510 16.99
0.4 0.0005 1.2196 13.50 1.1997 11.67
0.2 0.00015 1.07424 5.35 1.0629 4.24
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Table 5b Circular outlets in gutter: Variations in orifice coefficient Cy

Mean Variation in C
value of Cyg Average nge
All sharp-edged outlets except 1¢ 0.661 = +11% to —21%
1¢ sharp-edged outlets 0.943 = +13% to —6%
All round-edged outlets 0.566 - +16% to —17%
All tapered outlets 0.750 — +6% to —10%
Effect of off-setting outlet to one
side of gutter + 3% +8% to —3%
Effect of moving outlet away from
stop-end of gutter — 8% 0% to —13%
Effect of flow from two directions
relative to flow from one direction
Q =Q + 4% +13% to —7%
Q. = 2Q, + 6% +12% to —7%
Effect of decreasing size of geometrically-
similar outlets
harp-edeed 33¢ > 2¢ + 14% +17% to +11%
FP=Cne 20 > 1¢ + 37% +59% to +29%
Effect of varying gutter shape
rectangular - trapezoidal
flow from one direction —5% ~1% to —13%
flow from two directions + 5% +7% to +4%
Dimensions are in multiples of 25.4mm (1 inch)




Table 5¢ Circular outlets in box-receivers: Variations in orifice coefficient Ca

Mean Variation in C
value of Cy4 Average ﬁznge
All sharp-edged outlets 0.651 - +9% to —11%
Round-edged outlet (one only) 0.469 - —

Effect of moving outlet from centre
of box-receiver

Effect of flow approaching box from
two directions instead of one

Q =Q,
Q = 2Q,

Effect of decreasing size of geometrically-
similar outlets

sharp-edged 3¢ - 1.5¢

— 3% +3% to —7%

+ 2% —

+ 8% +9% to +7%

+ 12% +22% to +9%

Dimensions are in multiples of 25.4mm (1 inch)




Table 6 Analysis of gutter coefficients for rectangular outlets

Test No. Outlet Cq L, .F Y, 71
size inch inch L.
LxW
inches

Al 6 x 6 0.9803 6 0 -

A2 3x3 0.9719 3 0.5 0.9588
A3 6 x3 0.9869 6 6 0.25 0.9888
A4 2x 2 0.8678 2 1.0 0.8092
AS 4x2 0.9781 4 0.5 0.9746
A6 1 x1 0.4255 1 2.5 0.3136
Bl 3x3 0.9160 3 1.0 0.8470
B2 6 x 3 0.9928 6 6 0.5 1.0006
B3 2x2 0.8661 p) 2.0 0.8067
B4 4x 2 0.9064 4 1.0 0.8671
Cl 3x3 0.9165 1.5 1.0 0.8480
C2 3x3 0.9615 2 0.75 0.9380
C3 6 x 3 0.9809 3 6 0.5 0.9768
Cc4 6 x3 0.9916 4 0.375 0.9982
C5 1 x1 0.6702 0.5 5.0 0.6072
Cé6 1 x1 0.7730 0.67 3.75 0.7306
D1 6 x6 0.9898 6 8.76 0.230 1.0002
D2 3x3 0.9656 3 7.46 0.743 0.9526
D3 6 x3 0.9721 6 8.13 0.427 0.9646
D4 2x 2 0.7820 2 7.02 1.255 0.7011
D5 1 x1 0.5012 1 6.51 2.756 0.4134
El 3x3 0.8926 3 7.69 1.282 0.8002
E2 6 x3 0.9843 6 8.48 0.707 0.9836
F1 6x6 0.9876 3 8.24 0.373 0.9946
F2 3x3 0.8524 1.5 7.26 1.420 0.7590
F3 3x3 0.9448 2 7.18 1.045 0.9160
F4 6 x3 0.9419 3 7.65 0.775 0.9141
F5 6 x3 0.9937 4 7.54 0.567 0.9994
F6 1 x1 0.4353 0.5 6.35 5.350 0.3325
F7 1 x1 0.4850 0.67 6.75 4.312 0.3981

Table 3 gives details of test conditions




Table 7 Analysis of gutter coefficients for circular outlets

Test No. Outlet Outiet Cy B Do
size type inch B
D
iIlC?l
Gl 3 S 0.9441 0.5
G2 4.5 R 0.9964 0.75
G3 3 S 0.9697 0.5
G4 2 S 0.7795 0.333
G5 3 R 0.9042 0.5
G6 2 S 0.8205 6 0.333
G7 2 S 0.6982 0.333
G8 2 S 0.6501 0.333
G9 4.5 T 0.9777 0.75
G10 3 T 0.9879 0.5
Gll 1 S 0.8155 0.167
Hi 2 S 0.6002 0.333
H2 3 R 0.8289 0.5
H3 2 S 0.6709 0.333
H4 3 R 0.9176 0.5
H5 2 S 0.5887 0.333
H6 2 S 0.6916 6 0.333
H7 4.5 R 0.9945 0.75
HS 4.5 R 0.9954 0.75
H9 3 T 0.9655 0.5
H10 3 T 0.9961 0.5
Hl1 1 S 0.1100 0.167
HI12 1 S 0.8399 0.167
1 3 S 0.9128 7.34 0.409
2 3 S 0.9912 7.10 0.423
13 2 S 0.8330 6.75 0.296
14 1 S 0.5851 6.43 0.155
I 3 S 0.7385 6.98 0.430
12 3 S 0.9815 6.94 0.432
33 2 S 0.6800 6.59 0.303
J4 2 S 0.7279 6.87 0.291
35 1 S 0.3587 6.55 0.153
J6 1 S 0.5513 6.47 0.155

S = sharp-edged

R = round-edged

T = tapered

Table 3 gives details of test conditions




Table 8 Analysis of Kalinske’s data for drain pipes (see Ref (18))

H/D C (qul: A5) Comment

0.25 4.20 0.684

0.4 3.65 0.656 Values of

0.5 3.52 0.683 C from

0.6 3.50 0.732 Kalinske’s

0.8 3.54 0.798 mean curve

1.0 3.61 0.833

1.2 3.70 0.856

0.8 3.53 0.793 Values of

1.0 3.56 0.811 C giving

1.2 3.61 0.820 ' closer fit to
experimental

data
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Fig 1 Cross -sectional shapes of gutters
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15b Positions of pressure tappings
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Fig 23 Variation of Cg with relative size of circular outlet
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Fig 29 Spiral vortex : plan view
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Plate II Orifice flow at rectangular outlet (Test C3)
by courtesy of BHRA
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Weir flow at circular outlet (Test G2
by courtesy of BHRA

Plate III



Weir flow at rectangular outlet (Test C4)

by courtesy of BHRA



Plate V Weir flow at circular outlet in box-receiver (Test L3)
by courtesy of BHRA
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