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ABSTRACT 

This report describes the development of a finite difference model to solve 
the Boussinesq equations in water of constant depth. The main objective of 
this work was to develop a mathematical model which can represent non-linear 
wave effects in harbours. In particular, it is important for the model to 
allow for an adequate description of the effects of set down beneath wave 
groups. This disturbance is known to be significant in assessing the 
movement of large moored vessels in harbours. 

Prior to considering the finite difference model in detail some observations 
are made on the equations which represent the non-linear propagation of 
waves in shallow water. This is followed by a review of literature which 
describes work carried out by other researchers on solving the Boussinesq 
equation. 

As a starting point for developing the mathematical model we first sought a 
solution to the one-dimensional form of the Boussinesq equations. Several 
finite difference schemes were considered, the one which was finally used 
was a predictor-corrector scheme implemented to take advantage of the 
computing power of the distributed array processor (DAP). The results from 
the model for the one dimensional case were compared with theoretical 
solutions and results from physical model tests. The mathematical model was 
found to give a good representative of non-linear wave propagation in 
one-dimension. In particular, within the limits of the Boussinesq 
equations, the numerical model was found to represent well the effects of 
set down beneath wave groups. 

Raving completed the solution to the one-dimensional equations the finite 
difference scheme was extended to the two dimensional case. Comparisons 
were again made between the model results and theoretical solutions, and the 
agreement was found to be good. The final series of tests done in the 
mathematical model were to provide a comparison with physical model results 
for the diffraction of set down. the comparison between the results 
demonstrated that the numerical model gave an accurate representation of 
diffraction of set down. 

In conclusion, the mathematical model was found to provide an accurate 
numerical solution to the Boussinesq equations. In particular, it 
represented well the propagation of linear and non-linear waves in shallow 
water, taking into account both reflection and diffraction effects. 
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INTRODUCTION 

Accurate predictions of wave conditions within a 

harbour are an important factor in optimising its 

layout. Until recently the only reliable method 

available to the engineer for estimating wave 

conditions in a harbour was to use a random wave 

physical mode l. However, advances made in 

mathematical modelling techniques in recent years have 

resulted in them becoming useful tools, both when used 

on their own at the early stages of design for a 

proposed harbour, and at the final design stage when 

used alongside a physical model. To date most of the 

mathematical mode l S of wave action which have been 

developed are linear, and therefore will not represent 

non-linear effects as waves propagate in shallow 

water. One of the most important non-linearities in 

wave motion, as far as harbour response is concerned, 

is set down beneath wave groups. Obtaining an 

adequate description of the effects of set down is 

therefore an important factor which needs to be 

included in future mathematical models of waves in 

harbours. 

This report describes the development of a two 

dimensional finite difference model to solve the 

Boussinesq equations. These equations represent the 

propagation of non-linear waves in shallow water, and 

have the property of providing an accurate description 

of set down beneath wave groups. A more detailed 

description of the Boussinesq equations and their 

properties is given in Chapter 2. In Chapter 3 we 

discuss the development and testing of a 

one-dimensional model of the Boussinesq equations, 

which provided an insight into the numerical methods, 

prior to solving the two-dimensional equations. The 

methods and results from the two-dimensional model are 

described in Chapter 4, and compared with results from 

other mathematical and physical models. In the final 



c h a p t e r  we g i v e  o u r  c o n c l u s i o n s  and recommendations 

f o r  f u t u r e  r e s e a r c h .  

2 BACKGROUND 

2.1 D e s c r i p t i o n  of  

t h e  g e n e r a l  

problem 

P r i o r  t o  d i s c u s s i n g  i n  more d e t a i l  t h e  Bouss inesq  

e q u a t i o n s ,  and t h e i r  p r o p e r t i e s ,  i t  i s  worth making 

some o b s e r v a t i o n s  i n  t h e  e q L a t i o n s  which r e p r e s e n t  t h e  

n o n - l i n e a r  p r o p a g a t i o n  of waves i n  s h a l l o w  w a t e r .  

M a t h e m a t i c a l l y  t h i s  p r o c e s s  i s  d e s c r i b e d  by t h e  

s h a l l o w  w a t e r  e q u a t i o n s ,  which i n  two-dimensions a r e :  

+ - ( u h )  
X 

+ - ( v h )  = 0 
< $y 

where  

z  i s  e l e v a t i o n  above da tum,  t a k e n  t o  be t h e  s t i l l  

w a t e r  l e v e l  (m) ,  

u , v ,  a r e  d e p t h  ave raged  components  of v e l o c i t y  i n  x , y  

d i r e c t i o n  r e s p e c t i v e l y  ( m / s ) ,  

h  i s  t h e  t o t a l  d e p t h  = d  + z ,  d  mean wa te r  dep th  (m) 

and 

g  i s  a c c e l e r a t i o n  due t o  g r a v i t y  (m/s ?). 

In d e r i v i n g  e q u a t i o n s  ( 2 . 1 )  t o  (2 .3 )  i t  is  assumed 

t h a t  t h e  f l u i d  i s  homogeneous, i s o t r o p i c  and 

i n c o m p r e s s i b l e ,  and t h a t  a l l  v e r t i c a l  a c c e l e r a t i o n ,  

s h e a r  s t r e s s  and C o r i o l i s  e f f e c t s  can  be n e g l e c t e d .  

E q u a t i o n  ( 2 . 1 )  i s  t h e n  o b t a i n e d  by i n t e g r a t i n g  t h e  

b a s i c  e q u a t i o n  of c o n s e r v a t i o n  of mass ,  w h i l s t  ( 2 .2 )  



and ( 2 . 3 )  a r e  o b t a i n e d  from i n t e g r a t i n g  t h e  e q u a t i o n  

of c o n s e r v a t i o n  of momentum. A d e t a i l e d  d e r i v a t i o n  of  

e q u a t i o n s  (2 .1 )  t o  (2 .3)  may be found i n  S t o k e r  

(Ref 1 ) .  

These  e q u a t i o n s  a r e  e x t e n s i v e l y  u sed  i n  r i v e r  and  

t i d a l  h y d r a u l i c s  where t h e y  p r o v i d e  a n  a c c u r a t e  

d e s c r i p t i o n  of f l u i d  f low.  However, t h e  a s s u m p t i o n  

made i n  t h e i r  d e r i v a t i o n  t h a t  v e r t i c a l  a c c e l e r a t i o n s  

c a n  be  n e g l e c t e d  ( i e  t h a t  t h e  f l ow  i s  n e a r l y  

h o r i z o n t a l )  l e a d s  t o  t h e  p r e s s u r e  w i t h i n  t h e  f l u i d  

b e i n g  h y d r o s t a t i c .  A d i r e c t  c o n s e q u e n c e  of  t h i s  i s  

t h a t  waves a r e  p ropaga ted  w i t h  a  s p e e d  which i s  

d e p e n d e n t ,  on w a t e r  d e p t h  and c u r r e n t  s p e e d .  T h i s  

means t h a t  t h e y  a r e  no t  d i s p e r s i v e ,  an  a s s u m p t i o n  

which i s  o n l y  r e a l i s t i c  f o r  v e r y  l ong  waves.  

B o u s s i n e s q  (Ref 2)  was t h e  f i r s t  t o  d e v i a t e  from t h e  

a s s u m p t i o n  of  n e g l i g i b l e  v e r t i c a l  a c c e l e r a t i o n  by 

i n t r o d u c i n g  a  l i n e a r  v a r i a t i o n  of  t h e  v e r t i c a l  

v e l o c i t y .  T h i s  r e s u l t e d  i n  h i g h e r  o r d e r  t e rms  b e i n g  

i n c l u d e d  i n  t h e  e q u a t i o n s ,  which r e p r e s e n t  t h e  e f f e c t s  

o f  s m a l l ,  b u t  n o t  n e g l i g i b l e ,  v e r t i c a l  a c c e l e r a t i o n s  

due  t o  t h e  c u r v a t u r e  of t h e  s t r e a m l i n e s .  The p r e s s u r e  

i s  no l o n g e r  h y d r o s t a t i c  and t h e  waves r e t a i n  t h e i r  

d i s p e r s i v e  c h a r a c t e r  i . e .  t h e i r  speed  d e p e n d s  on b o t h  

t h e i r  wave leng th  and t h e  w a t e r  d e p t h .  F o r  r a t h e r  

s t e e p ,  n o n - l i n e a r  waves t h i s  speed  d e p e n d s  on  wave 

h e i g h t  a s  we l l .  

I n  r e c e n t  y e a r s ,  P e r e g r i n e  (Re£ 3 )  e x t e n d e d  

B o u s s i n e s q ' s  i d e a s  t o  two s p a t i a l  d i m e n s i o n s  and a l s o  

c o n s i d e r e d  a  g e n t l y  v a r y i n g  s e a  bed .  He p r e s e n t e d  t h e  

e q u a t i o n s  i n  t h e  form i n  which t h e y  a r e  now known: 



au au az 1 a 3 ( u  d )  + a3 ( v d )  a U + u - + v = - g ~ + d  [-a;% a t  ax ax ay. a t  l 

Where t h e  n o t a t i o n  of (2 .1 )  t o  (2 .3 )  i s  p r e s e r v e d  w i t h  

d  d  (X, y ) ,  i e  t h e  mean d e p t h  v a r i e s  w i t h  X and y. 

Equa t ion  ( 2 . 4 )  i s  i d e n t i c a l  t o  ( 2 . 1 )  and r e p r e s e n t s  

c o n s e r v a t i o n  of  mass ,  and ( 2 . 5 )  and (2 .6)  r e p r e s e n t  

c o n s e r v a t i o n  of momentum. 

Befo re  d i s c u s s i n g  t h e  d i s p e r s i v e  p r o p e r t i e s  o f  ( 2 . 4 )  

t o  ( 2 . 6 )  i t  i s  wor th  o b s e r v i n g  t h a t  i f  t h e  d e p t h ,  d ,  

i s  t a k e n  t o  be c o n s t a n t  eve rywhere  i n  t h e  f l u i d  domain 

t h e n  ( 2 . 4 )  t o  (2 .6)  become, 

v'u S + U , %  + - - - az 1  a3, + - -g - + - d 2  [- a 3v l ,  
a t  ax ay ax 3  a x 2 a t  h a y a t  

( 2 . 9 )  

which i s  t h e  form of  t h e  e q u a t i o n  c o n s i d e r e d  i n  t h i s  

r e p o r t  . 

The d i s p e r s i v e  p r o p e r t i e s  of t h e  Bouss inesq  e q u a t i o n s  

a r e  most c l e a r l y  i l l u s t r a t e d  by compar ing  t h e  

one -d imens iona l ,  l i n e a r i s e d  c o n s t a n t  d e p t h  form of t h e  

e q u a t i o n s ,  



and 

with the equation describing fluid motion in an 

incompressible, inviscid, irrotational fluid of 

constant depth, that is Laplace's equation, 

where @ is a velocity potential (see, for example, 

Stoker Re£ 1). If we linearise the free surface 

boundary conditions then it can be shown that the 

dispersion relation is 

w2 = gk tanh (kd), 

where w is the radian frequency, k is the wave number 

and g is the acceleration due to gravity. This can be 

approximated in polynomial form as 

u2 = gk (kd - 113 d3 k 3  +. . .) 

For shallow water, kd + 0, the dispersion relationship 

above becomes w 2  = gk2 d and the phase velocity d k  

becomes Jgd which is independent of k, ie the waves 

are not dispersive. 

The linearised version of the Boussinesq equations in 

the form (2.10) and (2.11) leads to a dispersion 

relation of the form 



which f o r  sma l l  kd a g r e e s  wi th  t h e  e x p r e s s i o n  ( 2 . 1 2 )  

t o  t h e  f i r s t  two terms.  

One of t h e  b a s i c  p r o p e r t i e s  of t h e  B o u s s i n e s q  

e q u a t i o n s  i s  t h e  p o s s i b i l i t y  of t r a n s f o r m i n g  them t o  

d i f f e r e n t  forms by r e w r i t i n g  t h e  t h i r d  o r d e r  t e rm 

u s i n g  t h e  l i n e a r i s e d  sha l low w a t e r  e q u a t i o n s .  The term 
a 32 

7 
a 3 u / a x 2 a t  i n  (2 .11)  can be t r a n s f o r m e d  t o  - 

C,' " 

o and t h e  d i s p e r s i o n  r e l a t i o n  f o r  s m a l l  kd w i l l  remain 

t h e  same a s  (2 .13 ) .  However, i t  w i l l  be shown 

s u b s e q u e n t l y  t h a t  t h e  a3u/  ax2at form o f  t h e  t h i r d  

o r d e r  t e rm i s  p r e f e r a b l e  from t h e  p o i n t  of view of t h e  

n u m e r i c a l  scheme. It i s  t h e r e f o r e  e q u a t i o n s  (2 .7 )  t o  

( 2 . 9 )  which a r e  used i n  t h e  p r e s e n t  work.  A more 

d e t a i l e d  d i s c u s s i o n  of t h e  d i s p e r s i v e  p r o p e r t i e s  of 

t h e  Bouss inesq  e q u a t i o n s  may be found i n  t h e  Witham 

(Ref 4 ) .  

2.2 Review of r e c e n t  

l i t e r a t u r e  

R e s e a r c h  i n t o  methods of s o l v i n g  t h e  Bouss inesq  

e q u a t i o n s  n u m e r i c a l l y  has  i n  r e c e n t  y e a r s  been  

p u b l i s h e d  predominant ly  by t h r e e  g r o u p s  of  

r e s e a r c h e r s .  These a r e  Abbott  e t  a 1  ( s e e  R e f s  5 t o  

1 0 ) ,  Hauguel ( ~ e f  11) and more r e c e n t l y  Schape r  and 

Z e i l k e  e t  a1  (Ref s  12 t o  1 5 ) .  The common e l emen t  o f  

a l l  o f  t h e  r e s e a r c h  pub l i shed  by t h e s e  a u t h o r s  i s  t h a t  

t h e  g o v e r n i n g  e q u a t i o n s  a r e  e x p r e s s e d  i n  te rms of 

volume f l u x  d e n s i t i e s  p(=uh) and q ( = v h )  r a t h e r  t h a n  i n  

t e rms  of v e r t i c a l l y  i n t e g r a t e d  v e l o c i t i e s  U and v ,  a s  

i n  e q u a t i o n s  (2 .4 )  t o  ( 2 . 6 ) .  I n  t e rms  o f  p  and q  t h e  

B o u s s i n e s q  e q u a t i o n s  become, 



- - h  az -g &- + t d h  [-- a3 
ax 2at  

where t h e  n o t a t i o n  of  s e c t i o n  ( 2 . 1 )  has  been r e t a i n e d .  

The above e q u a t i o n s  a r e  s o l v e d  n u m e r i c a l l y  u s i n g  a n  

i m p l i c i t  method by b o t h  Abbot e t  a 1  ( s e e  R e f s  6 and 

9 )  and Schaper  and Z e i l k e  e t  a 1  ( s e e  Ref s  12 and 1 3 ) .  

Hauguel (Re£ 11 ) a c t u a l l y  s o l v e s  a  more g e n e r a l .  fo rm 

o f  t h e  Bouss inesq  e q u a t i o n s  o r i g i n a l l y  due t o  S e r r e  

(Ref 1 5 ) .  The S e r r e  e q u a t i o n s  r e t a i n  a d d i t i o n a l  t h i r d  

o r d e r  terms t o  t h o s e  i n  t h e  Bouss inesq  e q u a t i o n s .  I n  

t h e  d e r i v a t i o n  of  (2 .14 )  and ( 2 . 1 6 )  t h e  c o n v e c t i v e  

p a r t  of t h e  v e r t i c a l  a c c e l e r a t i o n  te rm i s  n e g l e c t e d  

t h e  bed v a r i a t i o n s  a r e  assumed t o  be g r a d u a l ,  and 

p r o d u c t s  of d e r i v a t i v e s  a r e  assumed sma l l  i n  

comparison t o  t h e  d e r i v a t i v e s  t h e m s e l v e s .  If  t h e s e  

s i m p l i f y i n g  a s s u m p t i o n s  a r e  n o t  made t h e  more e x a c t  

d e r i v a t i o n  r e s u l t s  i n  t h e  S e r r e  r a t h e r  t h a n  t h e  

Bouss inesq  e q u a t i o n s .  MC Cowan (Ref  5) d i s c u s s e s  t h e  

m e r i t s  of r e t a i n i n g  t h e  e x t r a  ' S e r r e '  t e rms  and 

conc ludes  t h a t  t h e i r  c o n t r i b u t i o n  i s  i n s i g n i f i c a n t  

compared t o  t h e  main d i s p e r s i v e  t e r m s ,  and t h a t  t h e  

e x t r a  computa t iona l  e f f o r t  r e q u i r e d  t o  s o l v e  t h e  S e r r e  

e q u a t i o n s  i s  n o t  j u s t i f i e d .  



The starting point for most of the recent research was 

to demonstrate that the equations allowed both cnoidal 

and solitary wave profiles to propagate correctly ,see 

Abbott, Petersen and Skovgaard (Ref 7 ) ,  and Schaper 

and Zeilke. (Ref 12). Cnoidal waves are permanent 

solutions of the Kortewag de Vries equations for waves 

moving in one direction (see Ref 4). As a consequence 

of this waves are also a permanent solution of the 

Boussinesq equations for uni-directional flow. A 

typical cnoidal wave is shown in Fig l(a). One 

limiting case of the cnodial wave, in which the 

wavelength becomes infinite, corresponds to the 

solitary wave, see Fig l(b). 

Once authors had demonstrated that their method of 

numerical solution gave accurate results in 

one-dimension they then considered the two dimensional 

case. The problem most frequently treated in two 

dimensions was the refraction/diffraction of waves at 

a semi-infinite breakwater in water of constant depth. 

This has been covered in papers by Abbott et a1 

(Ref 6 ) ,  Hauguel (Ref 11) and Rottmann-Sode, Schaper 

and Zeilke (Ref 13). 

In addition to presenting results from the numerical 

models, Abbott, MC Cowan and Warren (Ref 9) also give 

a detailed analysis of the accuracy of their model, 

and describe the modifications to the finite 

difference schemes which are made to improve the 

accuracy of the results. A full discussion of the 

performance of this model and its range of application 

is given in Madsen and Warren (Ref 10). Aspects of 

the representation of open boundaries in the Abbott et 

a1 models are considered in Larsen and Dancy (Ref 8). 

Finally, it should be observed that until recently 

there had been no work published on the use of the 

Boussinesq model in representing set down beneath wave 



g r o u p s ,  a  t o p i c  of major  i m p o r t a n c e  i n  t h e  p r e s e n t  

work. 

However, P r i i s e r ,  S c h a p e r  and Z e i l k e  have  i n  t h e  l a s t  

few months p r e s e n t e d  a  p a p e r  (Ref 14)  which i n c l u d e s  

r e s u l t s  m o d e l l i n g  s e t  down waves i n  a  b i o c h r o m a t i c  

wave sys t em u s i n g  t h e  Bouss inesq  e q u a t i o n s .  T h e i r  

r e s u l t s  a p p e a r  t o  be p r o m i s i n g  and i n d i c a t e  t h a t  t h e  

Bouss inesq  e q u a t i o n s  c a n  r e p r e s e n t  t h e  s h o a l i n g  of  s e t  

down w i t h  a  r e a s o n a b l e  d e g r e e  of a c c u r a c y .  The 

p r e s e n t  r e p o r t  c o n s i d e r s  s e t  down f u r t h e r  i n  s e c t i o n s  

3.3 and 4.3. 

3 ONE-DIMENSIONAL 

EQUATIONS 

3.1 Method of  s o l u t i o n  

3.1.1 O u t l i n e  of  a p p r o a c h  

The one -d imens iona l  form of t h e  Bouss inesq  e q u a t i o n s  

f o r  t h e  c o n s t a n t  d e p t h  c a s e  i s  g i v e n  by ,  

al uau - - +  - -  az 1 a3u 
-g - + - d 2 -  

at  ax a t  3  ax 2at  

I n  s e e k i n g  a  n u m e r i c a l  s o l u t i o n  t o  t h e s e  e q u a t i o n s  

t h e s e  a r e  s e v e r a l  d i f f e r e n t  a p p r o a c h e s  which c o u l d  be  

u s e d .  The one -d imens iona l  form of t h e  e q u a t i o n s  was 

t h e r e f o r e  used t o  e x p l o r e  v a r i o u s  methods of  s o l u t i o n  

w i t h  a  view t o  p r o d u c i n g  a  n u m e r i c a l  scheme which w a s  

s t a b l e ,  a c c u r a t e  and c o u l d  t a k e  a d v a n t a g e  of  compu t ing  

power of t h e  d i s t r i b u t e d  a r r a y  p r o c e s s o r  (DAP) 

a v a i l a b l e  a t  H y d r a u l i c s  Resea rch .  A l l  of t h e  

numer i ca l  schemes which  were t e s t e d  were based  on t h e  

f i n i t e  d i f f e r e n c e  model f o r  t i d a l  f l ows  ( s e e  Ref 1 5 ) .  



This model uses a second order accurate conditionally 

stable explicit scheme to solve the non-linear shallow 

water equations. The scheme is stable provided that 
1 

the Courant number Crbl, where Cr= (gd)' A/&. The 

finite difference equations are solved using a leap 

frog scheme on a mesh staggered in both space and 

time. In this section we consider an extension of 

this numerical scheme for the solution of the 

Bouss inesq equations. - 

3.1.2 Linear terms 

For the linearised one-dimensional shallow water 

equations the finite difference scheme can be 

expressed as 

Where z is the elevation, U is the velocity in the X 

direction and h and At are the space and time 
n 

increments. The notation z refers to the finite i-a 

difference approximation to elevation at time n& and 

position (i-4) h, see figure 2. To extend (3.4) to 

include the third order dispersive term we require a 
a 3u 

finite difference approximation to - . 
ax 2at 

This approximation can simply be 

1" = U n+1/2 + un+1/2- n+1/2 - U 11-112 n-l n- 4 
ax 2at i+l i-l i+l i+l - ui-l + ui 

(3.5) 
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W 1 

giving a phase velocity - = (gd/(l+k2d2/3)', From k 
this expression it can be inferred that the third 

order terms act to reduce the shallow water phase 
1 - 

velocity (gd)2, and consequently the wavelength. It 

therefore needs to be demonstrated that the finite 

difference scheme also displays a reduction in 

wavelength on inclusion of the third order terms. 

To examine this property further, the scheme given in 

(3.6) was implemented for the case of a channel of 

constant depth with a sinusoidal wave input. The 

total length of the channel was selected so that the 

wave front never reached its far boundary. This was 

done so that boundary conditions did not have to be 

applied, as these could have introduced numerical 

errors which would have contaminated the wave profile. 

The depth of the channel was taken to be 10m, and the 

input sine wave had an amplitude of 1.0m and a period 

of 10s. The wavelength of this wave corresponding to 
1 

the shallow water speed (gd)' (= 9.91m/s) was 99.lm. 

The implicit numerical scheme was run using a space 

step h = 10m as this allowed sufficient points per 

wavelength to ensure that the wave was correctly 

resolved. (The number of points per wavelength is 

normally taken to be 5 8). The space step used was 

At = 1.0s, giving a Courant number of 0.99 which 

ensures that the scheme will be numerically stable. 

In the numerical implementation of (3.4) the 

continuity equation remains explicit but the momentum 

equation takes the implicit form 

for each velocity point i along the axis of the 

channel. The quantities e. f. , and g., depend only 
1' 1 1 

on known values of the variables. Considering the 

total number of points, the above relationship leads 



to a matrix equation of the form: A_ . U_ = B_ where U_ 

is the matrix of the velocity values at each grid 

point and A_ is a tridiagonal matrix. This equation is 

solved by means of a simple matrix inversion 

technique. 

The results of running the model for this case with 

the implicit scheme are shown in Figure 3. It can be 

seen that the wave amplitude remains as before at 

l.Om, but that the wavelength reduces by approximately 

7% to a value of about 92m. 

The same test was then repeated to test the 

performance of a numerical scheme of the predictor - 
corrector type. In this case the numerical solution 

is implemented in two parts. First, the finite 

difference equations are solved omitting the third 

order term. The values of the velocity U are used as 

a first approximation of the dispersive term 

(predictor stage). Then, using the c.alculated value 

of the 3rd order dispersive terms in the equation the 

values of z and U are updated (corrector stage). The 

corrector is then repeated as many times as are 

necessary to achieve convergence. For the simple 

one-dimensional test considered, it was not found 

necessary to iterate more than twice. The results 

(see Fig 4 )  are the same as before, i.e. the incident 

wave is propagated with a smaller phase velocity, and 

therefore, its wavelength is reduced. Theoretically, 

as the number of internal iterations tends to 

infinity, the solution should become identical to the 

one provided by the implicit scheme. 

Within the context of linear dispersive equations, a 

qualitative test of the performance of our numerical 

scheme can be provided by running a solitary, instead 

of a sinusoidal wave at the model entrance and then 

monitoring its propagation along the channel. As has 



been  men t ioned  i n  S e c t i o n  2.2,  t h i s  s o r t  of wave i s  a  

permanent  s o l u t i o n  of t h e  Korteweg d e  V r i e s  e q u a t i o n  

and c o n s e q u e n t l y ,  of t h e  Bouss inesq  e q u a t i o n s  f o r  

u n i - d i r e c t i o n a l  f l ow .  As such  i t  w i l l  r e t a i n  i t s  

s h a p e  u n d i s t o r t e d  a s  it p r o p a g a t e s  by b a l a n c i n g  

e x a c t l y  n o n - l i n e a r  w i th  t h e  d i s p e r s i v e  e f f e c t s .  I f  

t h e  non- l  i n e a r  t e rms  a r e  e x c l u d e d ,  t h e  d i s p e r s i v e  

e f f e c t s  become a b s o l u t e l y  dominan t .  As a  r e s u l t  

d i f f e r e n t  p a r t s  of t h e  wave s t a r t  t o  t r a v e l  w i t h  

d i f f e r e n t  s p e e d s  and t h e  s o l i t a r y  wave b r e a k s  i n t o  a  

number of waves of d i f f e r e n t  wave l e n g t h .  T h i s  t y p e  

of  p r o p a g a t i o n  h a s  an  a n a l y t i c a l  s o l u t i o n  ( s e e  Ref 4 )  

b u t  t h e  p u r p o s e  of t h e  p r e s e n t  e x p e r i m e n t  does  n o t  

j u s t i f y  i t s  p r a c t i c a l  i m p l e m e n t a t i o n .  The a n a l y t i c a l  

s o l u t i o n  shows t h a t  a t  t h e  f r o n t ,  t h e  wave t e n d s  t o  

decay  e x p o n e n t i a l l y  a s  t ime i n c r e a s e s .  I n  a d d i t i o n  

a t  t h e  back of t h e  wave a  t a i l  o f  s h o r t  waves i s  

formed which a r e  moving wi th  s l o w e r  s p e e d s ,  and t h a t  

t h e  f u r t h e r  t h e  wave l i e s  from t h e  f r o n t ,  t h e  s h o r t e r  

i t s  w a v e l e n g t h .  

To t e s t  t h i s  c a s e  t h e  scheme g i v e n  i n  ( 3 . 4 )  was 

implemented  f o r  t h e  c o n s t a n t  d e p t h  c h a n n e l  s i t u a t i o n  

d e s c r i b e d  above ,  w i t h  a n  i n c i d e n t  s o l i t a r y  wave of  

a m p l i t u d e  1.0m. The r e s u l t s  f rom t h e  model a r e  g i v e n  

i n  F i g u r e  5 i n  t h e  form of i n s t a n t a n e o u s  wave p r o f i l e s  

a t  d i f f e r e n t  t i m e s  a s  t h e  s o l i t a r y  wave t r a v e l s  a l o n g  

t h e  c h a n n e l .  It can  be s e e n  from F i g u r e  5 t h a t  t h e  

n u m e r i c a l  s o l u t i o n  c l e a r l y  d i s p l a y s  a l l  t h e  f e a t u r e s  

of t h e  a n a l y t i c  s o l u t i o n  d e s c r i b e d  above .  

3 .1 .3  Non- l i n e a r  t e rms  

Having c o n s i d e r e d  t h e  f i n i t e  d i f f e r e n c e  a p p r o x i m a t i o n  

of  t h e  d i s p e r s i o n  t e rm we now t u r n  o u r  a t t e n t i o n  t o  

t h e  n o n - l i n e a r  t e r m s  i n  ( 3 . 2 ) .  I n  t h e  f i r s t  i n s t a n c e  



t h e  n o n - l i n e a r  t e rms  were r e p r e s e n t e d  u s i n g  a  s i m i l a r  

method t o  t h a t  used  i n  t h e  H y d r a u l i c s  Resea rch  t i d a l  

f l ow model (Ref 1 5 ) .  Tha t  i s ,  t h e  n o n - l i n e a r  t e r m s  i n  

( 3 . 1 )  and ( 3 . 2 )  were r e p r e s e n t e d  by a n  e x p l i c i t  a n g l e d  

f i n i t e  d i f f e r e n c e  a s  scheme f o l l o w s  ( s e e  a l s o  F i g  2 ) .  

n- l 1 n - l  
where J ( z i - +  ) = - ( Z  2 i++ + i - ~  > 

f o r  t h e  c o n t i n u i t y  e q u a t i o n ,  and  

1 n-f n + i  
where = - ( ' i+l  + u  o  2  i-l 

n+ 3 n+3 n- L 
and J ( u ~ + ~ ) = $  ( U .  + U  ' ) .  

L i + l  

The f i n i t e  d i f f e r e n c e  a p p r o x i m a t i o n  f o r  t h e  l i n e a r  

te rms remains  t h e  same a s  d e s c r i b e d  e a r l i e r  t h i s  

s e c t  i o n .  

So f a r  we have d e m o n s t r a t e d  t h a t  t h e  model i s  a b l e  t o  

r e p r e s e n t  c o r r e c t l y  t h e  t h i r d  o r d e r  l i n e a r  

( d i s p e r s i v e )  t e rm.  We now need t o  show t h a t  i t  c a n  

a l s o  model a c c u r a t e l y  t h e  n o n - l i n e a r  terms. For t h e  

n o n - l i n e a r  e q u a t i o n s  t h e r e  a r e  few a n a l y t i c a l  

s o l u t i o n s  t h a t  can  be used t o  check t h e  r e s u l t s  from 

t h e  f i n i t e  d i f f e r e n c e  model. However, we c a n  u s e  t h e  

p r o p a g a t i o n  of a  s o l i t a r y  wave a s  a  b a s i c  t e s t ,  s i n c e  

i f  t h e  f i n i t e  d i f f e r e n c e  model s i m u l a t e s  a c c u r a t e l y  



b o t h  t h e  d i s p e r s i v e  and n o n - l i n e a r  t e rms  of  t h e  

e q u a t i o n s  t h e n ,  such  a  wave shou ld  r e t a i n  i t s  form 

unchanged a s  i t  t r a v e l s  a l o n g  t h e  c h a n n e l .  Because  we 

have  shown t h a t  t h e  d i s p e r s i v e  t e rms  a r e  mode l l ed  

a c c u r a t e l y ,  t h e n  i f  t h e  s o l i t a r y  wave p r o p a g a t e s  

undeformed we w i l l  have e v i d e n c e  t h a t  t h e  n o n - l i n e a r  

t e rms  a r e  a l s o  b e i n g  model led  c o r r e c t l y .  For  t h e  

s o l i t a r y  wave t e s t  we u s e  t h e  same f l o w ,  g e o m e t r i c a l  

and o p e r a t i o n a l  d e t a i l s  f o r  t h e  p r e v i o u s  wave t e s t  

were u s e d .  T h a t  i s  a  channe l  d e p t h  of 10m, wave 

a m p l i t u d e  i s  1.0m w i t h  Ax = l O m ,  A t  = I s  and C r  = 

0.99 .  The r e s u l t s  from t h i s  t e s t  a r e  shown i n  F i g u r e  

6 ,  from where i t  c a n  be s e e n  t h a t  t h e  s o l i t a r y  wave 

does  r e t a i n  i t s  s h a p e  w h i l e  p r o p a g a t i n g  a l o n g  t h e  

c h a n n e l .  T h i s  shows t h a t  t h e  n u m e r i c a l  model 

s i m u l a t e s  s u c c e s s f u l l y  a l l  n o n - l i n e a r  and d i s p e r s i v e  

e f f e c t s  i n  t h e  one d i m e n s i o n a l  c a s e .  

S i m i l a r  r e s u l t s  a r e  o b t a i n e d ,  i f  we a p p l y  a  p r e d i c t o r  

- c o r r e c t o r  scheme.  I n  t h i s  c a s e ,  s i n c e  we i n t r o d u c e  

a n  i t e r a t i v e  p r o c e d u r e ,  t h e r e  i s  no need  t o  u s e  

a n g l e d  a p p r o x i m a t i o n s  t o  t h e  d e r i v a t i v e s ,  and t h e  

f i n i t e  d i f f e r e n c e  scheme can  be f u l l y  c e n t e r e d .  The 

f i n i t e  d i f f e r e n c e  i n  p r e d i c t o r - c o r r e c  t o r  form f o r  

e q u a t i o n s  ( 3 . 1 )  and ( 3 . 2 )  which was u sed  i s  a s  f o l l o w s  

where 

and 



The results for the predictor-correc tor scheme using 

equations (3.8) and (3.9) for the case of a solitary 

wave in a channel of constant depth are shown in 

Figure 7. As for the implicit scheme it can be seen 

that the solitary wave retains its shape as it 

propagates along the channel. 

Having examined the finite difference schemes for the 

linear case with sine waves and sokitary waves as 

input, and the non-linear schemes with solitary waves 

as input it remains to examine the non-linear scheme 

with sine waves as input. The effects of introducing 

sine waves into a horizontal channel have been 

previously investigated both experimentally and 

numerically. Galvin (Ref 16) reports that when steep 

sinusoidal waves are generated in a horizontal channel 

the initial wave breaks down into a number of large 

and small waves. The smaller waves travel more slowly 

than the larger waves and therefore secondary crests 

develop behind the larger waves. These large waves 

are called solitons (waves resembling solitary waves) 

after an analogous phenomenon in plasma physics. 

There is, in general, interaction between these 

solitons, but if followed the separated waves will 

return, periodically in space, to approximate their 

sinusoidal, initial wave form. These results indicate 

that this initial sinusoidal wave form produced by the 



wave generator can be thought of as the forced 

superposition of a number of solitary waves. 

Madsen, Yei and Savage (Ref 17) have shown that these 

physical phenomena occur numerically by solving the 

appropriate equations using a characteristic based 

method. They demonstrated that some of the waves 

created resembled cnoidal waves rather than solitary 

waves and that, in general, the sort of waves produced 

depends on the value of the Ursell parameter Ur (Ur = 

a ~ ~ / d ~ ) .  

Their experiments covered the range 2.5 < Ur < 

500 and their conclusions were 

(a) For small values of Ur, the secondary crests 

take a long time to develop. 

(b) For larger values of Ur, secondary crests 

appear sooner and in greater numbers, 

forming cnoidal waves at the front (for 

moderate Ur values, and solitary waves for 

large Ur values (Ur > 60). 

(c) For Ur > 100, breaking starts to occur. 

Since there is experimental and numerical evidence for 

such behaviour as described above, the finite 

difference model developed for the solution of the 

Boussinesq type equations should be able to 

demonstrate these basic features of non-linear wave 

propagation in shallow water. With this in mind, we 

examined, for a one-dimensional channel of depth 

lO.Om, the effects resulting from sinusoidal input 

waves with the following characteristics 

- wave amplitude = l.C)m, wave period = 10 secs. 

(Ur = 10) 



- a m p l i t u d e  = 2.5m, wave p e r i o d  = 16 s e c s .  

(Ur -= 64)  

The model was run  u s i n g  t h e  p r e d i c t o r - c o r r e c t o r  form 

of  t h e  scheme,  t h e  r e s u l t s  a r e  p r e s e n t e d  i n  F i g u r e s  8  

and 9. It c a n  be s e e n  t h a t  t h e y  a r e  i n  c l o s e  

ag reemen t  w i t h  t h e  c o n c l u s i o n s  of Masden, Mei and 

Savage p r e s e n t e d  above .  1n - ' t he  f i r s t  c a s e ,  ( F i g  8 )  

c n o i d a l  waves a r e  c r e a t e d  a t  t h e  f r o n t ,  w h i l e  f o r  t h e  

s econd  c a s e ,  ( F i g  9 )  c o r r e s p o n d i n g  t o  l a r g e  U r s e l l  

v a l u e s ,  t h e r e  a r e  c l e a r l y  s o l i t a r y  waves moving a t  t h e  

f r o n t  of t h e  wave t r a i n .  T h i s  i s  con f i rmed  a l s o  by 

compar ing  t h e  numer i ca l  s o l u t i o n  w i t h  t h e  s o l i t a r y  

wave p r o f i l e  p rov ided  by t h e o r y  ( s e e  F i g  1 0 ) .  

T h i s  c l o s e  agreement  of t h e  model r e s u l t s  w i t h  

e x p e r i m e n t a l  and t h e o r e t i c a l  e v i d e n c e  of n o n - l i n e a r  

wave p r o p o g a t i o n  i n  s h a l l o w  w a t e r s ,  shows t h a t  t h e  

f i n i t e  d i f f e r e n c e  scheme behaves  i n  a  s a t i s f a c t o r y  

manner  . 

I n  a d d i t i o n ,  t h e  same s o r t  of t e s t  was r e p e a t e d  f o r  a n  

i n p u t  wave r e p r e s e n t i n g  t h e  f i r s t  two te rms  of t h e  

S t o k e s  e x p a n s i o n  of a  c n o i d a l  wave, 

z = a  c o s  (wt-kx)  + 3 w 2  a 2  c o s  2 (&-kx)  ( 3 . 1 0 )  

4g k  4d 

A c n o i d a l  wave i s  a  permanent  wave s o l u t i o n  of t h e  

Kortegweg de  V r i e s  e q u a t i o n  a n d ,  t h u s ,  a l s o  of t h e  

B o u s s i n e s q  t y p e  e q u a t i o n s  f o r  u n i - d i r e c t i o n a l  f l ow .  

I f  we were t o  a p p l y  a s  i n p u t  c o n d i t i o n s  an  i n f i n i t e  

number of t e rms  a p p r o x i m a t i q g  t h e  a m p l i t u d e  z of a  

c n o i d a l  wave a s  above t h e n  t h e  model s h o u l d  be a b l e  t o  

r e t a i n  t h e  permanent  wave form of t h i s  wave a l l  a l o n g  

t h e  c h a n n e l ,  i n  s i m i l a r  way t o  t h e  s o l i t a r y  wave. 

S i n c e  we a r e  o n l y  u s i n g  t h e  f i r s t  two t e rms  of t h e  



Stokes approximation and not a proper cnoidal wave, we 

do not expect to obtain exactly a permanent wave form. 

The results from this test in the 10m constant depth 

channel are given in Fig 11. It can be seen that the 

cnoidal wave does not retain an exactly permanent 

form, but that the wave that is propagating is clearly 

close to cnoidal in shape. To achieve a true cnoidal 

profile an exact cnoidal form would need to be input 

to the model. In addition, by comparing Figure 11 

with Figure 8, which was for a sine wave input, i.e. 

the first term of the cnoidal approximation, we can 

see that the effect of introducing the second order 

terms is to substantially improve the permanent wave 

form of propagating downstream. 

3.1.4 Summarv of a ~ ~ r o a c h  

In summary, the one dimensional model tests described 

have been divided into two parts. First the linear 

equations were investigated using the finite 

difference scheme given by (3.6). These finite 

difference equations were implemented both as as 

implicit scheme and as a predictor-corrector scheme, 

and both of these were found to perform 

satisfactorily. Having examined the linear equations 

we turned our attention to the non-linear equations. 

Two finite difference schemes were tested to represent 

the non-linear terms: an explicit scheme with angled 

derivatives and an implicit scheme (implemented as a 

predictor-corrector scheme) with centred derivatives. 

Both of these schemes performed in a similar way. For 

both the linear and non-linear eauations all the 
a 3u 

numerical tests were carried out using the - 
*at 

version of the dispersion term. As discussed in 



a32 
section 2.1 this version is equivalent to - since 

*at 
for small kd they both lead to the same dispersion 

a 3u 
relation (2.13). The version - has been used 

e 
ax *at 

throughout the present work as it is in a more 

convenient form for the finite difference approach 

which is used here. 

For subsequent development of the numerical model we 

need to select an appropriate form of the finite 

difference equations from those described in Sections 

3.1.2 and 3.1.3. Because it was intended to implement 

the model on the Distributed Array Processor we 

require a scheme which is suitable for a parallel 

processing system. For the non-linear terms an 

explicit scheme with angled approximations to the 

partial derivatives cannot be easily implemented in a 

parallel processing system, whereas the fully centered 

finite difference scheme can. For these reasons the 

approach which was adopted for all the subsequent 

tests was to solve the Boussinesq equations with the 

finite difference scheme given by (3.8) and (3.9) 

using a predictor-corrector method on the DAP. The 

extension of (3.8) and (3.9) to the two dimensional 

case will be discussed in Chapter 4. 

3.2 Boundary 

conditions 

In all the one-dimensional tests described in 3.1 the 

mathematical model was set up so that waves did not 

reach the model boundaries. This situation is 

clearly artificial when waves are to be modelled in a 

harbour or at a coastal site. In these cases we 

require model boundaries which can represent beaches, 

armoured slopes or vertical walls, ie where the 

reflection behaviour of the structure can be taken 



i n t o  a c c o u n t .  As a  f i r s t  s t e p  we c o n s i d e r  methods  of 

mode l 1  i n g  b o u n d a r i e s  where t h e  wave can  p a s s  t h r o u g h  

w i t h o u t  any d e f o r m a t i o n s  which c o u l d  c a u s e  r e f l e c t i o n s  

a t  t h e s e  b o u n d a r i e s ,  and c o n s e q u e n t  n u m e r i c a l  

c o n t a m i n a t i o n  of t h e  s o l u t i o n s  i n  t h e  i n t e r i o r .  

As a  s t a r t i n g  p o i n t  we c o n s i d e r  a  wave e n t e r i n g  a  

f l ume  of f i n i t e  l e n g t h .  We r e q u i r e  bounda ry  

c o n d i t i o n s  a t  t h e  o p p o s i t e  end of  t h e  f lume t o  t h a t  a t  

which  t h e  wave e n t e r s .  T h i s  bounda ry  i s  s e l e c t e d  a s  a  

l i n e  of U v e l o c i t y  p o i n t s .  The v e l o c i t y  U a t  t h e s e  

p o i n t s  c a n n o t  be c a l c u l a t e d  u s i n g  t h e  b a s i c  f i n i t e  

d i f f e r e n c e  scheme s i n c e  no wave i n f o r m a t i o n  i s  

a v a i l a b l e  a t  t h e  o u t s i d e  of t h e  bounda ry  a r e a .  

However, we c a n  d e r i v e  a n  e x p r e s s i o n  f o r  t h e  U p o i n t s  

a t  t h e  boundary  based on some a s s u m p t i o n s  a b o u t  t h e  

a p p r o a c h i n g  wave, and t h e  r e f l e c t i o n  p e r f o r m a n c e  o f  

t h e  bounda ry  based  on t h e  method of  c h a r a c t e r i s t i c s .  

For  t h e  l i n e a r  form of t h e  s h a l l o w  w a t e r  e q u a t i o n s .  

The c h a r a c t e r i s t i c s  l i n e s  f o r  t h e  l i n e a r  s h a l l o w  w a t e r  

e q u a t i o n s  a r e  g i v e n  by 

To d e r i v e  a p p r o p r i a t e  boundary  c o n d i t i o n s  f o r  n o r m a l l y  

i n c i d e n t  waves we need t o  c o n s i d e r  t h e  h i s t o r y  of a  
1 

wave t r a v e l l i n g  a t  a  speed  ( g d ) F  a r r i v i n g  a t  a  

boundary  p o i n t  a t  t ime  (n+*) A t .  The c h a r a c t e r i s t i c  

l i n e  t h r o u g h  a  boundary p o i n t  a t  t i m e  ( n + * ) &  

i n t e r s e c t s  t h e  t ime  l e v e l  (n-*)At a t  a  d i s t a n c e  
1 

( g d ) ' ~ t  which i s  between i A x  and  ( i + l )  h ,  and which  

c a n  b e  found by i n t e r p o l a t i o n .  I t  c a n  be  shown t h a t  

t h e  boundary  c o n d i t i o n  has  t h e  f o r m ,  

1 

Where Cr = ( g d ) ' ~ t / h  i s  t h e  Couran t  number. Where 



the Courant number is unity expression (3.11) 

becomes 

and a wave should pass through the boundary unaltered. 

This situation is demonstrated for the present model 

in Figure 12 where a solitary wave is approaching an 

absorbing boundary, and the model parameters are such 

that Cr = 1. For the case where Cr f 1 the solitary 

wave test was repeated, and it can be seen from Figure 

13 that whilst the boundary condition performs 

relatively well there is some small numerical error 

involved. This error can be expected to increase as 
1 - 

the numerical wave speed moves away from (gd)2 . It 

should also be observed that the derivation of the 

boundary condition (3.11) assumes waves to be normally 

incident at the boundary which will be true for the 

one-dimensional case, but will not hold in general. 

This point will be discussed further in section 4.2. 

With these constraints in mind it was decided to 

explore other methods of representing absorbing 

boundaries in the mathematical model. One technique 

which has recently been reported by Larsen and Dancy 

(Ref 8) is that of using 'sponge layers' at the model 

boundaries. These layers typically consist of five to 

ten cells before the model boundary where the 

elevations and velocities are successively reduced 

prior to arriving at a condition of the form (3.10). 

The elevations and velocities are reduced in the 

sponge layer by division by a function p(x) of the 

form, 

-(X -X)/& -(X -Xs)&) 

p(x> = exp ( ( 2  
e e - 2 logea ],(3.12) 

Where X = X is the start of the sponge layer and 
S 



X = X is the end of the layer. It should be noted 
e 

that at X = X p(x) = 1.0, ie the wave enters the 
S' 

sponge layer undeformed, and that p(x) is a 

monotonically increasing function of X. The parameter 

a is a constant which depends on the number of grid 

lines in the sponge layer. Typical values are a = 5 

for a sponge layer 10 cells wide, and a = 2 for a 

sponge layer 5 cells wide. 

A series of tests were done in the one dimensional 

model to examine the performance of the sponge layer, 

as given by (3.12). For all of these tests the model 

was set up to represent a wave flume 25m deep. In 

running the model a mesh size of 29m was used with a 

timestep of 1.18, giving a Courant number Cr = 0.64. 

For the first case which was considered a sine wave of 

period 14s and amplitude 1.61m was input at the open 

boundary. The resulting wave amplitudes at various 

locations along the flume were examined for runs of 

the model both without and with the sponge layer. 

In both cases the boundary condition applied at the 

end of the flume corresponds to (3.11). If the 

boundary conditions are working correctly we would 

expect the wave amplitude at the input frequency to 

stay constant at all positions along the flume. Any 

deviation from this constant value will be due to some 

wave energy being reflected from the boundary 

contaminating the solution in the interior (as 

demonstrated in Fig 13). 

The results from the sine wave tests are summarized in 

Table 1, for the cases without a sponge layer, and 

with sponge layers 5 and 10 cells wide. It can be 

seen from table 1 that without the sponge layer the 

amplitudes along the flume varies between t12% from 

the input amplitude of 1.61m. On introducing a sponge 

layer 5 cells wide the amplitudes at positions along 

the flume are within ?l% of the expected value. 



Increasing the width of the sponge layer to 10 cells 

further improves the accuracy with the wave amplitudes 

having a value of 1.61111 at all of the positions 

tested. Clearly as the width of the sponge layer 

increases its effectiveness also increases. 

However, a balance needs to be achieved between the 

performance of the sponge layer and the amount of 

model space that it occupies. For the case described 

above the ten cell sponge layer will be approximately 

1.4 wavelengths wide, and the five cell sponge layer 

0.7 wavelengths wide. From their relative 

performances it appears that for optimum effectiveness 

the sponge layer needs to be of the order of one 

wavelength wide. For very long waves, this could lead 

to a large proportion of the model area being taken up 

by the sponge layer. This point will be particularly 

significant in the case of set down waves, and will be 

discussed further in section 3.3. 

In addition to testing the sponge layer with a sine 

wave input, tests were also carried out using as input 

the first two terms of the Stokes expansion of a 

cnoidal wave, see expression (3.10). In this case we 

expect the wave amplitude to be constant at all 

positions along the flume at both the primary 

frequency (corresponding to T = 14s) and at the 

secondary frequency, provided the results are not 

contaminated by unwanted reflections from the 

absorbing boundary. The results from tests with these 

input conditions are summarised in Table 2. It can be 

seen that the sponge layer is again very effective for 

the primary wave frequency, as the amplitude remains 

constant along the flume. For the secondary wave 

frequency even with the sponge layer in place there is 

a variation in amplitude of about 12% from the 

expected value of 0.16111. 



F i n a l l y ,  t o  i l l u s t r a t e  t h a t  t h e  c n o i d a l  wave p r o f i l e  

i s  p r o p a g a t i n g  unchanged,  and t h e  sponge l a y e r  i s  

e f f e c t i v e  r e f e r e n c e  s h o u l d  be made t o  F i g u r e  14.  T h i s  

shows a  p l o t  of s u r f a c e  e l e v a t i o n s  a t  f o u r  d i f f e r e n t  

e l a p s e d  t i m e s .  I t  can  be s e e n  t h a t  a t  a l l  t i m e s  t h e  

c n o i d a l  wave p r o f i l e  i s  m a i n t a i n e d  t h r o u g h o u t  t h e  

l e n g t h  of  t h e  f l ume .  

3 . 3  S e t  down wave 

t e s t s  

3 .3 .1  Background 

A l l  of t h e  t e s t s  conduc ted  s o  f a r  have c o n s i d e r e d  

i n c i d e n t  waves o f  o n l y  one  f r e q u e n c y .  We a l s o  need t o  

know how t h e  model r e s p o n d s  t o  waves of  s e v e r a l  

f r e q u e n c i e s  b e i n g  p r o p a g a t e d  w i t h i n  i t s  b o u n d a r i e s .  

Waves p r o p a g a t e  a t  speeds  which depend on t h e i r  p e r i o d  

and t h e r e f o r e ,  t h e y  w i l l  c o n t i n u a l l y  move t h r o u g h  e a c h  

o t h e r .  A t  c e r t a i n  t i m e s  a number of them w i l l  come 

t o g e t h e r  t o  p r o d u c e  a  g r o u p  o f  l a r g e  waves w h i l e  a t  

o t h e r  t i m e s  t h e y  w i l l  be o u t  of phase  g i v i n g  r i s e  t o  

r e l a t i v e l y  s m a l l  waves.  When a  group of l a r g e  waves 

i s  formed,  t h e r e  i s  a  c o r r e s p o n d i n g  i n c r e a s e  i n  t h e  

k i n e t i c  e n e r g y  o f  o r b i t a l  w a t e r  p a r t i c l e  movement. 

T h i s  l e a d s  t o  a  r e d u c t i o n  i n  t h e  w a t e r  p r e s s u r e  and i f  

t h e  a i r  p r e s s u r e  i s  t a k e n  t o  be c o n s t a n t ,  t h e  r e s u l t  

i s  t h a t  a  d e p r e s s i o n  i n  t h e  mean w a t e r  l e v e l  o c c u r s  

b e n e a t h  g r o u p s  o f  h i g h  waves.  A compensa t ing  r i s e  i n  

t h e  mean l e v e l  o c c u r s  between g roups  of  h i g h  waves.  

T h i s  s u r f a c e  p e r t u r b a t i o n  i s  enhanced by a  w a v e - l i k e  

f l o w  t h a t  d e v e l o p s  b e n e a t h  t h e  s u r f a c e .  T h i s  

d i s t u r b a n c e  i s  known a s  s e t  down b e n e a t h  wave g r o u p s  

and was f i r s t  d e s c r i b e d  by Longuet -Higgins  (Ref 1 8 ) .  

It h a s  a  p e r i o d i c i t y  a s s o c i a t e d  w i t h  t h e  g r o u p s  b u t  i t  

d i f f e r s  f rom a  f r e e  l ong  wave, because  i t  i s  t i e d  t o  

t h e  wave g r o u p .  T h e r e f o r e  i t  p r o p a g a t e s  a t  t h e  g r o u p  

v e l o c i t y ,  which i s  l e s s  t h a n  t h e  phase  v e l o c i t y  of  a  

f r e e  l ong  wave of  t h e  same p e r i o d  a s  t h e  s e t  down. 



T h i s  d i s t u r b a n c e  wi th  p e r i o d  of t h e  o r d e r  of m i n u t e s  

i s  e x t r e m e l y  i m p o r t a n t  f o r  l a r g e  moored v e s s e l s ,  s i n c e  

t h e  n a t u r a l  p e r i o d s  of h o r i z o n t a l  o s c i l l a t i o n  of such  

v e s s e l s  on t h e i r  moorings a r e  t y p i c a l l y  w i t h i n  t h e  

r a n g e  of 30 s e c  t o  2  minu te s .  As a  r e s u l t ,  a  

s i g n i f i c a n t  r e s o n a n t  r e s p o n s e  of  t h e  v e s s e l  c a n  b e  

p roduced  by r e l a t i v e l y  sma l l  a m p l i t u d e  long  p e r i o d  

wave m o t i o n s ,  which i n  c e r t a i n  c a s e s  can  c a u s e  

moor ings  t o  p a r t .  The problem can  be compounded f o r  

v e s s e l s  moored i n s i d e  h a r b o u r s  when long  p e r i o d  wave 

m o t i o n s  a r e  a m p l i f i e d  th rough  h a r b o u r  r e s o n a n c e ,  s i n c e  

i t  h a s  been shown by Bowers (Ref 1 9 )  t h a t  s e t  down 

behaves  much l i k e  a n  o r d i n a r y  long wave when i t  

e x c i t e s  t h e  r e s o n a n t  modes of h a r b o u r s .  

The s i m p l e s t  example of set down b e n e a t h  wave g r o u p s  

i s  p r o v i d e d  by a  sys tem c o n s i s t i n g  of s i n e  waves a t  

two f r e q u e n c i e s ,  t h e  groups  of waves (and  h e n c e  t h e  

s e t  down) o c c u r  r e g u l a r l y  w i t h  a  f r e q u e n c y  e q u a l  t o  

t h e  d i f f e r e n c e  between t h e  two p r i m a r y  f r e q u e n c i e s .  

P h y s i c a l  model t e s t s  u s i n g  r e g u l a r  wave g r o u p s  and ' 

random s e a s  have  been c a r r i e d  o u t  b y  Bowers (Ref 2 0 ) .  

I t  was found d u r i n g  t h e s e  t e s t s  t h a t  t h e  wave 

g e n e r a t o r  had t o  be  programmed t o  p roduce  t h e  c o r r e c t  

r e p r e s e n t a t i o n  of s e t  down benea th  wave g r o u p s .  The 

e f f e c t  of n o t  programming t h e  wave g e n e r a t o r  t o  

p roduce  s e t  down i s  t o  i n t r o d u c e  s p u r i o u s  l o n g  waves 

w i t h  t h e  same p e r i o d  and a  phase  s h i f t  of 180" s o  t h a t  

t h e  boundary  c o n d i t i o n  on t h e  p a d d l e  f a c e ,  U 
( 2 )  - - 

X 

0, i s  s a t i s f i e d .  A s  t h e  pr imary  wave s y s t e m  

p r o p a g a t e s  away from t h e  g e n e r a t o r ,  i t  c a r r i e s  w i t h  i t  

t h e  s e t  down a s s o c i a t e d  w i t h  wave g r o u p s  b u t ,  a l s o ,  

p r o p a g a t i n g  w i t h  t h e  sys tem a r e  t h e  s p u r i o u s  long 

waves. A s  ha s  been mentioned above ,  s e t  down 

p r o p a g a t e s  more s l o w l y  t h a n  t h e  f r e e  s e c o n d a r y  long  

waves. They a r e  e x a c t l y  o u t  of p h a s e  a t  t h e  wave 

g e n e r a t o r  and w i l l  g r a d u a l l y  come i n t o  p h a s e  w i t h  one 



a n o t h e r  w i t h  i n c r e a s i n g  d i s t a n c e  f r o m  t h e  g e n e r a t o r .  

A s  t h e  d i s t a n c e  i n c r e a s e s  f u r t h e r  t h e  two w i l l  a g a i n  

g o  o u t  o f  p h a s e  and s o  o n .  T h u s ,  t h e  r e s p o n s e  of 

h a r b o u r  and  moored s h i p s  s e n s i t i v e  t o  l o n g  p e r i o d  

d i s t u r b a n c e s  c o u l d  d e p e n d  o n  t h e i r  d i s t a n c e  f r o m  t h e  

wave m a k e r .  

S i m i l a r  r e a s o n i n g  t o  t h i s  a l s o  a p p l i e s  t o  n u m e r i c a l  

m o d e l s .  T h a t  i s ,  c a r e  m u s t  b e  t a k e n  when s p e c i f y i n g  

t h e  i n p u t  b o y n d a r y  c o n d i t i o n s  t o  t h e  n u m e r i c a l  mode l  

t o  e n s u r e  t h a t  s e t  down i s  c o r r e c t l y  r e p r e s e n t e d .  

For  t h e  S o u s s i n e s q  model t h e  m a i n  c h a r a c t e r i s t i c s  o f  

t h e  s e t  down wave c a n  b e  p r e d i c t e d  by  e x a m i n i n g  t h e  

d i f f e r e n t i a l  e q u a t i o n s  ( 3 . 1 )  a n d  ( 3 . 2 ) .  By e x p a n d i n g  

t h e  v a r i o u s  t e r m s  i n  t h e s e  e q u a t i o n s  t o  s e c o n d  o r d e r  

i t  c a n  be  shown t h a t  t h e  p r o f i l e  o f  t h e  s e t  down wave 

i s ,  

D c o s  ( U  t - k - X )  - 

w h e r e  w = w - w - 2 1 

a n d  wl ,  w2 and  k l ,  k 2  a r e  t h e  a n g u l a r  f r e q u e n c i e s  a n d  

wave numbers  o f  t h  two p r i m a r y  waves .  The a m p l i t u d e  

o f  t h e  s e t  down wave i s  g i v e n  b y ,  



where  a  l and a 2  a r e  t h e  pr imary  wave a m p l i t u d e s .  

The e x p r e s s i o n  (3 .13 )  f o r  t h e  s e t  down a m p l i t u d e  

d e r i v e d  from t h e  Bouss inesq  e q u a t i o n s  d i f f e r s  f rom 

t h a t  which i s  d e r i v e d  u s i n g  L a p l a c e s  e q u a t i o n  and f r e e  

s u r f a c e  boundary  c o n d i t i o n s  t aken  t o  s econd  o r d e r .  

The e x p r e s s i o n  f o r  t h e  a m p l i t u d e  of s e t  down i n  t h i s  

c a s e  i s ,  

1 
D = - ( W  A c o s h  k-d+a a  g  ( k l t a n h  k l d + k 2 t a n h  k 2 d )  

g - 1 2  .-. 
c o s h  k,d 

- g  2 w w  cosh  k  d  c o s h  k2d  I 
1 2  1 

where  

2  
l - ) / 2(w' cosh  k-d-gk- s i n h  k-d ) ( 3 . 1 4 )  

-l 

C l e a r l y ,  t h e  e x p r e s s i o n  (3 .13)  and ( 3 . 1 4 )  c a n n o t  be 

e x p e c t e d  t o  b e  t h e  same a s  t hey  a r i s e  f rom two 

d i f f e r e n t  e q u a t i o n s .  However, b e c a u s e  t h e  

d i s p e r s i o n  r e l a t i o n  from t h e  Bouss inesq  e q u a t i o n  i s  

a  r e a s o n a b l e  a p p r o x i m a t i o n  t o  t h e  more e x a c t  

d i s p e r s i o n  r e l a t i o n  o b t a i n e d  u s i n g  p o t e n t i a l  t h e o r y ,  

we c a n  e x p e c t  t h e  s e t  down a m p l i t u d e  g i v e n  by (3 .13 )  

t o  b e  a  r e a s o n a b l e  a p p r o x i m a t i o n  t o  t h a t  g i v e n  by 

( 3 . 1 4 ) .  The a p p r o x i m a t i o n  g i v e n  by ( 1 3 . 3 )  improves  a s  

t h e  w a t e r  d e p t h  d e c r e a s e s .  An i n d i c a t i o n  of t h e  

d i s c r e p a n c y  between t h e  v a l u e s  of t h e  two e x p r e s s i o n s  

f o r  s p e c i f i c  c a s e s  w i l l  be g i v e n  i n  t h e  s u b s e q u e n t  

s e c t  i o n .  



3.3.2 D i s c u s s i o n  o f  r e s u l t s  from s e t  down wave t e s t s  

A s e r i e s  o f  t e s t s  were c a r r i e d  o u t  u s i n g  r e g u l a r  wave 

g r o u p s  w i t h  t h e  numer i ca l  model s e t  up t o  r e p r e s e n t  a  

wave f lume of  c o n s t a n t  dep th .  For  t h e  one  d i m e n s i o n a l  

c a s e  two p a r t i c u l a r  f e a t u r e s  were examined i n  t h e s e  

t e s t s .  The f i r s t  was t h a t  t h e  model r e p r e s e n t e d  

c o r r e c t l y  s e t  down b e n e a t h  r e g u l a r  wave g r o u p s ,  and  

t h e  s econd  was t o  s e e  how wel l  t h e  sponge  l a y e r  

boundary  c o n d i t i o n s  performed w i t h  waves of  l e n g t h s  

c o r r e s p o n d i n g  t o  t h e  s e t  down f r equency .  b 

consequence  of  b o t h  of t h e s e  o b j e c t i v e s  was t h a t  some 

t e s t s  were a l s o  needed  t o  i n v e s t i g a t e  t h e  number of  

g r i d  p o i n t s  p e r  wave leng th  which a r e  r e q u i r e d  t o  

a c h i e v e  a  good r e p r e s e n t a t i o n  of  b o t h  t h e  p r i m a r y  and 

s e t  down wave e f f e c t s .  

The f i r s t  s e t  o f  t e s t s  which were done were w i t h  t h e  

n u m e r i c a l  model r e p r e s e n t i n g  a  f lume of d e p t h  25m, and 

f o r  i n c i d e n t  waves f o r  a  r e g u l a r  wave g r o u p  w i t h  t h e  

f o l l o w i n g  c h a r a c t e r i s t i c s .  

Frequency  Ampli tude Wavelength  

(Hz) (m) (m) 

P r imary  wave o n e  0  . l 0  1.97 128  

P r i m a r y  wave two 0 . 0 7  1 .65  20 2  

Se t-down 0 . 0 3  0 . 2 3  5 13" 

(* A c t u a l l y  t h e  wave leng th  of a  f r e e  wave a t  t h e  s e t  

down f r e q u e n c y ) .  

The a m p l i t u d e  of  t h e  s e t  down was c a l c u l a t e d  u s i n g  

e x p r e s s i o n  ( 3 . 1 3 ) .  I f  t h i s  group of  waves i s  

p r o p a g a t i n g  c o r r e c t l y  i n  a  flume of  c o n s t a n t  d e p t h  

t h e n  t h e  a m p l i t u d e  of  e a c h  of t h e  f r e q u e n c y  components  

s h o u l d  r ema in  c o n s t a n t  t h roughou t  t h e  l e n g t h  of  t h e  

f l ume .  T h e r e f o r e ,  d u r i n g  runs  of t h e  model t i m e  



s e r i e s  of  s u r f a c e  e l e v a t i o n s  were  c o l l e c t e d  a t  a 

number of p o s i t i o n s  a l o n g  t h e  f l u m e ,  and  a  s p e c t r a l  

a n a l y s i s  per formed t o  o b t a i n  t h e  a m p l i t u d e s  of  e a c h  of 

t h e  f r e q u e n c y  components a t  t h e s e  p o s i t i o n s .  The 

model was f i r s t  r un  w i t h  a  bounda ry  c o n d i t i o n  o f  t h e  

form (3 .111 ,  w i t h  a  mesh s i z e  &c = 15m. T h i s  mesh 

s i z e  g i v e s  a p p r o x i m a t e l y  8.5 p o i n t s  f o r  t h e  s h o r t e s t  

p r i m a r y  w a v e l e n g t h .  The t i m e  s t e p  was s e l e c t e d  t o  be  

A t  = 0 . 6 6 ~ ~  g i v i n g  a  Couran t  number o f  0 .69  which  

s a t i s f i e s  t h e  s t a b i l i t y  c o n s t r a i n t  f o r  t h i s  scheme. 

Two f u r t h e r  r u n s  of t h e  model were  a l s o  made u s i n g  

sponge  l a y e r  boundary c o n d i t i o n s  w i t h  sponge  l a y e r  

w i d t h s  o f  10 c e l l s  and 20 c e l l s .  The r e s u l t s  f rom 

t h e s e  t e s t s  a r e  summarised i n  T a b l e  3. 

I t  c a n  be  s e e n  from T a b l e  3  t h a t  f o r  t h e  model run  

w i t h o u t  t h e  sponge l a y e r  t h e  wave a m p l i t u d e  a t  a l l  

t h r e e  f r e q u e n c i e s  v a r i e s  g r e a t l y  a b o u t  t h e  e x p e c t e d  

v a l u e .  F o r  t h e  c a s e s  w i t h  t h e  sponge  l a y e r s  i n  p l a c e  

t h e  r e s u l t s  w i t h  t h e  10 and  20 c e l l  l a y e r s  a r e  v e r y  

s i m i l a r .  With t h e  sponge l a y e r  boundary  c o n d i t i o n s  

t h e  v a r i a t i o n  i n  t h e  p r i m a r y  wave a m p l i t u d e  i s  much 

s m a l l e r  t h a n  i n  t h e  c a s e  w i t h o u t  t h e  sponge  l a y e r s ,  

a l l  o f  t h e  v a l u e s  be ing  w i t h i n  10% o f  t h e  e x p e c t e d  

v a l u e .  However, bo th  w i t h o u t  and w i t h  t h e  sponge 

l a y e r s  t h e r e  i s  s t i l l  a  s i g n i f i c a n t  v a r i a t i o n  i n  t h e  

a m p l i t u d e  of  t h e  s e t  down wave, a l t h o u g h  t h i s  

v a r i a t i o n  i s  s l i g h t l y  l e s s  where t h e  sponge  l a y e r  

bounda ry  c o n d i t i o n  was u sed .  

A s  d i s c u s s e d  p r e v i o u s l y  t h e r e  a r e  two p o s s i b l e  c a u s e s  

f o r  t h e  s e t  down a m p l i t u d e  t o  v a r y  i n  t h i s  way, e i t h e r  

t h e r e  a r e  unwanted r e f l e c t i o n s  f rom t h e  b o u n d a r i e s  

e n t e r i n g  t h e  model a r e a  o r  t h e  model r e p r e s e n t a t i o n  

c o u l d  be improved .  The f i r s t  c a u s e  h a s  been e x p l o r e d ,  

t o  some e x t e n t ,  i n  t h e  t e s t s  d e s c r i b e d  above.  The 

second  was i n v e s t i g a t e d  by d e c r e a s i n g  t h e  g r i d  s i z e  i n  

t h e  model t o  h = 12.5111, t h i s  g a v e  a p p r o x i m a t e l y  10 



points for the shortest primary wavelength, which 

should improve the accuracy of the model. For this 

case the time step was selected to be At = 0.55s, 

giving a Courant number of 0.69. For these parameters 

the model was again run without a sponge layer, and 

with sponge layers of 10 and 20 cells width. The 

results from these tests are summarised in Table 4. 

It can be seen from Table 4 that without the sponge 

layer there is, as in Table 3, significant variation 

in the amplitudes of waves at all three frequencies. 

~ntroduction of the sponge layer improves the accuracy 

of the primary waves, and for the finer mesh these are 

closer to their expected value than for the more 

coarse mesh. The values of the set down wave 

amplitude with the sponge layer boundary conditions 

are now fairly close to their expected value. 

Consideration was given to reducing the mesh size 

again to see if the accuracy of the set down 

amplitudes would be improved further. However, 

numerical experiments demonstrated that the mesh size 

used must be greater than half the depth-for the model 

to remain stable. Therefore for a depth of 25m the 

minimum mesh size which could be used was Ax = 12.5m, 

which had already been tested. 

To examine further the accuracy of representation of 

regular wave groups in the numerical model a second 

series of tests were done with the model set up to 

represent a flume of 10m depth. The characteristics 

of the incident waves were, 

Frequency Amplitude Wavelength 

(Hz) (m) (m> 

Primary wave one 0 . l0 0.5 9 2 

Primary wave two 0.07 0.3 137 

Set down 0.03 0 .0 75 328* 



(* Actually the wavelength of a free wave at the set 

down frequency) . 

The model was run using a boundary condition with a 

sponge layer 10 cells wide. The first run was for a 

mesh size Ax = 15m, giving approximately 6 points to 

the shortest primary wavelength. The time step was 

chosen to be At = 0.96s giving a Courant number of 

0.64. The results from this run for the set-down and 

primary waves are given in Table 5. 

It can be seen from Table 5 that for the 15m mesh case 

there is substantial variation in the expected wave 

amplitudes for both the primary and the set down 

waves. The same test was repeated using a 5m mesh 

with a time step of 0.35s, giving a Courant number of 

0.64. Using hx = 5m gives 18 points to the shortest 

primary wavelength. The results from this test are 

also given in Table 5. It can be seen that for the 5m 

mesh case the amplitudes at all frequencies are within 

10% of their expected value. These results appear to 

confirm that in order to correctly represent secondary 

effects, such as the set down, which result from the 

non-linear interaction of primary waves, the primary 

wave components must be modelled as accurately as 

possible. 

Finally, a comparison is given between the results of 

a physical model test using regular wave qroups, and 

those from the numerical model, using two different 

mesh sizes, as given in Tables 3 and 4 .  The 

comparison of the amplitudes at the set down frequency 

is given in Table 6. It should be noted that the set 

down amplitude in the numerical model is expected to 

be 0.23m (equation 3.13), whereas for second order 

potential theory it is expected to be 0.28m (equation 

3.14). In the physical model measurements of the set 

down amplitude were made at positions 3L/2, 7 ~ / 4  



..... .., where L  i s  t h e  wavelength  of t h e  f r e e  wave a t  

t h e  s e t  down f r e q u e n c y .  These l o c a t i o n s  were s e l e c t e d  

because  a s  t h e y  a r e  a t  d i s t a n c e s  from t h e  p a d d l e  a t  

which t h e  e f f e c t s  of  t h e  r e f l e c t i o n  of s e t  down f rom 

t h e  s h i n g l e  beach  a t  t h e  end of t h e  wave f lume w i l l  be 

min imised .  The r e a s o n s  f o r  t h i s  a r e  d i s c u s s e d  i n  

Re fe rence  20. R e f l e c t i o n s  from t h e  s h i n g l e  beach a r e  

p robab ly  t h e  c a u s e  of t h e  sma l l  v a r i a t i o n s  i n  p h y s i c a l  

model s e t  down a m p l i t u d e s  shown i n  t a b l e  6. A l though  

a t  a l l  t h e s e  p o i n t s  t h e  measured s e t  down a m p l i t u d e  

v a r i e s  by l e s s  t h a n  4% f rom t h e  v a l u e  p r e d i c t e d  by 

second o r d e r  p o t e n t i a l  t h e o r y .  The s e t  down a m p l i t u d e  

p r e d i c t e d  by t h e  Bouss inesq  e q u a t i o n s  (0.23m) i s  18% 

l e s s  t h a n  t h e  p o t e n t i a l  t h e o r y  v a l u e ,  which r e £  l e c t s  

t h e  a p p r o x i m a t e  n a t u r e  of t h e  Bouss inesq  e q u a t i o n s .  

It can  be s e e n  from t a b l e  6 t h a t  f o r  t h e  12.5m mesh 

c a s e  t h e  Bouss inesq  model r e s u l t s  a r e  w i t h  10% o f  t h e  

expec t ed  v a l u e  o f  0 .23 .  The e x c e p t i o n s  t o  t h i s  a r e  a t  

13L/4 and 7L/4 where t h e  numer i ca l  model r e s u l t  i s  

abou t  20% l e s s  t h a n  t h e  e x p e c t e d  v a l u e .  These  

v a r i a t i o n s  a r e  p r o b a b l y  n o t  due t o  r e f l e c t i o n s  of  t h e  

s o r t  d e s c r i b e d  above  f o r  t h e  p h y s i c a l  model.  It i s  

more l i k e l y  t h a t  t h e y  a r e  due t o  numer i ca l  e r r o r ,  and 

t h a t  t h e y  c o u l d  be d e c r e a s e d  by u s i n g  a  f i n e r  mesh. 

Evidence  of t h i s  c a n  be s e e n  i n  t a b l e  5. 

The a p p r o x i m a t e  n a t u r e  of t h e  s e t  down r e p r e s e n t a t i o n  

i n  t h e  Bouss inesq  model i s  a l s o  i l l u s t r a t e d  i n  t h e  

c a s e  shown i n  t a b l e  5. Fo r  10m d e p t h ,  where we e x p e c t  

t h e  s h a l l o w  w a t e r  a p p r o x i m a t i o n s  t o  p r o v i d e  a  b e t t e r  

a p p r o x i m a t i o n ,  t h e  s e t  down ampl i t ude  of  0.075m 

e x p e c t e d  from t h e  Bouss inesq  e q u a t i o n s  (3 .13 )  i s  7% 

lower t h a n  t h e  0.081m v a l u e  p r e d i c t e d  by second o r d e r  

p o t e n t i a l  t h e o r y  ( 3 . 1 4 ) .  T h i s  d e m o n s t r a t e s  t h a t ,  

w h i l s t  t h e  B o u s s i n e s q  e q u a t i o n s  on ly  app rox ima te  t h e  

v a l u e  of s e t  down a m p l i t u d e  p r e d i c t e d  by second o r d e r  



potential theory, this approximation becomes better in 

as the water depth decreases. 

From the results described in this section we can 

conclude that, within the limits of the Boussinesq 

approximation, the numerical model represents well set 

down effects provided a sufficiently fine mesh is 

used. 

4 TWO DIMENSIONAL 

EQUATIONS 

4 .l Method of 

solution 

The two dimensional form of the Boussinesq equations 

for the constant depth case are, 

az a a 
+ G (uh) + - (vh) = 0 

ay 

The method of solution of these equations is derived 

from the method finally chosen for solving the 

one-dimensional equations which was discussed in the 

previous chapter. The finite difference scheme which 

was used to solve (4.1) to (4.3) is as follows: 



n 1 n n n- l n- l 
where Zx = - ( z  + z  z  z  

, -  4 i++, j-3 - 3 ,  j + i++,j-+ + i-+,j-+), 
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n-4 n- I . 1 - 2u. . - U +2 U i+l, 
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where 
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d  ) 2 ( v i - + ,  j - 2 v i - + , j - 1  i - 4 ,  j -2 i - f ,  J 
L 

where 

The f i n i t e  d i f f e r e n c e  scheme g i v e n  by ( 4 . 4 )  t o  ( 4 . 6 )  

i s  implemented a s  a  p r e d i c t o r - c o r r e c t o r  scheme. 

F i r s t ,  t h e  f i n i t e  d i f f e r e n c e  e q u a t i o n s  a r e  s o l v e d  

o m i t t i n g  t h e  d i s p e r s i v e  t e r m s ,  ( p r e d i c t o r  s t a g e ) .  The 

c a l c u l a t e d  v a l u e s  of  U and v  a r e  u sed  t o  make a  f i r s t  

a p p r o x i m a t i o n  t o  t h e  d i s p e r s i v e  t e rms  which a r e  t h e n  

used  i n  t h e  e q u a t i o n s  t o  u p d a t e  t h e  v a l u e s  of  z , u  a n d  

v  ( c o r r e c t o r  s t a g e ) .  The c o r r e c t o r  i s  t h e n  r e p e a t e d  

u n t i l  conve rgence  i s  a c h i e v e d  ( i n  p r a c t i c e  t h i s  

i n v o l v e s  a b o u t  s i x  i t e r a t i o n s  of t h e  c o r r e c t o r ) .  It 

can  be shown t h a t  t h e  f i n i t e  d i f f e r e n c e  scheme 

r e p r e s e n t e d  by ( 4 . 4 )  t o  ( 4 . 6 )  i s  s t a b l e  p rov ided  C r G  

11 4 2 .  

A s  w i t h  t h e  o n e - d i m e n s i o n a l  c a s e  t h e  problem a r i s e s  o f  

v e r i f y i n g  t h a t  t h e  n u m e r i c a l  model i s  p r o d u c i n g  

a c c u r a t e  s o l u t i o n s ,  g i v e n  t h e  l a c k  of a n a l y t i c a l  

s o l u t i o n s  a g a i n s t  which t o  compare i t .  A s  a  s t a r t i n g  

p o i n t  we a g a i n  c o n s i d e r  t h e  s o l i t a r y  wave, which 

s h o u l d  r e t a i n  i t s  i n i t i a l  shape  a s  i t  p r o p a g a t e s  i n  

w a t e r  of c o n s t a n t  d e p t h  p r o v i d e d  t h a t  t h e  n o n - l i n e a r  

t e rms  i n  (4 .1)  t o  (4 .3 )  a r e  e x a c t l y  ba l anced  a g a i n s t  

t h e  d i s p e r s i v e  t e r m s .  



To i l l u s t r a t e  t h a t  t h e  model can  p r o p a g a t e  a  s o l i t a r y  

wave c o r r e c t l y  we c o n s i d e r  a  l ong  c r e s t e d  s o l i t a r y  

wave e n t e r i n g  a  s q u a r e  b a s i n  w i t h  i t s  c r e s t  a t  4 5 "  t o  

t h e  b a s i n  s i d e s  ( s e e  F i g  1 5 ) .  I n  t h i s  c a s e  t h e  d e p t h  

o f  t h e  b a s i n  i s  t a k e n  t o  be 10m and t h e  wave a m p l i t u d e  

1.0m. A t ime  inc remen t  A t  = Is was used  w i t h  a  mesh 

s i z e  Ax of 14m, g i v i n g  a  C o u r a n t  number of 0.707 which 

s a t i s f i e s  t h e  s t a b i l i t y  c r i t e r i o n .  The model was r u n  

f o r  a  l a r g e  number of t ime  s t e p s ,  b u t  c a r e  was t a k e n  

t o  e n s u r e  t h a t  t h e  wave d i d  n o t  r e a c h  t h e  end l i m i t s  

of t h e  b a s i n  a r e a ,  s o  t h a t  boundary  c o n d i t i o n s  d i d  n o t  

have  t o  be a p p l i e d  t h e r e .  The p r o p a g a t i o n  of t h e  wave 

i n s i d e  t h e  b a s i n  was m o n i t o r e d  and t h e  r e s u l t s  

p r e s e n t e d  i n  t h e  form of s u r f a c e  e l e v a t i o n s  i n  a  

c r o s s - s e c t i o n  a l o n g  t h e  d i a g o n a l  a t  v a r i o u s  t ime 

l e v e l s  ( F i g  1 6 ) .  By compar ing  t h e  s h a p e  of t h e  wave 

a t  t h e s e  t imes  and w i t h  t h e  t h e o r e t i c a l  p r o f i l e ,  we 

c a n  c o n c l u d e  t h a t  t h i s  s h a p e  r e m a i n s  unchanged d u r i n g  

t h e  wave p r o p a g a t i o n .  T h i s  p r o v i d e s  e v i d e n c e  t h a t  t h e  

f i n i t e  d i f f e r e n c e  model d o e s  s i m u l a t e  a c c u r a t e l y  t h e  

n o n - l i n e a r  and d i s p e r s i v e  t e r m s  o f  t h e  e q u a t i o n s  and 

t h e r e f o r e  can  be c o n s i d e r e d  a s  a  r e l i a b l e  means f o r  

t h e  n u m e r i c a l  i n t e g r a t i o n  o f  t h e  Bouss inesq  e q u a t i o n s  

i n  two s p a t i a l  d imens ions .  The same t e s t  was r e p e a t e d  

f o r  a  30" i n c i d e n c e  a n g l e .  The c r o s s - s e c t i o n s  a t  

v a r i o u s  t ime l e v e l s  a r e  now t a k e n  n o t  a l o n g  t h e  

d i a g o n a l  of t h e  b a s i n  b u t  a l o n g  t h e  l i n e  a t  30" t o  t h e  

h o r i z o n t a l  x - a x i s .  The r e s u l t s  ( F i g  1 7 )  v e r i f y  t h a t  

t h e  n u m e r i c a l  model r e t a i n s  n o t  o n l y  t h e  s h a p e  of t h e  

s o l i t a r y  wave b u t ,  a l s o  i t s  a n g l e  o f  p r o p a g a t i o n  i n  

t h e  i n t e r i o r  of t h e  b a s i n  a r e a .  

I n  b o t h  of t h e  t e s t s  d e s c r i b e d  above ,  waves were n o t  

a 1  lowed t o  r e a c h  t h e  model bounda ry .  We now need t o  

c o n s i d e r  s i t u a t i o n s  where waves impinge  on t h e  

b o u n d a r i e s ,  and how t o  r e p r e s e n t  bounda ry  c o n d i t i o n s  

t h e r e .  



4.2 Boundary 

conditions 

The first type of boundary condition to be considered 

is one where the wave can pass through the boundary 

without deformations. Initially, we return to a 

boundary condition of the form (3.11) which is based 

on the characteristic lines of the linearised shallow 

water equations. As an example of this type of 

boundary condition we consider the situation where the 

wave approaches the boundary at 45". In this case the 
dx 1 

characteristic lines will be defined by - = (gd)' 
1 - dt 

dy cos 45" and - = (gd) sin 45", and we can show that 
dt 

the boundary condition is, 

where Cr is the Courant number. Where the Courant 

number is exactly 1/42 the boundary condition (4.7) 

becomes, 

and a wave at 45" should pass through the boundary 

undistorted. 

To test this boundary condition we consider the case 

described in the previous section of a solitary wave 

entering a square basin at an angle of 45". The 

surface elevation contours at the boundary for this 

case are shown in Figure 18. It can be seen that the 

solitary wave leaves the model area without any 

deformation or reflections from the boundary. The 

formulation of the boundary conditions described above 

assumes a prior knowledge of the angle of incidence of 

a wave at an end boundary. This is not, in general, 



t h e  c a s e  and t h e r e f o r e  we have t o  a s s e s s  t h e  e f f e c t  of 

u s i n g  i n  t h e  a b s o r b i n g  boundary c o n d i t i o n s  a n  a n g l e  

which  i s  d i f f e r e n t  from t h e  a n g l e  o f  i n c i d e n c e .  

We c o n s i d e r  s o l i t a r y  waves e n t e r i n g  t h e  s q u a r e  b a s i n  

a t  a n  a n g l e  of 6 0 ° ,  w h i l e  we r e t a i n  t h e  form o f  

bounda ry  c o n d i t i o n s  d e s c r i b e d  above f o r  a n  a n g l e  o f  

4 5 " .  We p r e s e n t  t h e  r e s u l t s  a s  c o n t o u r  l i n e s  of  

s u r f a c e  e l e v a t i o n  ( F i g  1 9 ) .  The re  i s  a  c e r t a i n  

d e f o r m a t i o n  of  t h e  wave a t  i t s  c r e s t  c l o s e  t o  t h e  end 

boundary  and i n  g e n e r a l ,  t h e  c o n t o u r s  do n o t  r e m a i n  

a b s o l u t e l y  s t r a i g h t .  Numerical  e r r o r s  s t a r t  t o  

p r o p a g a t e  from t h e  a b s o r b i n g  boundary  i n  t o  t h e  a r e a  

i n s i d e  t h e  model.  Under t h e  c i r c u m s t a n c e s ,  i t  i s  

i m p o r t a n t  t h a t  c a r e  i s  e x e r c i s e d  i n  t h e  f o r m u l a t i o n  o f  

t h e  a b s o r b i n g  c o n d i t i o n s  and t h e  m a t t e r  s h o u l d  be 

f u r t h e r  i n v e s t i g a t e d .  The o n l y  way t o  a v o i d  n u m e r i c a l  

e r r o r s  e n t i r e l y  i s  t o  know i n  advance  t h e  a n g l e  of 

i n c i d e n c e  of  t h e  wave a t  t h e  bounda ry ,  however t h i s  i s  

u n l i k e l y  t o  be t h e  c a s e  i n  r e a l  s i t u a t i o n s .  One 

method by which t h i s  can  be overcome,  where a n  

a b s o r b i n g  boundary i s  r e q u i r e d  i s  t o  u s e  t h e  sponge  

l a y e r  t e c h n i q u e  which was d e s c r i b e d  i n  s e c t i o n  3.2 .  

It r e m a i n s  t o  c o n s i d e r  boundary c o n d i t i o n s  which  

r e p r e s e n t  p a r t i a l l y  o r  t o t a l l y  r e f l e c t i n g  s t r u c t u r e s .  

In  t h i s  c a s e  a  boundary c o n d i t i o n  s i m i l a r  t o  ( 4 . 7 )  c a n  

b e  d e r i v e d  which i n c l u d e s  a  r e f l e c t i o n  c o e f f i c i e n t .  

For  i n c i d e n t  waves a t  45"  i t  w i l l  t a k e  t h e  fo rm,  

where R i s  t h e  r e f l e c t i o n  c o e f f i c i e n t .  For R = 1 we 

have  t o t a l  r e f l e c t i o n ,  and f o r  R = 0  t o t a l  a b s o r p t i o n  

( a s  i n  ( 4 . 7 ) ) .  



In a numerical model harbour boundaries will be 

represented in a stepwise manner. It needs to be 

demonstrated that the reflective properties of these 

boundaries are accurately modelled when conditions 

similar to (4 - 8 )  are applied. With this in mind we 

examine the case where a solitary wave travelling from 

left to right is incident on a reflecting boundary at 

45" to the incident wave angle. If the reflection of 

the wave is total, then, its direction afterwards 

should change by 90°, this case is illustrated in 

Figure 20. It can be seen that despite its stepwise 

representation in the model, the boundary does reflect 

the wave correctly. In particular, at the boundary 

the wave height is doubled and the part of the wave 

which has not reached the boundary continues to 

propagate undisturbed. 

As a further test, the orientation of the wall is 

altered from 45" to 60°, the direction of the wave 

after reflection is again found to be correct (see Fig 

21). It would appear from these test that despite the 

stepwise representation the reflective properties of 

the boundaries of the finite difference scheme are 

still accurately modelled. Finally, for the same 

test we introduce a reflection coefficient R at the 

wall. For the results shown in Figure 22 this 

coefficient is taken equal to 112 whereas in Figure 23 

it is taken simply as 0 ie the boundary is fully 

absorbing. The boundary conditions which are applied 

correspond to an angle of incidence of 0 " .  It can be 

seen that for both cases the boundary conditions 

demonstrate the expected properties that is, in Figure 

22 the height of the wave reflected from the wall is 

half that of the incident height. Whereas, in Figure 

23 no reflected wave is evident. 



4.3 Wave diffraction 

by breakwaters 

Having demonstrated that the numerical model will 

represent the effects of wave reflections and 

absorption at its boundaries, it remains to check that 

wave diffraction by breakwaters is modelled correctly. 

For non-linear wave there is no theoretical solution 

against which the model results can be checked. 

Therefore, the approach which was taken was to compare 

the results from the numerical model with those from 

physical model tests (see Ref 21). These physical 

model tests were primarily carried out to investigate 

the diffraction of set down. However, in obtaining 

this data results on the diffraction of ordinary waves 

were obtained and these can be used for the 

comparisons given here. 

The numerical model was set up to represent the layout 

of the physical model, which is shown in plan in 

Figure 24. The depth throughout the harbour was 25m. 

The numerical model was run with an incident sine wave 

of frequency 0.0 3Hz and amplitude 0.0 23m, this 

corresponded to one of the tests carried out in the 

physical model. The numerical model for this case 

used a grid size Ax = 15m with a time step of 0.66s 

giving a Courant number of 0.69. The physical model 

test results were given in the form of diffraction 

coefficients at positions 1 to 7 (see Fig 24), which 

are on 15" radials from the breakwater at a distance r 

from the tip. In this case r = 513111, which is 

approximately the wavelength of the incident wave. 

A comparison of the diffraction coefficients positions 

1 to 7 for both the physical and numerical models is 

given in Figure 25. Also in Figure 25, for comparison 

wave conditions from a linear numerical model 

(described in Ref 22). It can be seen from Figure 25 



that the results from the physical and numerical 

models are in reasonably good agreement, being within 

5-10% of each other at all locations. This means 

that diffraction of a regular sine wave is correctly 

represented in the numerical model. It is also 

interesting to note that the linear model gives 

slightly higher values of the diffraction coefficient 

than either the present numerical model or the 

physical model (both of which are non-linear) at 

positions directly exposed to the incident wave 

(positions 6 and 7). But, that the linear diffraction 

coefficients are lower than both the present model and 

the ~hysical model at the positions in the shelter of 

the breakwater. 

Having demonstrated that the numerical model gives a 

good representation of diffraction of a single 

incident sine wave by a breakwater it remains to 

consider diffraction of a regular wave group with its 

associated set down. 

4 .4 Se t down wave 

tests 

A description of the theory was given in section 

3.3.1, and it was shown in section 3.3.2 that the 

Boussinesq model would represent set down amplitudes 

in one dimension to within 220%. It remains to show 

that two dimensional effects, and in particular 

diffraction of set down, can be modelled correctly. 

To investigate the ability of the numerical model to 

represent diffraction of wave groups a series of 

comparisons were made between its results and the 

results from a series of physical model tests (Ref 

21). The numerical model layout used was the same as 

for the physical model, see Figure 24. The tests in 

the numerical model were carried out for incident 

waves with the following characteristics: 



Frequency Amplitude Wavelength 

(Hz )  (m) (m) 

Primary wave one 0 .O 7 1.65 20 2 

Primary wave two 0.10 1.97 128 

Set down C) .0 3 0.23 5 13" 

(*Wavelength of a free wave at the set down 

frequency). 

These incident conditions correspond to those used in 

one of the physical model tests described in Ref 21. 

As discussed in section 3.3.2 the set down wave 

amplitude will differ in the physical and numerical 

models, in the physical model the set down wave 

amplitude is 0.28 m for this combination of primary 

waves. 

The mathematical model was run using a grid size LK = 

15m and a time step At = 0.66s, giving a Courant 

number of 0.69. This means that for the shortest 

primary wave there were approximately 8.5 points per 

wave length. During the mathematical model run the 

surface elevation data are stored as a time series at 

grid points which correspond to physical model probe 

positions. The time series are then analysed to give 

wave ampulitudes at the various frequencies for each 

probe position. The positions which were used are at 

distances 0.5L, 0.7L and L from the breakwater tip, 

where L = 513m is the wavelength corresponding to the 

beat frequency f- = 0.03, along lines positioned at 

15", 30°, 45", 60°, 75" and 90" from the breakwater 

(see Fig 24). The results for both the physical and 

numerical model are presented as diffraction 

coefficients at the various positions. (The 

diffraction coefficient is defined as ratio the 

amplitude of the diffracted wave to the amplitude of 

the incident wave at the breakwater tip). 



The first comparison which was made between the 

results from the two models was for the diffraction 

coefficients at L from the tip for waves at the 

primary and set down frequencies; these results are 

given in Figure 26. It can be seen that the two sets 

of results are in good agreement at the set down 

frequency, with the same trend being displayed in the 

numerical model as in the physical model results. For 

the primary frequencies agreement is also good except 

at positions 1 and 2 for 0.07Hz, and position 1 for 

O.1OHz. One explanation for the differences at these 

locations is the presence of the breakwater. It is 

possible that in the numerical model some energy is 

being reflected back into the model area by the 

breakwater and that this is contaminating the results 

at positions 1 and 2. 

A further comparison between the numerical and 

physical model results was made for the diffractions 

coefficients at the set down frequency at locations 1 

to 7 at 0.5L, 0.7L and L from the breakwater tip, 

these results are shown in Figure 27. Again the two 

sets of results for all of these locations are in good 

agreement. Finally, in Figure 28 a comparison is 

presented of the set down wave diffraction 

coefficients, and those of a free wave at the same 

frequency for both the physical and numerical models. 

It is clear from Figure 28 that the numerical model 

gives the same trends which were evident in the 

physical model. At most positions the agreement 

between the two sets of results is good, although the 

mathematical model diffraction coefficients are lower 

than the physical model values at all positions for 

both the free wave and the set down wave. The 

behaviour of the set down wave at these locations is 

only similar to that of the free wave at positions 

well inside the shelter of the breakwater. 



From the results given above we conclude that the 

numerical model gives an accurate representation of 

diffraction of set down. 

CONCLUSIONS AND 

RECOMMENDATIONS 

5.1 Conclusions 

A finite difference scheme has been developed which 

gives a mathematical solution to the Boussinesq wave 

equation for water of constant depth. The finite 

difference scheme was implemented on the DAP computer 

as a predictor-corrector method. The resulting 

mathematical model was found to provide accurate 

numerical solutions to the Boussinesq equations. In 

particular, it represents well the propagation of 

linear and non-linear waves in shallow water, taking 

into account both reflection and diffraction effects. 

The model also successfully reproduced propagation and 

diffraction of set down beneath regular wave groups. 

5.2 Recommendat ions 

The work described in this report is the first stage 

in the development of a finite difference model to 

some the Boussinesq equations. To develop the model 

further to allow more realistic harbour layouts to be 

represented it is recommended that: 

(a) The model should be extended to include 

varying depth terms, thereby allowing 

refraction efEects to be represented 

(b) Random and multi-direction incident waves 

should be included in the model. 

(C) Boundary conditions should be investigated 

further, so that more realistic harbour 



boundaries, eg rubble mound breakwaters, can 

be modelled accurately. 

( d )  A series on physical model tests should be 

undertaken to provide data against which the 

model including developments (a) to (c) can 

be tested. 
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TABLE 2: Amplitudes o f  cno ida l  wave a t  p o s i t i o n s  along a  wave flume. Water depth - 25m, 

vave amplitude 1.60m, period 14s .  

Distance Wave amplitude (m) a t  frequency 0.07Hz Wave amplitude (m) a t  frequency 0.14Hz 

from without spong with sponge without sponge sponge layer  

paddle l a y e r  l a y e r  l  ayer  10 c e l l s  wide 

(m) 



TABLE 3: Sponge layer tests for regular wave group with primary frequencies 0.07Hz and 

O.1OHz. Water depth 25m, X = 15m, t 0.66s. Expected wave amplitudes are 

0.23m at f- =0.03Hz, 1.651~ at f 0.07Hz and 1.97~~ at f P O.1OHz. 

Distance from Ampltudes at specified frequencies (m) 

paddle (m) No sponge layer 10 cell sponge layer 20 cell sponge layer 
, *  



TABLE 4: Sponge layer tests for regular wave group with primary frequencies 

0.07Re and O.1ORz. Water depth 25m, Ax = 12.5m, At = 0 . 5 5 8 .  Expected 

wave aplitudes 0.23m at f- = 0.03Rz, 1.65m at f = 0.07He and 1.97m at 

f = O.1ORz. 

Distance from Amplitudes at specified frequencies (m) 

paddle (m)  No sponge layer 10 cell sponge layer 20 cell sponge layer 

f=0.03Hz f=0.07Hz f=O. 1OHz f=0.03Hz f=0.07Hz f=O .1OHz f=0.03Hz f=0.07Hz f=O . lol l :  



TABLE 5: Meah size variation testa for regular wave group with primary 

frequencies 0.07Hz and O.1ORz. Water depth 10m. Expected wave 

amplitudes are 0.075m at f = 0.03Rz, 0.3m at f = 0.07Rz and 0.5m 

at f = O.1OHz. 

15m mesh spacing 5m mesh spacing 

Dist from Ampltudes (m) at Dist from Ampltudes (m) at 

paddle (m) £=0.03Hz £=0.07Hz £=O. 1OHz paddle (m) £=0.03Hz f=0.07Hz f = O .  1OHz 

5 0.076 0 .27  0 .49  



TABLE 6: Amplitudes at the set down frequency for physical and numerical 

models. Regular wave group tests primary frequencies 0.07Hz and 

O.lOHz, set down frequency 0.03Az, L=513m. Expected set down 

amplitude for physical model 0.28m, for numerical model 0.23111. 

Dist from 

paddle (wavelength) 

Physical model Numerical model Numerical 

15m mesh 12.5m mesh 
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Fig 2(al Grid Layout in space 
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Fig 4 Reduction o f  wavelength due t o  d ispers ion - Pred ic to r / co r rec to r  
scheme 
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Fig 6 Travel l ing so l i t a r y  wave - Implicit scheme 
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