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ABSTRACT

This report describes the development of a finite difference model to solve
the Boussinesq equations in water of constant depth. The main objective of
this work was to develop a mathematical model which can represent non-linear
wave effects in harbours. In particular, it is important for the model to
allow for an adequate description of the effects of set down beneath wave
groups. This disturbance is known to be significant in assessing the
movement of large moored vessels in harbours.

Prior to considering the finite difference model in detail some observations
are made on the equations which represent the non-linear propagation of
waves in shallow water. This is followed by a review of literature which
describes work carried out by other researchers on solving the Boussinesq
equation.

As a starting point for developing the mathematical model we first sought a
solution to the one-dimensional form of the Boussinesq equations. Several
finite difference schemes were considered, the ome which was finally used
was a predictor-corrector scheme implemented to take advantage of the
computing power of the distributed array processor (DAP). The results from
the model for the one dimensional case were compared with theoretical
solutions and results from physical model tests. The mathematical model was
found to give a good representative of non-linear wave propagation in
one-dimension. In particular, within the limits of the Boussinesq
equations, the numerical model was found to represent well the effects of
set down beneath wave groups.

Having completed the solution to the one-dimensional equations the finite
difference scheme was extended to the two dimensional case. Comparisons
were again made between the model results and theoretical solutions, and the
agreement was found to be good. The final series of tests done in the
mathematical model were to provide a comparison with physical model results
for the diffraction of set down. the comparison between the results
demonstrated that the numerical model gave an accurate representation of
diffraction of set down.

In conclusion, the mathematical model was found to provide an accurate
numerical solution to the Boussinesq equations. In particular, it
represented well the propagation of linear and non-linear waves in shallow
water, taking into account both reflection and diffraction effects.
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INTRODUCTION

Accurate predictions of wave conditions within a
harbour are an important factor in optimising 1its
layout. Until recently the only reliable method
available to the engineer for estimating wave
conditions in a harbour was to use a random wave
physical model. However, advances made in
mathematical modelling techaniques in recent years have
resulted in them becoming useful tools, both when used
on their own at the early stages of design for a
proposed harbour, and at the final design stage when
used alongside a physical model. To date most of the
mathematical models of wave action which have been
developed are linear, and therefore will not represent
non-linear effects as waves propagate in shallow
water., One of the most important non-linearities in
wave motion, as far as harbour response is concerned,
is set down beneath wave groups. Obtaining an
adequate description of the effects of set down is
therefore an important factor which needs to be
included in future mathematical models of waves in

harbours.

This report describes the development of a two
dimensional finite difference model to solve the
Boussinesq equations. These equations represent the
propagation of non-linear waves in shallow water, and
have the property of providing an accurate description
of set down beneath wave groups. A more detailed
description of the Boussinesq equations and their
properties is given in Chapter 2. 1In Chapter 3 we
discuss the development and testing of a
one-dimensional model of the Boussinesq equations,
which provided an insight into the numerical methods,
prior to solving the two-dimensional equatiouns. The
methods and results from the two-dimensional model are
described in Chapter 4, and compared with results from

other mathematical and physical models. 1In the final



chapter we give our conclusions and recommendations

for future research.

BACKGROUND

Description of

the general

problem
Prior to discussing in more detail the Boussinesq
equations, and their properties, it is worth making
some observations in the equations which represent the
non-linear propagation of waves in shallow water.
Mathematically this process is described by the

shallow water equations, which in two-dimensions are:
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where

z 1s elevation above datum, taken to be the still
water level (m),

u,v, are depth averaged components of velocity in x,y
direction respectively (m/s),

h is the total depth = d + z, d mean water depth (m)
and

g is acceleration due to gravity (m/s”).

In deriving equations (2.1) to (2.3) it is assumed
that the fluid is homogeneous, isotropic and

incompressible, and that all vertical acceleration,
shear stress and Coriolis effects can be neglected.
Equation (2.1) is then obtained by integrating the

basic equation of conservation of mass, whilst (2.2)



and (2.3) are obtained from integrating the equation
of conservation of momentum. A detailed derivation of
equations (2.1) to (2.3) may be found in Stoker

(Ref 1).

These equations are exteusively used in river and
tidal hydraulics where they provide an accurate
description of fluid flow. However, the assumption
made in their derivation that vertical accelerations
can be neglected (ie that the flow is nearly
horizontal) leads to the pressure within the fluid
being hydrostatic. A direct consequence of this is
that waves are propagated with a speed which 1is
dependent, on water depth and current speed. This
means that they are not dispersive, an assumption

which is only realistic for very long waves.

Boussinesq (Ref 2) was the first to deviate from the
assumption of negligible vertical acceleration By
introducing a linear variation of the vertical
velocity. This resulted in higher order terms being
included in the equations, which represent the effects
of small, but not negligible, vertical accelerations
due to the curvature of the streamlines. The pressure
is no longer hydrostatic and the waves retain their
dispersive character i.e. their speed depends on both
their wavelength and the water depth. For rather
steep, non-linear waves this speed depends on wave

height as well.

In recent years, Peregrine (Ref 3) extended
Boussinesq's ideas to two spatial dimensions and also
considered a gently varying sea bed. He presented the

equations in the form in which they are now known:
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Where the notation of (2.1) to (2.3) is preserved with
d =d (x,y), ie the mean depth varies with x and vy.
Equation (2.4) is identical to (2.1) and represents
conservation of mass, and (2.5) and (2.6) represent

conservation of momentum.

Before discussing the dispersive properties of (2.4)
to (2.6) it is worth observing that if the depth, d,
1s taken to be constant everywhere in the fluid domain

then (2.4) to (2.6) become,
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which is the form of the equation considered in this

report.

The dispersive properties of the Boussinesq equations
are most clearly illustrated by comparing the
one-dimensional, linearised constant depth form of the

equations,
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with the equation describing fluid motion in an
incompressible, inviscid, irrotational fluid of

constant depth, that is Laplace's equation,

where ¢ is a velocity potential (see, for example,
Stoker Ref 1). If we linearise the free surface
boundary conditions then it can be shown that the

dispersion relation 1is
w? = gk tanh (kd),

where w is the radian frequency, k is the wave number
and g is the acceleration due to gravity. This can be

approximated in polynomial form as
w2 = gk (kd - 1/3 d3 k3 +...) (2 12)

For shallow water, kd + O, the dispersion relationship
above becomes w? = gk2 d and the phase velocity Wk
becomes Ygd which is independent of k, ie the waves

are not dispersive.

The linearised version of the Boussinesq equations in
the form (2.10) and (2.11) leads to a dispersion
relation of the form

2
w2 = gdk (2.13)
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2.2

Review of recent

literature

which for small kd agrees with the expression (2.12)

to the first two terms.

One of the basic properties of the Boussinesq
equations 1is the possibility of transforming them to
different forms by rewriting the third order term
using the linearised shallow water equations. The term

3
d3u/dx2dt in (2.11) can be transformed to oz

xx 2,

and the dispersion relation for small kd will remain
the same as (2.13). However, it will be shown
subsequently that the 33u/dx 23t form of the third
order term is preferable from the point of view of the
numerical scheme. It is therefore equations (2.7) to
(2.9) which are used in the present work. A more
detailed discussion of the dispersive properties of
the Boussinesq equations may be found in the Witham

(Ref 4).

Research into methods of solving the Boussinesq
equations numerically has in recent years been
published predominantly by three groups of
researchers. These are Abbott et al (see Refs 5 to
10), Hauguel (Ref 11) and more recently Schaper and
Zeilke et al (Refs 12 to 15). The common element of
all of the research published by these authors is that
the governing equations are expressed in terms of
volume flux densities p{(=uh) and q(=vh) rather than in
terms of vertically integrated velocities u and v, as
in equations (2.4) to (2.6). 1In terms of p and q the

Boussinesq equations becone,
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where the notation of section (2.1) has been retained.
The above equations are solved numerically using an
implicit method by both Abbot et al (see Refs 6 and

9) and Schaper and Zeilke et al (see Refs 12 and 13).
Hauguel (Ref 11 ) actually solves a more general form
of the Boussinesq equations originally due to Serre
(Ref 15)., The Serre equations retain additional third
order terms to those in the Boussinesq equatioms. In
the derivation of (2.14) and (2.16) the convective
part of the vertical acceleration term is neglected
the bed variations are assumed to be gradual, and
products of derivatives are assumed small in
comparison to the derivatives themselves. If these
simplifying assumptions are not made the wore exact
derivation results in the Serre rather than the
Boussinesq equations. Mc Cowan (Ref 5) discusses the
merits of retaining the extra 'Serre' terms and
concludes that their contribution is insignificant
compared to the main dispersive terms, and that the
extra computational effort required to solve the Serre

equations is not justified.



The starting point for most of the recent research was
to demonstrate that the equations allowed both cnoidal
and solitary wave profiles to propagate correctly ,see
Abbott, Petersen and Skovgaard (Ref 7), and Schaper
and Zeilke. (Ref 12). Cnoidal waves are permanent
solutions of the Kortewag de Vries equations for waves
woving in one direction (see Ref 4). As a consequence
of this waves are also a permanent solution of the
Boussinesq equations for uni-directional flow. A
typical cnoidal wave is shown in Fig 1(a). One
limiting case of the cnodial wave, in which the
wavelength becomes infinite, corresponds to the

solitary wave, see Fig 1(b).

Once authors had demonstrated that their method of
numerical solution gave accurate results in
one-dimension they then considered the two dimensional
case. The problem most frequently treated in two
dimensions was the refraction/diffraction of waves at
a semi-infinite breakwater in water of constant depth.
This has been covered in papers by Abbott et al

(Ref 6), Hauguel (Ref 11) and Rottmann-Sode, Schaper
and Zeilke (Ref 13).

In addition to presenting results from the numerical
models, Abbott, Mc Cowan and Warren (Ref 9) also give
a detailed analysis of the accuracy of their model,
and describe the modifications to the finite
difference schemes which are made to improve the
accuracy of the results. A full discussion of the
performance of this model and its range of application
is given in Madsen and Warren (Ref 10). Aspects of
the representation of open boundaries in the Abbott et

al models are considered in Larsen and Dancy (Ref 8).

Finally, it should be observed that until recently
there had been no work published on the use of the

Boussinesg model in representing set down beneath wave
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3.1

ONE-DIMENSIONAL
EQUATIONS

groups, a topic of major importance in the present

work.,

However, Priiser, Schaper and Zeilke have in the last
few months presented a paper (Ref 14) which includes
results modelling set down waves in a biochromatic
wave system using the Boussinesq equations. Their
results appear to be promising and indicate that the
Boussinesq equations can represent the shoaling of set
down with a reasonable degree of accuracy. The

present report considers set down further in sections

3.3 and 4.3.

Method of solution

3.1.1 Outline of approach

The one-dimensional form of the Boussinesq equations

for the constant depth case 1is given by,

Oz o) _

Y+a—x-(uh)- 0 (3'1)
3
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dt dx dt 3 dx 20t

In seeking a numerical solution to these equations
these are several different approaches which could be
used. The one-dimensional form of the equations was
therefore used to explore various methods of solution
with a view to producing a numerical scheme which was
stable, accurate and could take advantage of computing
power of the distributed array processor (DAP)
available at Hydraulics Research. All of the
numerical schemes which were tested were based on the

finite difference model for tidal flows (see Ref 15).
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63u
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This model uses a second order accurate conditionally
stable explicit scheme to solve the non-linear shallow
water equations. The scheme is stable Provided that
the Courant number Cr£l, where Cr= (gd)E N[ Ax. The
finite difference equations are solved using a leap
frog scheme on a mesh staggered in both space and
time. In this section we consider an extension of
this numerical scheme for the solution of the

Boussinesq equations. -
3.1.2 Linear terms
For the linearised one-dimensional shallow water

equations the finite difference scheme can be

expressed as

-3 n=-73
u - u, 1
2, =20y -dee - (3.3)
2 2 A}( .
z 1 Zn
n+l/2 _ n-1/2 i+1/2 - i-1/2
u; = u, - g Ot A (3.4)

Where z is the elevation, u is the velocity in the x
direction and A& and At are the space and time

. . n . .
increments. The notation zi , refers to the finite
)

difference approximation to elevation at time nAt and
position (i-%) Ax, see figure 2. To extend (3.4) to

include the third order dispersive term we require a

3
finite difference approximation to B .
ox 2ot
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where the notation [ ] is used for finite difference

approximation, the expression (3.5) arises from

considering
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The finite difference approximation (3.5) is second
order accurate and its inclusion in (3.4) to represent
the third order dispersion term leads to the following

implicit numerical scheme.

1
2
1 ( u. - u. )
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2i-1 Zj.y T A A (3.6)
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It can be shown that the finite difference scheme
represented in (3.6) is stable provided the Courant

1
number, Cr £ 1, where Cr = (gd)? At/ Ax.

Clearly, for the difference scheme to give an accurate
solution to the differential equations it must display
similar behaviour. In our discussion of the
properties of Boussinesq equations in Section 2.1 it
was shown that for the linearised form of the

equations the dispersion relation is,

9 gdk 2

1+l k242
3

(3.7)
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giving a phase velocity-g = (gd/(1+k2d2/3)%. From
this expression it can be inferred that the third
order terms act to reduce the shallow water phase
velocity (gd)%, and consequently the wavelength. It
therefore needs to be demonstrated that the finite
difference scheme also displays a reduction in

wavelength on inclusion of the third order terms.

To examine this property further, the scheme given in
(3.6) was implemented for the case of a channel of
constant depth with a sinusoidal wave input. The
total length of the channel was selected so that the
wave front never reached its far boundary. This was
done so that boundary conditions did not have to be
applied, as these could have introduced numerical
errors which would have contaminated the wave profile.
The depth of the channel was taken to be 10m, and the
input sine wave had an amplitude of 1.0m and a period
of 10s. The wavelength of this wave corresponding to
the shallow water speed (gd)% (= 9.91m/s) was 99.1lm.
The implicit numerical scheme was run using a space
step Ax = 10w as this allowed sufficient points per
wavelength to ensure that the wave was correctly
resolved. (The number of points per wavelength is
normally taken to be 2> 8). The space step used was
At = 1.0s, giving a Courant number of 0.99 which

ensures that the scheme will be numerically stable.

In the numerical implementation of (3.4) the
continuity equation remains explicit but the momentum
equation takes the implicit form
n+l/2 n+1/2 n+1/2
u ., + u

u. + f

i Y1 i Y i Yy O

for each velocity point i along the axis of the
channel. The quantities e fi , and 8 depend only
on known values of the variables. Considering the

total number of points, the above relationship leads

12



to a matrix equation of the form: A . U = B where g
is the matrix of the velocity values at each grid
point and A is a tridiagonal matrix. This equation is
solved by means of a simple matrix inversion

technique.

The results of running the model for this case with
the implicit scheme are shown in Figure 3. It can be
seen that the wave amplitude remains as before at
1.0m, but that the wavelength reduces by approximately

7% to a value of about 92m.

The same test was then repeated to test the
performance of a numerical scheme of the predictor -
corrector type. In this case the numerical solution
is implemented in two parts. First, the finite
difference equations are solved omitting the third
order term. The values of the velocity u are used as
a first approximation of the dispersive term
(predictor stage). Then, using the calculated value
of the 3rd order dispersive terms in the equation the
values of z and u are updated (corrector stage). The
corrector is then repeated as many times as are
necessary to achieve convergence. For the simple
one-dimensional test considered, it was not found
necessary to iterate more than twice. The results
(see Fig 4) are the same as before, i.e. the incident
wave 1is propagated with a smaller phase velocity, and
therefore, its wavelength is reduced. Theoretically,
as the number of internal iterations tends to
infinity, the solution should become identical to the

one provided by the implicit scheme.

Within the context of linear dispersive equations, a
qualitative test of the performance of our numerical
scheme can be provided by running a solitary, instead
of a sinusoidal wave at the model entrance and then

monitoring its propagation along the channel. As has

13



been mentioned in Section 2.2, this sort of wave is a
permanent solution of the Korteweg de Vries equation
and consequently, of the Boussinesq equations for
uni-directional flow. As such it will retain its
shape undistorted as it propagates by balancing
exactly non-linear with the dispersive effects. If
the non-linear terms are excluded, the dispersive
effects become absolutely dominant. As a result
different parts of the wave start to travel with
different speeds and the solitary wave breaks into a
number of waves of different wave length. This type
of propagation has an analytical solution (see Ref 4)
but the purpose of the present experiment does not
justify its practical implementation. The analytical
solution shows that at the front, the wave tends to
decay exponentially as time increases. In addition
at the back of the wave a tail of short waves is
formed which are moving with slower speeds, and that
the further the wave lies from the front, the shorter

its wavelength.

To test this case the scheme given in (3.4) was
implemented for the constant depth channel situation
described above, with an incident solitary wave of
amplitude 1.0m. The results from the model are given
in Figure 5 in the form of instantaneous wave profiles
at different times as the solitary wave travels along
the channel. It can be seen from Figure 5 that the
numerical solution clearly displays all the features

of the analytic solution described above.

3.1.3 Non-linear terms

Having considered the finite difference approximation
of the dispersion term we now turn our attention to

the non-linear terms in (3.2). In the first instance

14



the non-linear terms were represented using a similar
method to that used in the Hydraulics Research tidal
flow model (Ref 1%). That is, the non-linear terms 1in
(3.1) and (3.2) were represented by an explicit angled

finite difference as scheme follows (see also Fig 2).

n-% n-1 n-} o-1
u. (d + J(z, ) - u, (d + J(z. ))
[9_ (uh)] _ i i-3 i-1 i-3/2
ox x
n-1 1 n-1 n
where J(Zi—% ) = 5 (zi+1 + z (-1 )

for the continuity equation, and

n+3 n+3
(J(u +1) -J (ui_l))

a+d a+d  n-3
and J (u. = 1 . + u.
i+1 ) 2 i i+1

).
The finite difference approximation for the linear
terms remains the same as described earlier this

section.

So far we have demonstrated that the model is able to
represent correctly the third order linear
(dispersive) term. We now need to show that it can
also model accurately the non-linear terms. For the
non-linear equations there are few analytical
solutions that can be used to check the results from
the finite difference model. However, we can use the
propagation of a solitary wave as a basic test, since

if the finite difference model simulates accurately

15



both the dispersive and non-linear terms of the
equations then, such a wave should retain its form
unchanged as it travels along the channel. Because we
have shown that the dispersive terms are modelled
accurately, then 1f the solitary wave propagates
undeformed we will have evidence that the non-linear
terms are also being modelled correctly. For the
solitary wave test we use the same flow, geometrical
and operational details for the previous wave test
were used. That is a channel depth of 10m, wave
amplitude is 1.0m with Ax = 10m, At = ls and Cr =
0.99. The results from this test are shown in Figure
6, from where it can be seen that the solitary wave
does retain its shape while propagating along the
channel. This shows that the numerical model
simulates successfully all non-linear and dispersive

effects in the one dimensional case.

Similar results are obtained, if we apply a predictor
-corrector scheme. In this case, since we introduce
an iterative procedure, there is no need to use
angled approximations to the derivatives, and the
finite difference scheme can be fully centered. The
finite difference in predictor-corrector form for

equations (3.1) and (3.2) which was used is as follows

1 1
=3 n n-2 n
- . . - . . +

z? 1 = z? } - At (ul (Zl v d) ul-l (21—1 d))
1-3% 1-%

AS

(3.8)
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n 1 n n-1 n-1
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The results for the predictor-corrector scheme using
equations (3.8) and (3.9) for the case of a solitary
wave 1in a channel of constant depth are shown in
Figure 7. As for the implicit scheme it can be seen
that the solitary wave retains its shape as it

propagates along the channel.

Having examined the finite difference schemes for the
linear case with sine waves and sotitary waves as
input, and the non-linear schemes with solitary waves
as input it remains to examine the non-linear scheme
with sine waves as input. The effects of introducing
sine waves into a horizontal channel have been
previously investigated both experimentally and
numerically. Galvin (Ref 16) reports that when steep
sinusoidal waves are generated in a horizontal channel
the initial wave breaks down into a number of large
and small waves. The smaller waves travel more slowly
than the larger waves and therefore secondary crests
develop behind the larger waves. These large waves
are called solitons (waves resembling solitary waves)
after an analogous phenomenon in plasma physics.

There is, in general, interaction between these
solitons, but if followed the separated waves will
return, periodically in space, to approximate their
sinusoidal, initial wave form. These results indicate

that this initial sinusoidal wave form produced by the
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wave generator can be thought of as the forced

superposition of a number of solitary waves.

Madsen, Mei and Savage (Ref 17) have shown that these
physical phenomena occur numerically by solving the
appropriate equations using a characteristic based
method. They demonstrated that some of the waves
created resembled cnoidal waves rather than solitary
waves and that, in general, the sort of waves produced
depends on the value of the Ursell parameter Ur (Ur =

a L%/dd).

Their experiments covered the range 2.5 < Ur <
500 and their conclusions were
(a) For small values of Ur, the secondary crests

take a long time to develop.

(b) For larger values of Ur, secondary crests
appear sooner and in greater numbers,
forming cnoidal waves at the front (for
moderate Ur values, and solitary waves for

large Ur values (Ur > 60).

(c) For Ur > 100, breaking starts to occur.

Since there is experimental and numerical evidence for
such behaviour as described above, the finite
difference model developed for the solution of the
Boussinesq type equations should be able to
demonstrate these basic features of non-linear wave
propagation in shallow water. With this in mind, we
examined, for a one-dimensional channel of depth
10.0m, the effects resulting from sinusoidal input

waves with the following characteristics

- wave amplitude = 1.0m, wave period = 10 secs.

(Ur = 10)
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- amplitude = 2.5m, wave period = 16 secs.

(Ur = 64)

The model was run using the predictor-corrector form
of the scheme, the results are presented in Figures 8
and 9. It can be seen that they are in close
agreement with the conclusions of Masden, Mei and
Savage presented above. In the first case, (Fig 8)
cnoidal waves are created at the front, while for the
second case, (Fig 9) corresponding to large Ursell
values, there are clearly solitary waves moving at the
front of the wave train. This is confirmed also by
comparing the numerical solution with the solitary

wave profile provided by theory (see Fig 10).

This close agreement of the model results with
experimental and theoretical evidence of non-linear
wave propogation in shallow waters, shows that the
finite difference scheme Pehaves in a satisfactory

manner.

In addition, the same sort of test was repeated for an
input wave representing the first two terms of the

Stokes expansion of a cnoidal wave,

3w2 32
bg k bat

z = a cos (wt-kx) + cos 2( wt-kx) (3.10)

A cnoidal wave is a permanent wave solution of the
Kortegweg de Vries equation and, thus, also of the
Boussinesq type equations for uni-directional flow.

If we were to apply as input conditions an infinite
number of terms approximating the amplitude z of a
cnoidal wave as above then the model should be able to
retain the permanent wave form of this wave all along
the channel, in similar way to the solitary wave.

Since we are only using the first two terms of the
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Stokes approximation and not a proper cnoidal wave, we

do not expect to obtain exactly a permanent wave form.

The results from this test in the 10m counstant depth
channel are given in Fig 11. It can be seen that the
cnoidal wave does not retain an exactly permanent
form, but that the wave that is propagating is clearly
close to cnoidal in shape. To achieve a true cnoidal
profile an exact cnoidal form would need to be input
to the model. 1In addition, by comparing Figure 11
with Figure 8, which was for a sine wave input, i.e.
the first term of the cnoidal approximation, we can
see that the effect of introducing the second order
terms is to substantially improve the permanent wave

form of propagating downstream.

3.1.4 Summary of approach

In summary, the one dimensional model tests described
have been divided into two parts. First the linear
equations were investigated using the finite
difference scheme given by (3.6). These finite
difference equations were implemented both as as
implicit scheme and as a predictor-corrector scheme,
and both of these were found to perform
satisfactorily. Having examined the linear equations
we turned our attention to the non-linear equations.
Two finite difference schemes were tested to represent
the non-linear terms: an explicit scheme with angled
derivatives and an implicit scheme (implemented as a
predictor-corrector scheme) with centred derivatives.
Both of these schemes performed in a similar way. For

both the linear and non-linear equations all the
33
x 2t
version of the dispersion term. As discussed in

numerical tests were carried out using the
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3.2

Boundary

conditions

3
. . . . . z .
section 2.1 this version is equivalent to ——— since

x 2t
for small kd they both lead to the same dispersion

. . o)
relation (2.13). The version ——  has been used
o dx 2ot
throughout the present work as it 1s in a more

convenient form for the finite difference approach

which 1is used here.

For subsequent development of the numerical model we
need to select an appropriate form of the finite
difference equations from those described in Sections
3.1.2 and 3.1.3. Because it was intended to implement
the model on the Distributed Array Processor we
require a scheme which 1is suitable for a parallel
processing system. For the non-linear terms an
explicit scheme with angled approximations to the
partial derivatives cannot be easily implemented in a
parallel processing system, whereas the fully centered
finite difference scheme can. For these reasons the
approach which was adopted for all the subsequent
tests was to solve the Boussinesq equations with the
finite difference scheme given by (3.8) and (3.9)
using a predictor-corrector method on the DAP. The
extension of (3.8) and (3.9) to the two dimensional

case will be discussed in Chapter 4.

In all the one-dimensional tests described in 3.1 the
mathematical model was set up so that waves did not
reach the model boundaries. This situation 1is
clearly artificial when waves are to be modelled in a
harbour or at a coastal site. In these cases we
require model boundaries which can represent beaches,
armoured slopes or vertical walls, ie where the

reflection behaviour of the structure can be taken
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into account. As a first step we consider methods of
modelling boundaries where the wave can pass through
without any deformations which could cause reflections
at these boundaries, and consequent numerical

contamination of the solutions 1in the interior.

As a starting point we consider a wave entering a
flume of finite length. We require boundary
conditions at the opposite end of the flume to that at
which the wave enters. This boundary is selected as a
line of u velocity points. The velocity u at these
points cannot be calculated using the basic finite
difference scheme since no wave information 1s
available at the outside of the boundary area.
However, we can derive an expression for the u points
at the boundary based on some assumptions about the
approaching wave, and the reflection performance of
the boundary based on the method of characteristics.
For the linear form of the shallow water equations.
The characteristics lines for the linear shallow water

equations are given by

dx _ 3
T = (gd)*.

To derive appropriate boundary conditions for normally
incident waves we need to consider the history of a
wave travelling at a speed (gd)% arriving at a
boundary point at time (n+3) At. The characteristic
line through a boundary point at time (n+3) At
intersects the time level (n-3)At at a distance
(gd)%At which is between i and (i+l) &x, and which

can be found by interpolation. It can be shown that

the boundary condition has the form,

1 -
Mz 0 - WYy, (3.11)

1 1
u = 2 2
i+l i+l r i+l i

1
Where Cr = (gd)?At/Ax is the Courant number. Where
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the Courant number is unity expression (3.11)

becomes
n+3 n-1
u. = u.
1+1 1

and a wave should pass through the boundary unaltered.
This situation is demonstrated for the present model
in Figure 12 where a solitary wave is approaching an
absorbing boundary, and the model parameters are such
that Cr = 1. For the case where Cr # 1 the solitary
wave test was repeated, and it can be seen from Figure
13 that whilst the boundary condition performs
relatively well there is some small numerical error
involved. This error can be expected to increase as
the numerical wave speed moves away from (gd)% . It
should also be observed that the derivation of the
boundary condition (3.11) assumes waves to be normally
incident at the boundary which will be true for the
one-dimensional case, but will not hold in general.

This point will be discussed further in section 4.2.

With these constraints in mind it was decided to
explore other methods of representing absorbing
boundaries in the mathematical model. One technique
which has recently been reported by Larsen and Dancy
(Ref 8) is that of using 'sponge layers' at the model
boundaries. These layers typically consist of five to
ten cells before the model boundary where the
elevations and velocities are successively reduced
prior to arriving at a condition of the form (3.10).
The elevations and velocities are reduced in the
sponge layer by division by a function u(x) of the

form,

-(x _-x)/Mx -(x _-x ) &)
u(x) = exp [(2 € -2 & 5 logea],(3.12)

Where x = X is the start of the sponge layer and
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X = X, 1s the end of the layer. It should be noted
that at x = X u(x) = 1.0, ie the wave enters the
sponge layer undeformed, and that p(x) is a
monotonically increasing function of %x. The parameter
a is a constant which depends on the number of grid
lines in the sponge layer. Typical values are a = 5
for a sponge layer 10 cells wide, and a = 2 for a

sponge layer 5 cells wide.

A series of tests were done in the one dimensional
model to examine the performance of the spongé layer,
as given by (3.12). For all of these tests the model
was set up to represent a wave flume 25m deep. In
running the model a mesh size of 29m was used with a
timestep of 1.18, giving a Courant number Cr = 0.64,
For the first case which was considered a sine wave of
period l4s and amplitude 1.61lm was input at the open
boundary. The resulting wave amplitudes at various
locations along the flume were examined for runs of
the model both without and with the sponge layer.

In both cases the boundary condition applied at the
end of the flume corresponds to (3.11). If the
boundary conditions are working correctly we would
expect the wave amplitude at the input frequency to
stay constant at all positions along the flume. Any
deviation from this constant value will be due to some
wave energy being reflected from the boundary
contaminating the solution in the interior (as

demonstrated in Fig 13).

The results from the sine wave tests are summarized in
Table 1, for the cases without a sponge layer, and
with sponge layers 5 and 10 cells wide. It can be
seen from table 1 that without the sponge layer the
amplitudes along the flume varies between *12%7 from
the input amplitude of 1.6lm. On introducing a sponge
layer 5 cells wide the amplitudes at positions along

the flume are within *1% of the expected value.



Increasing the width of the sponge layer to 10 cells
further improves the accuracy with the wave amplitudes
having a value of 1.61lm at all of the positions
tested. Clearly as the width of the sponge layer

increases 1ts effectiveness also increases.

However, a balance needs to be achieved between the
performance of the sponge layer and the amount of
model space that it occupies. For the case described
above the ten cell sponge layer will be approximately
1.4 wavelengths wide, and the five cell sponge layer
0.7 wavelengths wide. From their relative
performances it appears that for optimum effectiveness
the sponge layer needs to be of the order of one
wavelength wide. For very long waves, this could lead
to a large proportion of the model area being taken up
by the sponge layer. This point will be particularly
significant in the case of set down waves, and will be

discussed further in section 3.3.

In addition to testing the sponge layer with a sine
wave input, tests were also carried out using as input
the first two terms of the Stokes expansion of a
cnoidal wave, see expression (3.10). 1In this case we
expect the wave amplitude to be constant at all
positions along the flume at both the primary
frequency (corresponding to T = l4s) and at the
secondary frequency, provided the results are not
contaminated by unwanted reflections from the
absorbing boundary. The results from tests with these
input conditions are summarised in Table 2. It can be
seen that the sponge layer is again very effective for
the primary wave frequency, as the amplitude remains
constant along the flume. For the secondary wave
frequency even with the sponge layer in place there is
a variation in amplitude of about 127 from the

expected value of 0.,16m.
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3.3

Set down wave

tests

Finally, to illustrate that the cnoidal wave profile
is propagating unchanged, and the sponge layer is
effective reference should be made to Figure 14. This
shows a plot of surface elevations at four different
elapsed times. It can be seen that at all times the
cnoidal wave profile is maintained throughout the

length of the flume.

3.3.1 Background

All of the tests conducted so far have considered
incident waves of only one frequency. We also need to
know how the model responds to waves of several
frequencies being propagated within its boundaries.
Waves propagate at speeds which depend on their period
and therefore, they will continually move through each
other. At certain times a number of them will come
together to produce a group of large waves while at
other times they will be out of phase giving rise to
relatively small waves. When a group of large waves
is formed, there is a corresponding increase in the
kinetic energy of orbital water particle movement.
This leads to a reduction in the water pressure and if
the air pressure is taken to be constant, the result
is that a depression in the mean water level occurs
beneath groups of high waves. A compensating rise in
the mean level occurs between groups of high waves.
This surface perturbation is enhanced by a wave-like
flow that develops beneath the surface. This
disturbance is known as set down beneath wave groups
and was first described by Longuet-Higgins (Ref 18).
It has a periodicity associated with the groups but it
differs from a free long wave, because it is tied to
the wave group. Therefore it propagates at the group
velocity, which is less than the phase velocity of a

free long wave of the same period as the set down.
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This disturbance with period of the order of minutes
is extremely important for large moored vessels, since
the natural periods of horizontal oscillation of such
vessels on their moorings are typically within the
range of 30 sec to 2 minutes. As a result, a
significant resonant response of the vessel can be
produced by relatively small amplitude long period
wave motions, which in certain cases can cause
moorings to part. The problem can be compounded for
vessels moored inside harbours when long period wave
motions are amplified through harbour resonance, since
it has been shown by Bowers (Ref 19) that set down
behaves much like an ordinary long wave when it

excites the resonant modes of harbours.

The simplest example of set down beneath wave groups
is provided by a system consisting of sine waves at
two frequencies, the groups of waves (and hence the
set down) occur regularly with a frequency equal to
the difference between the two primary frequencies.
Physical model tests using regular wave groups and
random seas have been carried out by Bowers (Ref 20).
It was found during these tests that the wave
generator had to be programmed to produce the correct
representation of set down beneath wave groups. The
effect of not programming the wave generator to
produce set down 1is to introduce spurious long waves
with the same period and a phase shift of 180° so that
the boundary condition on the paddle face, UX(Z) =
0, is satisfied. As the primary wave system
propagates away from the generator, it carries with it
the set down associated with wave groups but, also,
propagating with the system are the spurious long
waves. As has been mentioned above, set down
propagates more slowly than the free secondary long
waves. They are exactly out of phase at the wave

generator and will gradually come into phase with one
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another with increasing distance from the generator.
As the distance increases further the two will again
go out of phase and so on. Thus, the response of
harbour and moored ships sensitive to long period
disturbances could depend on their distance from the

wave maker.

Similar reasoning to this also applies to numerical
models. That is, care must be taken when specifying
the input boundary conditions to the numerical model

to ensure that set down is correctly represented.

For the Boussinesq model the main characteristics of
the set down wave can be predicted by examining the
differential equations (3.1) and (3.2). By expanding
the various terms in these equations to second order

it can be shown that the profile of the set down wave

18,
D cos (wt -k x)
h w =W - Ww
where 2 2 1
ko= k, - kg

and w,, w, and k;, k, are the angular frequencies and
wave numbers of th two primary waves. The amplitude

of the set down wave is given by,

e R 1,7
. aa, E (k_d (d k) k,+ gk_[kl 2]) . (ﬁ+ _w_z])
2d - w w% (l+k%d2) - gdk% ST
-
(3.13)
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where a, and a, are the primary wave amplitudes.

The expression (3.13) for the set down amplitude
derived from the Boussinesq equations differs from
that which is derived using Laplaces equation and free
surface boundary conditions taken to second order.

The expression for the amplitude of set down in this
case 1is,

D = d+k . tanh k,d )

(m_A cosh k_d+a 1 2 2

1
z 1278 (kltanh k

N

2 kikya 32 cosh k,d ]
Zmlub cosh kld cosh kzd

where

2k, k, w 9
A= a.a g2 [ 172 (1 + tanh kld tanh kzd)+ k,
172 w, w
172 w,cosh 2k2d

klz 2
- ——————) [/ 2(w’ cosh k _d-gk_sinh k_d) (3.14)
wlcoshzkld
Clearly, the expression (3.13) and (3.14) cannot be
expected to be the same as they arise from two
different equations. However, because the
dispersion relation from the Boussinesq equation is
a reasonable approximation to the more exact
dispersion relation obtained using potential theory,
we can expect the set down amplitude given by (3.13)
to be a reasonable approximation to that given by
(3.14). The approximation given by (13.3) improves as
the water depth decreases. An indication of the
discrepancy between the values of the two expressions
for specific cases will be given in the subsequent

section.
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3.3.2 Discussion of results from set down wave tests

A series of tests were carried out using regular wave
groups with the numerical model set up to represent a
wave flume of constant depth. For the one dimensional
case two particular features were examined in these
tests. The first was that the model represented
correctly set down beneath regular wave groups, and
the second was to see how well the sponge layer
boundary conditions performed with waves of lengths
corresponding to the set down frequency. A
consequence of both of these objectives was that some
tests were also needed to investigate the number of
grid points per wavelength which are required to
achieve a good representation of both the primary and

set down wave effects.

The first set of tests which were done were with the
numerical model representing a flume of depth 25m, and
for incident waves for a regular wave group with the

following characteristics.

Frequency Amplitude Wavelength

(Hz) (m) (m)
Primary wave one 0.10 1.97 128
Primary wave two 0.07 1.65 202
Set-down 0.03 0.23 513%*

(* Actually the wavelength of a free wave at the set

down frequency).

The amplitude of the set down was calculated using
expression (3.13). 1If this group of waves 1is
propagating correctly in a flume of constant depth
then the amplitude of each of the frequency components
should remain constant throughout the length of the

flume. Therefore, during runs of the model time
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series of surface elevations were collected at a
number of positions along the flume, and a spectral
analysis performed to obtain the amplitudes of each of
the frequency components at these positions. The
model was first run with a boundary condition of the
form (3.11), with a mesh size Ax = 15m. This mesh
size gives approximately 8.5 points for the shortest
primary wavelength. The time step was selected to be
At = 0.66s, giving a Courant number of 0.69 which
satisfies the stability constraint for this schenme.
Two further rums of the model were also made using
sponge layer boundary conditions with sponge layer
widths of 10 cells and 20 cells. The results from

these tests are summarised in Table 3.

It can be seen from Table 3 that for the model run
without the sponge layer the wave amplitude at all
three frequencies varies greatly about the expected
value. For the cases with the sponge layers in place
the results with the 10 and 20 cell layers are very
similar. With the sponge layer boundary conditions
the variation in the primary wave amplitude is much
smaller than in the case without the sponge layers,
all of the values being within 10% of the expected
value. However, both without and with the sponge
layers there is still a significant variation in the
amplitude of the set down wave, although this
variation is slightly less where the sponge layer

boundary condition was used.

As discussed previously there are two possible causes
for the set down amplitude to vary in this way, either
there are unwanted reflections from the boundaries
entering the model area or the model representation
could be improved. The first cause has been explored,
to some extent, in the tests described above. The
second was investigated by decreasing the grid size in

the model to &x = 12.5m, this gave approximately 10
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points for the shortest primary wavelength, which
should improve the accuracy of the model. For this
case the time step was selected to be At = 0.55s,
giving a Courant number of 0.69. For these parameters
the model was again run without a sponge layer, and
with sponge layers of 10 and 20 cells width. The

results from these tests are summarised in Table 4.

It can be seen from Table 4 that without the sponge
layer there is, as in Table 3, significant variation
in the amplitudes of waves at all three frequencies.
Introduction of the sponge layer improves the accuracy
of the primary waves, and for the finer mesh these are
closer to their expected value than for the more
coarse mesh. The values of the set down wave
amplitude with the sponge layer boundary conditious
are now fairly close to their expected value.
Consideration was given to reducing the mesh size
again to see if the accuracy of the set down
amplitudes would be improved further. However,
numerical experiments demonstrated that the mesh size
used must be greater than half the depth for the model
to remain stable. Therefore for a depth of 25m the
minimum mesh size which could be used was A&x = 12.5m,

which had already been tested.

To examine further the accuracy of representation of
regular wave groups in the numerical model a second
series of tests were done with the model set up to

represent a flume of 10m depth. The characteristics

of the incident waves were,

Frequency Amplitude Wavelength

(Hz) (m) (m)
Primary wave one 0.10 0.5 92
Primary wave two 0.07 0.3 137
Set down 0.03 0.075 328%
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(* Actually the wavelength of a free wave at the set

down frequency).

The model was run using a boundary condition with a
sponge layer 10 cells wide. The first run was for a
mesh size Ax = 15m, giving approximately 6 points to
the shortest primary wavelength. The time step was
chosen to be At = 0.96s giving a Courant number of
0.64. The results from this run for the set-down and

primary waves are given in Table 5.

It can be seen from Table 5 that for the 15m mesh case
there is substantial variation in the expected wave
amplitudes for both the primary and the set down
waves. The same test was repeated using a 5m mesh
with a time step of 0.35s, giving a Courant number of
0.64. Using Ax = 5Sm gives 18 points to the shortest
primary wavelength. The results from this test are
also given in Table 5. It can be seen that for the 5m
mesh case the amplitudes at all frequencies are within
107% of their expected value. These results appear to
confirm that in order to correctly represeat secondary
effects, such as the set down, which result from the
non-linear interaction of primary waves, the primary
wave components must be modelled as accurately as

possible.

Finally, a comparison is given between the results of
a physical model test using regular wave groups, and
those from the numerical model, using two different
mesh sizes, as given in Tables 3 and 4. The
comparison of the amplitudes at the set down frequency
is given in Table 6. It should be noted that the set
down amplitude in the numerical model is expected to
be 0.23m (equation 3.13), whereas for second order
potential theory it is expected to be 0.28m (equation
3.14). In the physical model measurements of the set

down amplitude were made at positions 3L/2, 7L/4
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....... , where L is the wavelength of the free wave at
the set down frequency. These locations were selected
because as they are at distances from the paddle at
which the effects of the reflection of set down from
the shingle beach at the end of the wave flume will be
minimised. The reasons for this are discussed in
Reference 20. Reflections from the shingle beach are
probably the cause of the small variations in physical
model set down amplitudes shown in table 6. Although
at all these points the measured set down amplitude
varies by less than 4% from the value predicted by
second order potential theory. The set down amplitude
predicted by the Boussinesq equations (0.23m) is 187%
less than the potential theory value, which reflects

the approximate nature of the Boussinesq equations.

It can be seen from table 6 that for the 12.5m mesh
case the Boussinesq model results are with 10% of the
expected value of 0.23. The exceptions to this are at
13L/4 and 7L/4 where the numerical model result is
about 20% less than the expected value. These
variations are probably not due to reflections of the
sort described above for the physical model. It is
more likely that they are due to numerical error, and
that they could be decreased by using a finer mesh.

Evidence of this can be seen in table 5.

The approximate nature of the set down representation
in the Boussinesq model is also illustrated in the
case shown in table 5. For 10m depth, where we expect
the shallow water approximations to provide a better
approximation, the set down amplitude of 0.075m
expected from the Boussinesq equations (3.13) is 7%
lower than the 0.081lm value predicted by second order
potential theory (3.14). This demonstrates that,
whilst the Boussinesq equations only approximate the

value of set down amplitude predicted by second order
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potential theory, this approximation becomes better in

as the water depth decreases.

From the results described in this section we can
conclude that, within the limits of the Boussinesq
approximation, the numerical model represents well set
down effects provided a sufficiently fine mesh 1is

used.

TWO DIMENSIONAL

EQUATIONS
Method of
solution
The two dimensional form of the Boussinesq equations
for the constant depth case are,
Oz el ) _ '
3t 3 (uh) + 3y (vh) =0 G.1)
du . du . du %2 14?2 [ 3% 33v
T F Uno F Vo = mga— + T ( ) G.2)
at dx dy dx 3 bxzbt Ox Oy Ot
dv dv dv . dz .1 .o (2% d3v
U T Voy T By t 34 ey ) @0
The method of solution of these equations is derived
from the method finally chosen for solving the
one-dimensional equations which was discussed in the
previous chapter. The finite difference scheme which
was used to solve (4.1) to (4.3) is as follows:
[un_% (zx" +d) - un—% (zx} +d) )
n - ,o-1 A i,3-% i,j-3% i-1,3-% i-1,j-%
21-— 1 = %Z: 1 1< t A%
2s)"2 1-24]-3%
1
n-s n-3
V. (z .+d) - v, (z . . +d)
—At( i-3,3 Y -3, i-4,]-1 yl‘%:.]'l ) (4 4)
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. =2V, . o4tV . A=V .+2 . 1=V .
ldz (Vl'%’.] i-3,j-1 "i-%,3-2 "i-3,] Vl"%i.]']- 1"12".]'2)
3 (ay)?
(4.6)
where
sj']- -
n+3 n+3 n+3 n+3 n-%, n-3 n-% n-3
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The finite difference scheme given by (4.4) to (4.6)
is implemented as a predictor-corrector scheme.
First, the finite difference equations are solved
omitting the dispersive terms, (predictor stage). The
calculated values of u and v are used to make a first
approximation to the dispersive terms which are then
used in the equations to update the values of z,u and
v (corrector stage). The corrector is then repeated
until convergence is achieved (in practice this
involves about six iterations of the corrector). It
can be shown that the finite difference scheme

represented by (4.4) to (4.6) is stable provided Cr g
1/v2.

As with the one-dimensional case the problem arises of
verifying that the numerical model is producing
accurate solutions, given the lack of analytical
solutions against which to compare it. As a starting
point we again consider the solitary wave, which
should retain its initial shape as it propagates in
water of constant depth provided that the non-linear

terms in (4.1) to (4.3) are exactly balanced against

the dispersive terms.
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To 1llustrate that the model can propagate a solitary
wave correctly we consider a long crested solitary
wave entering a square basin with its crest at 45° to
the basin sides (see Fig 16). 1In this case the depth
of the basin is taken to be 10m and the wave amplitude
1.0m. A time increment At = 1ls was used with a mesh
size Ax of l4m, giving a Courant number of 0.707 which
satisfies the stability criterion. The model was run
for a large number of time steps, but care was taken
to ensure that the wave did not reach the end limits
of the basin area, so that boundary conditions did not
have to be applied there. The propagation of the wave
inside the basin was monitored and the results
presented in the form of surface elevations in a
cross-section along the diagonal at various time
levels (Fig 16). By comparing the shape of the wave
at these times and with the theoretical profile, we
can conclude that this shape remains unchanged during
the wave propagation. This provides evidence that the
finite difference model does simulate accurately the
non-linear and dispersive terms of the equations and
therefore can be considered as a reliable means for
the numerical integration of the Boussinesq equations
in two spatial dimensions. The same test was repeated
for a 30° incidence angle. The cross-sections at
various time levels are now taken not along the
diagonal of the basin but along the line at 30° to the
horizontal x-axis. The results (Fig 17) verify that
the numerical model retains not only the shape of the
solitary wave but, also its angle of propagation in

the interior of the basin area.

In both of the tests described above, waves were not
allowed to reach the model boundary. We now need to
consider situations where waves impinge on the

boundaries, and how to represent boundary conditions

there.
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4.2

Boundary

conditions

The first type of boundary condition to be considered
is one where the wave can pass through the boundary
without deformations. 1Initially, we return to a
boundary condition of the form (3.11) which is based
on the characteristic lines of the linearised shallow
water equations. As an example of this type of
boundary condition we consider the situation where the
wave approaches the boundary at 45°. 1In this case the
characteristic lines will be defined by g% = (gd)%

dt

d .
cos 45° and 3L = (gd)? sin 45°, and we can show that
the boundary condition is,

nty _ n-3 Cr n-3% n-3% ,
i1 T Y1 T 77 (e Ty ) G.7)

u

where Cr is the Courant number. Where the Courant
number 1is exactly‘l//z the boundary condition (4.7)

becomes,

and a wave at 45° should pass through the boundary

undistorted.

To test this boundary condition we consider the case
described in the previous section of a solitary wave
entering a square basin at an angle of 45°. The
surface elevation contours at the boundary for this
case are shown in Figure 18, It can be seen that the
solitary wave leaves the model area without any
deformation or reflections from the boundary. The
formulation of the boundary conditions described above
assumes a prior knowledge of the angle of incidence of

a wave at an end boundary. This is not, in general,
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the case and therefore we have to assess the effect of
using in the absorbing boundary conditions an angle

which 1is different from the angle of incidence.

We consider solitary waves entering the square basin
at an angle of 60°, while we retain the form of
boundary conditions described above for an angle of
45°, We present the results as contour lines of
surface elevation (Fig 19). There is a certain
deformation of the wave at its crest close to the end
boundary and in general, the contours do not remain
absolutely straight. Numerical errors start to
propagate from the absorbing boundary in to the area
inside the model. Under the circumstances, it is
important that care is exercised in the formulation of
the absorbing conditions and the matter should be
further investigated. The only way to avoid numerical
errors entirely is to know in advance the angle of
incidence of the wave at the boundary, however this 1is
unlikely to be the case in real situations. One
method by which this can be overcome, where an
absorbing boundary is required is to use the sponge

layer teéhnique which was described in section 3.2.

It remains to consider boundary conditions which
represent partially or totally reflecting structures.
In this case a boundary condition similar to (4.7) can
be derived which includes a reflection coefficient.

For incident waves at 45° it will take the form,

n+3
u.
i+l

n-3

- G- G ent o) @

where R is the reflection coefficient. For R = 1 we
have total reflection, and for R = 0 total absorption

(as in (4.7)).
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In a numerical model harbour boundaries will be
represented in a stepwise manner. It needs to be
demonstrated that the reflective properties of these
boundaries are accurately modelled when conditions
similar to (4.8) are applied. With this in mind we
examine the case where a solitary wave travelling from
left to right is incident on a reflecting boundary at
45° to the incident wave angle. If the reflection of
the wave is total, then, its direction afterwards
should change by 90°, this case is illustrated in
Figure 20. 1t can be seen that despite its stepwise
representation in the model, the boundary does reflect
the wave correctly. 1In particular, at the boundary
the wave height is doubled and the part of the wave
which has not reached the boundary continues to

propagate undisturbed.

As a further test, the orientation of the wall is
altered from 45° to 60°, the direction of the wave
after reflection is again found to be correct (see Fig
21). 1t would appear from these test that despite the
stepwise representation the reflective properties of
the boundaries of the finite difference scheme are

still accurately modelled. Finally, for the same

test we introduce a reflection coefficient R at the
wall. For the results shown in Figure 22 this
coefficient is taken equal to 1/2 whereas in Figure 23
it is taken simply as O ie the boundary is fully
absorbing. The boundary conditions which are applied
correspond to an angle of incidence of 0°. It can be
seen that for both cases the boundary conditions
demonstrate the expected properties that is, in Figure
22 the height of the wave reflected from the wall is
half that of the incident height. Whereas, in Figure

23 no reflected wave is evident.



4.3

Wave diffraction

by breakwaters

Having demonstrated that the numerical model will
represent the effects of wave reflections and
absorption at its boundaries, it remains to check that
wave diffraction by breakwaters is modelled correctly.
For non-linear wave there 1is no theoretical solution
against which the wmodel results can be checked.
Therefore, the approach which was taken was to cowmpare
the results from the numerical model with those from
physical model tests (see Ref 21). These physical
model tests were primarily carried out to investigate
the diffraction of set down. However, in obtaining
this data results on the diffraction of ordinary waves
were obtained and these can be used for the

comparisons given here.

The numerical model was set up to represent the layout
of the physical model, which is shown in plan in
Figure 24. The depth throughout the harbour was 25m.
The numerical model was run with an incident sine wave
of frequency 0.03Hz and amplitude 0.023m, this
corresponded to one of the tests carried out in the
physical model. The numerical wmodel for this case
used a grid size Ax = 15m with a time step of 0.66s
giving a Courant number of 0.69. The physical model
test results were given in the form of diffraction
coefficients at positions 1 to 7 (see Fig 24), which
are on 15° radials from the breakwater at a distance r
from the tip. In this case r = 513m, which is

approximately the wavelength of the incident wave.

A comparison of the diffraction coefficients positions
1 to 7 for both the physical and numerical models 1is
given in Figure 25. Also in Figure 25, for comparison
wave conditions from a linear numerical model

(described in Ref 22). It can be seen from Figure 25
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that the results from the physical and numerical
models are in reasonably good agreement, being within
5-10% of each other at all locations. This means

that diffraction of a regular sine wave is correctly
represented in the numerical model. It 1is also
interesting to note that the linear model gives
slightly higher values of the diffraction coefficient
than either the present numerical model or the
physical model (both of which are non-linear) at
positions directly exposed to the incident wave
(positions 6 and 7). But, that the linear diffraction
coefficients are lower than both the present model and
the physical model at the positions in the shelter of

the breakwater. .

Having demonstrated that the numerical model gives a
good representation of diffraction of a single
incident sine wave by a breakwater it remains to
consider diffraction of a regular wave group with its

associated set down.

4.4 Set down wave
tests
A description of the theory was given in section
3.3.1, and it was shown in section 3.3.2 that the
Boussinesq model would represent set down amplitudes
in one dimension to within #20%. It remains to show
that two dimensional effects, and in particular

diffraction of set down, can be modelled correctly.

To investigate the ability of the numerical model to
represent diffraction of wave groups a series of
comparisons were made between its results and the
results from a series of physical model tests (Ref
21). The numerical model layout used was the same as
for the physical model, see Figure 24. The tests in
the numerical model were carried out for incident

waves with the following characteristics:
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Frequency Amplitude Wavelength

(Hz) (m) (m)
Primary wave one 0.07 1.65 202
Primary wave two 0.10 1.97 128
Set down 0.03 0.23 513%

(*Wavelength of a free wave at the set down

frequency).

These incident conditions correspond to those used in
one of the physical model tests described in Ref 21.
As discussed in section 3.3.2 the set down wave
amplitude will differ in the physical and numerical
models, in the physical model the set down wave
amplitude is 0.28 m for this combination of primary

waves.

The mathematical model was run using a grid size & =
15m and a time step At = 0.66s, giving a Courant
number of 0.69. This means that for the shortest
primary wave fhere were approximately 8.5 points per
wave length. During the mathematical model run the
surface elevation data are stored as a time series at
grid points which correspond to physical model probe
positions. The time series are then analysed to give
wave ampulitudes at the various frequencies for each
probe position. The positions which were used are at
distances 0.5L, 0.7L and L from the breakwater tip,
where L = 513m is the wavelength corresponding to the
beat frequency f_ = 0.03, along lines positioned at
15°, 30°, 45°, 60°, 75° and 90° from the breakwater
(see Fig 24). The results for both the physical and
numerical model are presented as diffraction -
coefficients at the various positions. {(The
diffraction coefficient is defined as ratio the
amplitude of the diffracted wave to the amplitude of

the incident wave at the breakwater tip).



The first cowmparison which was made between the
results from the two models was for the diffraction
coefficients at L from the tip for waves at the
primary and set down frequencies; these results are
given in Figure 26, It can be seen that the two sets
of results are in good agreement at the set down
frequency, with the same trend being displayed in the
numerical model as in the physical model results. For
the primary frequencies agreement is also good except
at positions 1 and 2 for 0.07Hz, and position 1 for
0.10Hz. One explanation for the differences at these
locations is the presence of the breakwater. It is
possible that in the numerical model some energy is
being reflected back into the model area by the

breakwater and that this is contaminating the results

at positions 1 and 2.

A further comparison between the numerical and
physical model results was made for the diffractiouns
coefficients at the set down frequency at locations 1
to 7 at 0.5L, 0.7L and L from the breakwater tip,
these results are shown in Figure 27. Again the two
sets of results for all of these locations are in good
agreement. Finally, in Figure 28 a comparison is
presented of the set down wave diffraction
coefficients, and those of a free wave at the same
frequency for both the physical and numerical models.
It is clear from Figure 28 that the numerical wmodel
gives the same trends which were evident in the
physical model. At most positions the agreement
between the two sets of results is good, although the
mathematical model diffraction coefficients are lower
than the physical wmodel values at all positions for
both the free wave and the set down wave. The
behaviour of the set down wave at these locations 1is
only similar to that of the free wave at positions

well inside the shelter of the breakwater.

~
w



From the results given above we conclude that the
numerical model gives an accurate representation of

diffraction of set down.

5 CONCLUSIONS AND
RECOMMENDATIONS

5.1 Conclusions
A finite difference scheme has been developed which
gives a mathematical solution to the Boussinesq wave
equation for water of constant depth. The finite
difference scheme was implemented on the DAP computer
as a predictor-corrector method. The resulting
mathematical model was found to provide accurate
numerical solutions to the Boussinesq equations. In
particular, it represents well the propagation of
linear and non-linear waves in shallow water, taking
into account both reflection and diffraction effects.
The model also successfully reproduced propagation and

diffraction of set down beneath regular wave groups.

5.2 Recommendations
The work described in this report is the first stage
in the development of a finite difference model to
some the Boussinesq equations. To develop the model
further to allow more realistic harbour layouts to be

represented it is recommended that:
(a) The model should be extended to include
varying depth terms, thereby allowing

refraction effects to be represented

(b) Random and multi-direction incident waves

should be included in the model.

(¢) Boundary conditions should be investigated

further, so that more realistic harbour
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TABLE 1: Amplitudes of sine wave at positions along a wave flume.

depth = 25a, wave amplitude 1.61lm, period l4s.

Distance from

Wave amplitude (m) at frequency 0.07Hz

paddle (m)

770

898

1155

1283

1412

1540

1668

1797

1850

Without sponge

lazer

1.53

1.64

5 cells wide

With sponge layer

10 cells wide

1.61

1.63

1.61

1.62

1.62

1.61

1.60

1.61

1.61

1.61

1.61

1.61

1.61

1.61

1.61

1.61

1.61

1.61

Water



TABLE 2: Amplitudes of cnoidal wave at positions along a wave flume., Water depth = 25m,

wave amplitude 1.60m, period lé4s.

Distance Wave amplitude (m) at frequency 0.07Hz Wave amplitude (m) at frequency 0.l4Hz

from without spong with sponge without sponge sponge layer
‘paddle layer layer layer 10 cells wide
(m)

770 1.54 1.60 0.14 0.16

898 1.53 1.60 0.14 0.16
1155 1.51 1.60 0.15 0.14
1283 1.76 1.60 0.15 0.15
1412 1.42 1.60 0.15 0.15
1540 1.82 1.60 0.15 0.16
1668 1.66 1.60 0.14 0.15
1797 1.41 1.60 0.14 0.14

1850 1.85 1.60 0.16 0.15



TABLE 3: Sponge layer tests for regular wave group with primary frequencies 0.07Hz and
0.10Hz. Water depth 25m, x = 15m, t = 0.66s, Expected wave amplitudes are
0.23m at f- =0.03Hz, 1.65m at f = 0.07Hz and 1.97m at £ = 0.10Hz.

Distance from Ampltudes at specified frequencies (m)
paddle (m) No sponge layer 10 cell sponge layer 20 cell sponge layer

P

£=0.03Hz £=0.07Hz £=0.l0Hz £=0.03Hz £=0.07Hz £=0.10Hz £=0.03Hz £=0.07Hz £=0.10Hz

15 0.37 1.58 1.89 0.22 1.50 1.92 0.22 1.56 1.92
315 0.27 1.58 1.94 0.23 1.51 1.94 0.23 1.51 1.94
615 0.29 1.61 2.02 0.17 1.49 1.96 0.17 1.49 1.96
915 0.25 1.66 2.02 0.31 1.49 1.93 0.31 1.50 1.93

1215 0.21 1.57 2.0 0.19 1.49 1.95 0.19 l.§9 1.96
1515 0.15 1.51 1.93 0.17 1.50 1.97 0.17 1.50 1.97
1815 0.19 1.50 1.96 0.21 1.54 1.90 0.21 1.54 1.90

2115 0.28 1.51 1.75 0.18 1.52 1.75 0.18 1.52 1.75



TABLE 4:

0.07Hz and 0.10Hz.

= 0.55s.

Sponge layer tests for regular wave group with primary frequencies

Water depth 25m, Ax = 12.5m, At

Expected

wave aplitudes 0.23m at f- = 0.03Hz, 1.65m at £ = 0.07Hz and 1.97m at
f = 0.10Hz.

Distance from

paddle (m)

No sponge

Amplitudes at specified frequencies (m)

layer

25

175

900

1163

1288

1413

1538

1663

1800

10 cell sponge layer

20 cell sponge layer

f=0.03Hz f=0.07Hz f=0.10Hz £=0.03Hz f=0.07Hz £=0.10Hz f=0.03Hz f=0.07Hz £=0.10H:

0.28

0.33

0.25

0.33

1.51

1.64

1.56

1.58

1.64

1.60

1.51

1.81

1.84

1.85

1.82

1.95

1.95

2.03

2.01

1.86

0.23

0.18

.56

.52

.55

.50

.60

.54

.50

.53

.51

1.89

1.88

1.90

1.83

0.22

0.18

0.18

1.56

1.52

1.

1

8¢

.8

.8



TABLE 5:

Mesh size variation tests for regular wave group with primary

frequencies 0.07Hz and 0.10Hz. Water depth 10m. Expected wave

amplitudes are 0.075m at £ = 0.03Hz, 0.3m at f = 0.07Hz and 0.5m

at £ = 0.10Hz.

15m mesh spacing

Dist from Ampltudes (m) at

S5m mesh spacing

Dist from Ampltudes (m) at

paddle (m) £=0.03Hz £=0.07Hz £=0.10Hz paddle (m) £=0.03Hz f=0.07Hz f£=0.10Hz
5 0.076 0.27 0.49
15 0.083 .29 0.48
25 0.082 0.28 0.49
50 0.077 0.28 0.49
75 0.072 0.26 0.50
90 0.068 .28 0.48
100 0.083 0.27 0.49
150 0.073 0.26 0.48
165 0.070 .30 0.48
200 0.076 0.27 0.46
240 0.070 .29 0.48
250 0.079 0.28 0.47
315 0.057 .28 0.49
465 0.043 .29 0.49
500 0.069 0.28 0.48
540 0.043 .27 0.49
615 0.041 .26 0.49
690 0.029 .28 0.49
750 0.075 0.28 0.47
765 0.021 .28 0.49



TABLE 6: Amplitudes at the set down frequency for physical and numerical
models. Regular wave group tests primary frequencies 0.07Hz and
0.10BHz, set down frequency 0.03Hz, L=513m. Expected set down

amplitude for physical model 0.28m, for numerical model 0.23m.

Dist from Physical model Numerical model Numerical
paddle (wavelength) 15m mesh 12.5m mesh

3 L/2 0.31 0.27 0.20

7 L/4 0.27 0.29 0.23

9 L/4 0.28 0.32 0.23

5 L/2 0.28 0.20 0.21

11 L/4 0.28 0.19 0.20

3L 0.25 0.25 0.22

13 L/4 0.27 0.20 0.18

7 L/2 0.28 0.20 0.18
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Fig 1 The cnoidal wave profile and its limiting forms
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