Hydraulics Research
Wallingford

THE DEVELOPMENT OF A NUMERICAL MODEL
FOR THE SOLUTION OF THE BOUSSINESQ
EQUATIONS FOR SHALLOW WATER WAVES

Variable depth case

V Jones BSc, PhD
v

D
J V Smallman BSc, PhD

Report No SR 159
February 1988

Registered Office: Hydraulics Research Limited,
Wallingford, Oxfordshire OX10 8BA.
Telephone: 0491 35381. Telex: 848552




© Crown Copyright 1988. Published by permission of the Controller of Her
Majesty's Statiomery Office.

This report describes work supported under contract PECD 7/6/053 funded by
the Department of the Environment. The DOE nominated officer was

Dr R Thorogood. Dr S W Huntington was Hydraulics Research's nominated
officer. The report is published with the permission of the Department of

the Environment but any opinions expressed are not necessarily those of the
funding department.




The development of a numerical model for the solution of the Boussinesq
equations for shallow water waves. Variable depth case. D V Jones and
J V Smallman, Report No SR 159, February 1988.

ABSTRACT

This report describes the further development of a finite difference model
which was originally formulated to solve the Boussinesq equations in water
of constant depth. The main objective of the work reported here was to
extend the mathematical model to allow the effects of depth variation to be
included. 1In addition, changes were also made to the existing model
boundary conditions to allow a random wave train to be specified as input.

The first stage in the implementation of the varying depth terms was to
extend the predictor-corrector finite difference scheme so that advantage
could be taken of the computer power of the distributed array processor
(DAP). Once this was complete the model was tested first for a
one-dimensional sloping bed to check that shoaling was correctly
represented. The results from the model for this case were compared with
theoretical solutions, and the agreement was found to be good.

A series of tests were then carried out to test the two dimensional case.
These involved both tests to examine linear and non-linear refraction and
shoaling, and also diffraction by breakwaters in varying depth. Good
agreement was found between the model results, theoretical solutions and the
results from other mathematical models where these were available.

The remainder of the report describes the implementation of random wave
boundary conditions in the model. Comparisons were made with theoretical
results and it was found that the numerical model gave a reasonable
representation of set down effects for a random wave train in water of
constant depth. It was recommended that further tests should be carried out
to examine these effects in water of varying depth, once physical model
results are available for comparison. This would allow the numerical model
with random wave input to be tested more rigorously.

In conclusion, the extended numerical model was found to give a good
representation of the effects of refraction and shoaling, and diffraction by
breakwaters im varying depth. The model also successfully reproduced the
effects of set down beneath a random wave train in water of constant depth.
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2.1

INTRODUCTION
The development of a numerical model for the solution
of the Boussinesq equations for shallow water waves ‘in
water of constant depth was described in a report by
Smallman et al (Ref 1). Two specific recommendations
given there were that in order to represent more
realistic situations the numerical model should be
developed further to include the effects of varying
depth, and to allow random incident waves. The
present report gives details of the implementation
both of these aspects into the existing numerical

model,

The remainder of this report is divided into three
main chapters. A discussion of the Boussinesq
equations for varying depth is given in Chapter 2,
together with a description of the numerical method
which was used to solve them. Several test problems
were solved using these equations for various
bathymetries. The results from these tests are also
given in Chapter 2, tégether with details of
comparisons with theoretical solutions and other
numerical models. The implementation of a random wave
input into the Boussinesq model is described in
Chapter 3. Details are also given in this chapter of
tests which were carried out to ensure that the model
was operating correctly with random incident waves.
The conclusions and recommendations arising from the
research described in this report are given in the

final chapter.

SOLUTION FOR
VARYING DEPTH

Outline of
approach

The two dimensional Boussinesq wave equations were

given in a previous report (Smallman et al, (Ref 1,

9

)



where their derivation and meaning were explained.

For convenience they are restated here:

dz 3 P
B-E + F}-{- (Uh) + W (Vh) =0 (2-1)
d3u . du _ 3z 1 33(ud) . 33 (va)
TUxtVey T gt g d[axzat * TRTyE
1 o5 334 3y
- =d + 2.2
[axz ” X ayﬁ] ( )
dv ov 3z 1 33 (ud) | 93 (va)
+“'5§+VT§-'g57+'2'd(3x3yat+ aza)
y-ot
33 33
'%dz(a o+ —2 ) (2.3)
X dy d¢t ayz at

where u and v are depth averaged velocity components
(ms=!) in the horizontal x and y directions
respectively, z is the water surface elevation (m)
above datum, which is the still water level, and

h = d+z, where d is the mean water depth (m). In

Ref 1, the equations were solved for the case where
the depth d was everywhere constant. We now consider
the wmore general case where the depth varies as a

function of x and y.

In order to include the effect of depth variation, we
need to solve equations (2.1) to (2.3) which involve
terms including the differentials of (ud) or (vd). To
do this it is necessary to modify the finite
difference scheme which was used to solve the
equations for the coustant depth case. This
modification to the finite difference scheme is

explained in Sectiom 2.2.

To gain understanding of the behaviour of the
numerical model with varying depth, the problem has
been considered in four stages. The simplest of these
is given by the one dimensional linear shallow water

equations, which are obtained by neglecting the third



order and non-linear terms in the one dimensional form

of equations (2.1) to (2.3):

Oz o]

6{'+ 5;‘(uh) =0 (2.4)
du Oz
—6‘t‘+ g&-{— 0 (2.5)

The numerical model has been used to solve these
equations for a one-dimensional shoal, that is the
case in which the waves are normally incident on a
sloping bed with parallel contours (see Fig 1). The
results from the numerical model for this case are

described in Section 2.3.1.

The next stage was to extend equations (2.4) and

(2.5) by including the dispersive, third order terms:

Oz 0

3= + 3= (uh) =0 (2.6)

3 3 23 ' 33

5::1—4. gi:-zl-d (.M) _.é__dZ (____L) 2.7)
dx2dt dx %ot

These equations were solved numerically for the same
bathymetry as was used for equations (2.4) and (2.5).
The model results are described in detail in Section

2.3.2.

The next stage was to consider an extension to two
dimensions of equations (2.6) and (2.7). This is
equivalent to linearising equations (2.1) to (2.3),
which results in the following:

3z @ d
35- +3x (b)) * 5= (vh) =0 (2.8)



2.2 The finite
difference

* scheme

du 9z 1 , 933 (ud) 33 (vd)
= o L d - ” 2o9
Ll [3x23t rararl (2.9)
12 2%u + Ch ]
axzat ax By c)t
dv 3z 1 33 (wd) | 3B (va)
78yt d e ) (2.10)
1 2 ( g’u t vy
- =d +
6 dx dy ot ayzat

The solution to these equations was found for
bathymetries which allow both shoaling and refraction
of the waves to take place (see Figs 2 and 3). In
addition, a breakwater was introduced to study
diffraction (see Fig 4). These results are discussed

in Sections 2.3.3 and 2.3.5.

Finally, the full non-linear problem given by
equations (2.1) to (2.3) was solved. This was done
firstly for a ome dimemsional shoal, secondly for the
bathymetry which allows shoaling and refraction, and
lastly for a case where diffraction by a breakwater
was represented. The solutions of the two dimensional
non-linear problem are discussed in Sections 2.3.4 and

2.3.5.

The finite difference scheme described in Ref 1 was
formulated to solve the constant depth form‘of
equations (2.1) to (2.3). Some modifications to the
scheme given in Reference 1 are required to the third
order terms, to allow for a varying depth. The finite
difference approximations to the differentials of u
and v, which form the last terms of equations (2.2)
and (2.3) here, can be derived from the constant depth
scheme simply by changing their coefficients from 1/3

to -1/6. The differentials of ud and vd, which form



the penultimate terms in equations (2.2) and (2.3),

require additions to the scheme.

The differential operators are identical to those for
constant depth, and so the finite difference
description of the terms can be written immediately.

In the notation of Ref 1,

[83(ud)]n -
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'[1+2 n+ 2 n+2
1 [(ud) i1, et 20T e Ty
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The constant depth finite difference expressions are
given in equations (4.5) and (4.6) of Ref 1. To
generate the equivalent varying depth expressions, two
simple changes to these equations are required.
Firstly, the signs and coefficients of the terms
representing the third order differentials of u and v
must be changed, as explained above. Secondly, the
expressions in equations (2.11) to (2.14) must be
multiplied by (2At), to achieve the correct form, and
then incorporated into equations (4.5) and (4.6) of

Ref 1, according to equations (2.2) and (2.3) here.

The stability and accuracy constraints of this varying
depth finite different scheme, are of a similar form
to those for the constant depth scheme. The same
methods are also used to impose boundary conditions
around the edges of the finite difference mesh. These

were discussed in detail in Reference 1.

2.3 Numerical results
The new finite differénce scheme described in
Section 2.2, includes terms which model the effect of
varying depth. However, for a bed of constant depth,
the new scheme should give exactly the same solution
as the constant depth scheme. The new scheme was used
to solve a constant depth case described in
Ref 1, and identical results were obtained. This
indicates that the new finite difference expressions
correctly represent the relevant terms in the

equations for constant depth.

All the results presented in this chapter are for a
single sinusoidal input wave, the period and amplitude
of which are varied for different cases. The wave is
introduced along one boundary at a line of u velocity
points. These may be thought of as representing a
wave paddle. 1In all, five bathymetries were used in

the various tests (see Figs 1 to 4 and 29). For those



bathymetries where this paddle extends over the entire
western side of the mesh, a sponge layer absorbing
boundary condition (see Ref 1) is used on the eastern
side. For the wedge breakwater (see Fig 4), an
additional sponge layer also covers the north side,
and for the breakwater gap (see Fig 29) sponge layers

cover the northern, eastern and southern sides.

2.3.1 Solution of linear shallow water equations

In this section, the numerical solution of

equations (2.4) and (2.5) with bathymetry A (see

Fig 1) is discussed. The results are shown in

Figures 5 to 8 and tabulated in Table 1. The first
three graphs show the variation in maximum wave
amplitude with water depth, for the periods 6,10 and
15s respectively. 1In each case, a time history of 512
values for each of 12 positions at different depths,
has been spectrally analysed, and the wave amplitude
so predicted is given by the curves labelled spectral
analysis. Additionally, the maximum amplitude of each
time history is shown, as the curves labelled maximum
amplitude. The chosen positions are indicated in the
Figure 1. A similar notation is used for all the

tests described in later sections.

The two remaining curves on Figures 5 to 8 are the
theoretical solutions (a) and (b). These solutions do
not incorporate the slope discontinuities (see Fig 1),
which are a considerable complication, and so they can
only give an approximate indication of wave behaviour
with bathymetry A. Both solutions are derived from
equations (2.4) and (2.5). Solution (a) is obtained
by assuming a gentle change in depth relativé to
wavelength, and the following form for u and z,

sinusoidal in time:



i(wt-Jk dx) (2.15)

[+
[l

uo(x) e

i(wt-fk dx) (2.16)

N
|

= zo(x)e

where w is the angular frequency, and k is the
wavenumber. Substituting equations (2.15) and (2.16)
into equations (2.4) and (2.5), and making some
simplifying assumptions leads to the well-known

relation:
{zo(x)}2 Y(gd) = constant (2.17)

Hence, if An is the wave amplitude at point n, with
depth dn, and A.o is the wave amplitude at point o,
with depth do, then

d
A =(32) a (2.18)

This equation forms the basis of solution (a); for the

results here, A0 = 1.0.

If a linear variation in water depth is assumed, such

that

where p is the gradient of the variation, then
equations (2.4) and (2.5) can be solved exactly, by
assuming a separated solution of the form:

2(x,t) = zo(x)eiwt (2.20)

Some manipulation of equations (2.4) and (2.5), and
using equations (2.19) and (2.20), leads to the

equation:



y + ¥y - =0 (2.21)
dy? dy pg
do N
where y = (x - 5—)2 (2.22)
This has the general solution
z,(x) = C; J () + Gy Y _(6) (2.23)
where 0=~ Zw (—2 - x)% (2.24)
7(gp) ‘p

and Jo, Yo are Bessel's functions of the first and
second kinds, respectively. The constants C, and C,
can be found using the initial values of wave

elevation and speed.

Equation (2.23) gives the theoretical solution (b).
This includes reflections from the slope, and is an
improvement over solution (a). The interference
pattern caused by the reflections, which resembles a
perturbation about the simpler solution, is in each
graph in phase with the similar pattern in the
numerical results. The 'wavelength' of the
interference is the same in each case, and appears to

be approximately proportional to period.

The numerical results have a relatively exaggerated
interference pattern, which is probably connected to
the slope discontinuities which are not modelled by
the theoretical solutions. While there is generally
good agreement between the numerical and theoretical
values, the theoretical values are lower thén the
maximum amplitudes, particularly with a 6s period.
Apparently, this is at least partly due to energy
reflected between the slope and paddle, which causes

the elevation at position 1 to be greater than 1.0.



In case these reflections become less significant
after a time long enough to allow many reflections,. an
extended run for the 10s period was performed,
However, no substantial change was found in the

results.

Probably also because of the discontinuity at the toe
of the slope, the variation at a point on the slope is
not sinusoidal, despite the sinusoidal input wave. An
indication of this behaviour can be seen from the
difference between the spectral analysis and maximum
amplitude values in Figs 5 to 7. Figure 8 shows that
the further the point is from the toe of the slope, in
the direction of decreasing depth, the more sinusoidal
is the shape. Reflections at the end of this plate
are prevented by the sponge layer, shown in Figure 1.
This feature will be because the model, does not
properly resolve waves travelling across the sudden
change in depth. This effect can be expected to be
ameliorated by the introduction of dispersion into the

equations (see the next section).

An extra factor which makes the 6s period case less
reliable, is the variation of the Courant number Cr as

the water depth changes. This is defined as
At
Cr = ¥/ (gd) Ax (2.25)

where At, Ax are the finite difference increments in
time and space respectively. The stability conditions
C_ <1 and c < 1/V/2 apply respectively to one and two
dimensional problems. Accuracy considerations also
require Cr to be close to 1 or 1/vY2 in the fespective
problems. From equation (2.25), it is clear that the
accuracy condition cannot be satisfied at both large
and small depths. This means that in the numerical

model the wave travels slower in shiallow water than in

10



the physical situation. Analysis shows that for a 6s
period, for the situation modelled here, the error in
celerity at the 2m depth is approximately 6%. The

corresponding 10s period error is near 2%.

2.3.2 The effect of introducing dispersion

In this section, the numerical solution of

equations (2.6) and (2.7) with bathymetry A (see

Fig 1) is discussed. The results are shown in

Figures 9 to 12, and tabulated in Table 2., The graphs
show curves labelled maximum amplitude and spectral
analysis, which have the same meaning as explained in
Section 2,3.1. The extra complication of the third
order terms in equation (2.7), means that an approach
similar to theoretical solution (b) given in 2.3.1 is
not practical here. 1Instead the theoretical solution
shown in Figures 9 to 11 is derived from the solution
of Laplace's equation for the velocity potential, with
linearised free. surface boundary conditions (see

Stoker, Ref 7). ' This gives the dispersion relation:
w? = gk tanh (kd) (2.26)

where k is the wavenumber and w the angular frequency.

The group velocity Cg is defined as:

dw _ C 2kd
¢ =dx =2 (1 * 5imh 2xd) (2.27)
where C is the celerity, and

w
C = X (2.28)

Equation (2.26) can be solved using the Newton-Raphson
method to give k, since w and d are known. Equation

(2.27) then gives Cg’ at the depth d.

11



Now equation (2.18) has the more general form

c
A = (Ez—z)* A, (2.29)
This equation applies for linear but dispersive wave
motion, and for a simple shoal such as bathymetry A.
If equations (2.4) and (2.5) are used, then
Cg = (gd)%, and equation (2.29) reduces to equation
(2.18). Since Cg is known at a given depth,
equation (2.29) gives the theoretical solution shown
in the Figures. This cannot be expected to agree
exactly with the numerical results, for three
principal reasons, over and above limitations in the
numerical model: (i) equation (2.26) is derived
assuming constant depth, and so cannot strictly be
used for varying depth. However, in practice this
equation can be applied to a gently varying depth;
(ii) as with the theoretical solutions of the last
section, the bed slope discéntinuities are not
modelled; (iii) equation (2.26) differs from the
dispersion relation of equations (2.6) and (2.7) -
this is discussed in Ref 1., However, despite its
limitations, the theoretical solution should give a

good approximation to the numerical results,

It can be seen from Figs 9 to 11 that the model
results are in good general agreement with the
theoretical solutions. The most evident change
introduced by the dispersion, is to produce a
near-sinusoidal variation everywhere. This is
indicated by the almost identical spectral analysis
and maximum amplitude results, and also by the
profiles shown in Figure 12, which display a.
sinusoidal variation with time at three different
depths. This change is probably because dispersion

spreads the energy across waves of different speeds,

12



and so the bed discontinuities are effectively

smoothed,

Comparing Figures 9 to 11 (with dispersion) with
Figures 5 to 7 (no dispersion), there are both clear
similarities and differences. A similar interference
pattern, due to reflections off the slope (see the
last section), occurs in both sets of graphs. Again,
the 6s period numerical results are furthest from the
theoretical solution, and have the largest wave
amplitude at the toe of the slope. The reasons for
this behaviour for the 6s case will be similar to

those discussed in the previous section.

2.3.3 The extension to two dimensions by including

refraction

This section describes the numerical solution of
equations (2.8) to (2.10). Two pathymetries have been
used for these tests: for béthymetry B (Fig 2),
results are shown in Figures 13 to 16, and for
bathymetry C (Fig 3) the results are shown in
Figures 17 to 19. The results are tabulated in
Tables 3 and 4 respectively. In these graphs, the
curves labelled spectral analysis and maximum
amplitude have the same meaning as before. The
theoretical solution is based on the theory of wave
ray paths across the varying bed. A wave ray is
defined as a line always perpendicular to the wave
crest. On the assumption of conservation of energy

between rays, linear theory gives:
A2 Cg b = constant ' (2.30)
where A is the amplitude of the wave, Cg the grodp

velocity, and b the separation of the rays. Hence in

the notation used previously:
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Cgo bo 3

An = (C—T) Ao (2.31)
gn n

For a shoal without refraction, bO = bn’ and

equation (2.3.1) reduces to equation (2.29). The

refraction of a ray obeys Snell's law, ie.

C sin an
= (2.32)

_n

Co sin ao

where ai is the angle between the ray path and a line
perpendicular to the bed contours. As described in
Section 2.3.2, the wavenumber at a given depth can be
found from equation (2.2.6), which in turn gives the
celerity ci from equation (2.28). This allows
calculation of the angle @ from equation (2.32),
which gives the ratio (bn/bo)° The group velocity Cg
is found as described in Section 2,3,2, and hence A.n
can be found from equation (2.31). The theoretical
solution given is based on this equation. It gives an
approximation to the physical situation which neglects
reflections, diffraction and the effects of the bed
discontinuities, and is strictly only valid for
constant depth, although can be applied to a gently
varying depth. Further, the dispersion relation of
the equations solved numerically is not identical to
the dispersion relation used for the theoretical
solution. However, even with these limitations, the
theoretical solution can be expected to provide a good
basis for verification of the results from the
numerical model. It can be seen from the appropriate
figures that for both of the bathymetries used in the
tests, the numerical model results are in good general

agreement with the theoretical values.
The results with bathymetry B will be discussed first.

The positions chosen for analysis (see Fig 2) are

spread throughout the basin at a range of depths. The
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results at these positions are shown in Figures 13 to
15. For the 15s case results were also taken at an
alternative set of points, along a line perpendicular
to the contours, and starting near the lower edge of
the basin. These positions are also shown in

Figure 2 and the extra set of results is shown in
Figure 15 labelled as points (ii). This was
principally done as a check on the results taken for
the original locations, to ensure that these were
principa11§ depth, rather than location, dependent.
Although the resulting curve for points (ii) is

smoother, the same features are apparent,

The wavelengths of the interference patterns with
bathymetry B are clearly similar to those of ’
bathymetry A, despite the differences in geometry and
gradient of slope. 1It is likely that the large
amplitudes found at position 12, near to the top wall,
which are particularly pronounced for the 6s period,
are partly caused by reflected energy. The boundary
condition at the top wali is designed to absorb waves
of normal incidence, but it allows some energy from

glancing waves to reflect.

As with the straight shoal, the dispersive terms in
the equations ensure an almost sinusoidal variation
everywhere, which is shown in Figure 16 for three
positions. However, a significant change caused by
the refraction, is a reduction in wave amplitude over
part of the basin, to below the input amplitude of
1.0m. This applies to the 6s and 10s periods. The
reason for this is clear if two adjacent wave rays are
followed across the slope. The refraction spreads the
rays further apart, and so from Equation (2.30)
reduces the wave amplitude. At shallower depths, the
decrease in Cg more than compensates for this, and

larger wave amplitudes are found.
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The 15s period case deviates from the previous results
with bathymetry A, by having a larger amplitude at the
toe of the slope. If this large elevation is the
result of constructive interference between the
incoming wave and reflected waves, then it will be
sensitive to both the bathymetry and the distance
already travelled by the input sine wave. Comparison
of Figures 1 and 2 shows that both of these
geometrical factors change considerably, and so the

difference in results is not surprising.

Bathymetry C has a much shallower gradient than
bathymetry B (compare Figs 2 and 3), and the greatest
water depth is 5m. It is therefore a less stringent
test of the numerical scheme and governing equations.
Figures 17 and 18 show a comparison between the
numerical results of this model, and those of an
alternative finite difference model, due to Copeland
(Ref 2), for an input wave amplitude of 0.5m and the

periods 6s and 10s, respectively.

Spectrally analysed results for the present model were
not available. Copeland's model results are
amplitudes averaged across a time history, whereas the
results shown for the present model are maximum
amplitudes. Therefore it is to be expected that the
maximum amplitudes will be the greater, as is the
case, The Copeland solution has a tendency,
independently of period, to have a constant elevation
between the depths 2.2m and 1.8m. Despite this, the
solutions agree well with each other and the
theoretical solution, particularly for the 6s period,
which is the case considered by Copeland in his
original work. It seems logical that the numerical
values should exceed the theoretical ones, since fhe
theoretical solution does not include diffraction or
reflection effects, which the finite difference

model does represent.
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Finally, to give a general impression of the surface
behaviour, isometric plots are shown in Figure 19,
across part of the basin with bathymetry C, for a 15s
period. The refraction effects can be clearly seen,

and the variation with time is as expected, because

1
the times 50, 100, 150 and 200s are equivalent to 33-,
6% s 10T and 13%T respectively, where T is the

period.

2.3.4 The introduction of non-linear terms

This Section describes the numerical solution of
Equations (2.1) to (2.3). The problem has been solved
in one dimension with bathymetry A, and in two
dimensions with bathymetry B. For the one dimensional
problem, the periods 6s and 10s were used. For the 6s
period, the results are shown in Figures 20 and 23,
and for the 10s period, in Figures 21 and 24: results
for both periods are tabulated in Table 5. For the
two dimensional problem the period 10s was used, and
the results are‘shown in Figures 22 and 25(b), and
tabulated in Table 6. Figure 25 contrasts isometric
views of the 10s period solutions with bathymetries A
and B. As well as showing non-linear model results,
Figures 20 to 22 also show the equivalent linear
spectral analysis results for comparison., The maximum
amplitude curve has the same meaning as before, and
the curve labelled input frequency component gives the
wave amplitude associated with the input frequency.
The spectral amplitude curve is calculated using the
energy associated with the input frequency and its
first two harmonics, while the curve labelled

+ (waveheight) is self-explanatory, and is included to
put the maximum amplitude values into perspeétive.

The complexity of the non-linear problem does not

admit a theoretical solution.
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The input wave amplitudes used to produce these
results were 0.35m for the 6s period, and O.1lm for the
10s period. Such relatively small amplitudes were
chosen partly because equations (2.1) to (2.3) are
valid for small amplitudes (a << d), and partly to
ensure no breaking waves occurred, as these are
outside the scope of the model. The most striking
features of Figures 20 to 22, in comparison with
previous linear model results, are the large values of
maximum amplitude. However, this can be slightly
misleading, as shown by the % (waveheight) curve, and
also by Figures 23 and 24. 1t is clear that the
shoaling non-linear wave develops a more cnoidal form
at shallow depth. This behaviour has been found
before both experimentally (Ref 3) and with another
numerical model (Ref 4). The distinctive wave shape,
with sharp peaks and shallow troughs, is caused by the
interaction of the input wave with its excited
harmonics. Figure 23 is for the 6s period, and shows
that the wave has settled to a steady shape in the 2m
depth area, which is evident also in the constant
maximum amplitude values for the same region in

Figure 20. 1In contrast, Figure 24 shows that the 10s
period wave changes form in this area, and this is
reflected in the increasing amplitude for this region
shown in Figure 21, It is likely that a much longer
area at the 2m depth would also allow the 10s period

wave to settle.

The linear spectral analysis curve has been included
in Figures 20 to 22, for comparison with the spectral
amplitude results of the non-linear model. Identical
input waves were used in each case, and so very
similar curves can be expected. 1In fact, the spectral
amplitude curve is consistently slightly larger,
particularly in the more shallow water. This
phenomenon is supported by the work of Elgar and Guza

(Ref 3), who have compared experimental results with

18



those of both linear and non-linear numerical models.
They found that the linear model under-predicts, while
the non-linear model over-predicts the energy levels
at higher frequencies, particularly in shallow water.
They suggest this fault in the non-linear model may be

due to the condition a << d not being satisfied.

An interesting experimental result (Ref 3), which the
non-linear model predicts for a 10s period with
bathymetry A (the relevant results are shown in
Figure 21), is the transference of energy from the
input frequency to one of its harmonics. This is
evidenced by the reduction in energy, along the 2m
plateau, of energy associated with the input
frequency, with a corresponding increase in the total
‘spectral amplitude. Additionally, experimental tests
with a mildly sloping beach (Ref 3), have shown that
the lowest frequency waves are almost completely
reflected, while the highest frequency waves are
primarily progressive. This helps to explain
waveheights at the toe of the slope which are greater

than the input waveheight.

The inclusion of the linear spectral analysis curves
in Figures 20 to 22, shows that the wavelength of the
interference pattern caused by the incoming and
reflected waves, is unchanged by the introduction of
the non-linear behaviour, for both bathymetries A and
B. The pattern evidently depends principally on the
bathymetry.

Figure 25(a), which is for the 10s period wave with
bathymetry A, demonstrates the development of a
cnoidal wave, with sharp peaks and shallow thughs, as
the wave shoals. Figure 25(b) shows the equivalent
situation for bathymetry B, where the wave both shoals

and refracts. The small elevations at the far end of
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the basin in each case, are because of the sponge

layer boundary condition there.

2.3.5 Diffraction from the corner of a "wedge"

breakwater

In this Section, the ability of the numerical scheme
to model diffraction is discussed. Bathymetry D,
shown in Figure 4, has been used, which is a

modified version of bathymetry C. A wedge has been
introduced across 2/3 of the open boundary, as shown,
and so diffraction can be expected from its corner.
Positions chosen for analysis are situated in the
shadow of the wedge (numbers 1, 2 and 3), at the end
of the channel beside the wedge (number 4), and
following the approximate path of a ray across the bed
(numbers 5 to 12), as shown in Figure 4. An extra set
of thirteen points have also been used, to study the
behaviour along a line between positions 4 and 5, and
at intermediate points along the ray path to clarify
the interference effect due to reflected energy from
the slope. These extra points are not shown in

Figure 4, but if their positions are required, they

can easily be found using Figure 26.

As before, a sponge layer at the end of the basin is
designed to absorb the waves incident there. This
test was carried out with a 10s period input wave, of
amplitude 0.1m, for both the linear and non-linear
cases, and the results are shown in Figures 26 to 28,

and tabulated in Table 7.

The titles of the curves shown in Figure 26 have the
same meaning as explained in Section 2.3.4, They give
a comparison between the linear and non-linear
results. The non-linear spectral amplitude curve is
identical to the linear spectral analysis curve,

therefore both are plotted as one. As in the previous
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section, the % (waveheight) curve puts the maximum

amplitudes into perspective. Figure 27 is also useful
in this respect, as it shows the non-linear wave shape
at position 12. 1Tt is plotted with the sinusoidal

linear solution, to show the effect of the non-linear

terms.

As expected, the amplitudes at Positions 1, 2 and 3,
in the shadow of the wedge, are small. This can be
seen in Figure 26, and also in Figure 28, which shows
elevations across most of the basin at four different
times, for the non-linear case. While Figure 28 is
effective at showing the general features of the flow,
in particular the diffraction and refraction,

Figure 26 is more effective at showing the variation
in amplitude across the basin. The drop in amplitude
between positions 4 and 5, due to diffraction at the
wedge corner, can be seen. The toe of the slope
affects the flow in the constant depth area in front
of it, causing the minimum amplitude to occur at a
position nearly 20m in front of the toe. Also clear
is the now familiar interference pattern, due to

reflected energy, as the wave shoals.

2.3.6 Diffraction by a breakwater gap, with constant

water depth

The work described in this section was conducted as a
further test of the numerical model's ability to model
diffraction, and also to ensure that a sponge layer
introduced on the southern boundary was functioning
correctly. The linearised, constant depth form of
equations (2.1) to (2.3) was solved, and this allows
comparison with the earlier theoretical work of

Montefusco (Ref 6) and Smallman (Ref 5).

The solution domain is shown in Figure 29. Waves of

period 10s are normally incident on a breakwater gap
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2.4 Summary

to the west, which opens onto an area of constant
depth 10m. The northern, eastern and southern walls
of the harbour are lined by a sponge layer 20 cells
wide, where the cell width is 5m. The layer is thus
100m wide, which equals approximately one wavelength
of the incident wave. For comparison with the two
theoretical solutions, the gap width was chosen as
1.75 wavelengths. The twenty analysis positions shown
in the figure were chosen to correspond with the

theoretical solution positions.

Figure 30 shows a comparison between the spectrally
analysed results of the present model, and the
theoretical solutions. These are also tabulated in
Table 8. Overall, the agreement is good, indicating
that diffraction into the breakwater shadow is well
represented, and that the sponge layers are acting to
absorb wave energy. Further, the solution was found
to be symmetric about the centre.line and therefore
the southern sponge layer must be operating
correctly. Figure 31 shows that the sinusoidal
behaviour of the input wave, is reproduced within the

harbour, as to be expected for a linear solution.

The numerical model for a solution of the Boussinesq
equation in water of constant depth, has been extended
to include the effects of depth variation. This
required the introduction of new terms in the finite
difference scheme representing the governing

equations,

The new finite difference scheme has been tésted for a
variety of bathymetries and harbour geometries. Good
agreement has been found with both theoretical

solutions and another finite difference model, for

linear shoaling and refraction. For the full

non-linear scheme, although no other theoretical
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3

3.1

RANDOM INCIDENT
WAVES

Béckground

solutions or suitable numerical results are available,
good qualitative agreement has been found with

experimental results.

Additional tests carried out to examine diffraction,
using a wedge breakwater, and also a breakwater gap,

produced good results.

It is important that a numerical model of wave
disturbance in harbours should represent as far as
possible the wave conditions which occur in nature.
In the approaches to a harbour waves will be random
and multi-directional (short crested), and the aim
should be to reproduce this in harbour wave
disturbance models. Physical models have already made
significant progress towards this end, see Bowers
(Ref 8); numerical models are, in general, still some
distance away. However, having considered both
unidirectional regular and bichromatic wave trains
(see Ref 1) the next stage in the development of the
present model is to represent unidirectional random
wave input. This process is described in the

following parts of this chapter.

Before proceeding to the details of the implementation
of random waves, it is worth restating that one
significant feature of the present model is its
ability to represent the propagation of set down
beneath wave groups. This was demonstrated for a
system consisting of sine waves of two frequencies and
its associated set down in Smallman et al (Ref 1).
This is the simplest example of set down beneath wave
groups, but it should be recalled that in deriving the

boundary conditions for this case, the second order
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3.2 Boundary

conditions

terms needed to be specified so that the correct set
down behaviour is achieved, and no spurious long waves
are introduced at the boundary. The same holds true
for the more complex situation of set down beneath a
random wave train. Here set down will occur between
all the different frequency components of the wave
spectrum. The second order terms which are required
at the boundary for the case are discussed in section
3.2. A description of the tests used to verify the

model results is given in section 3.3.

The first order elevation of a unidirectional random
wave train at position X and time t may be written in

discrete form as,

n(l) (x,t) = g a, cos (.t — k.x. + €,) (3.1)
’ i 1 i iti 7t

here a, wi and ki are the amplitude, radian frequency
and wave number associated with the discrete
frequencies fi’ i=1,2...n, and the Ei are random phase
terms. The discrete frequencies can be defined in

terms of the frequency increment Af as,

fi =Af (i-%3) , i=1, 2.....0.

The amplitudes ai can be written in terms of the

energy frequency spectrum,

£ +A£/2
a2=2["% S(f) df,
£.-A£/2

which can be approximated as,

2 -
a; 2.S(fi).Af.
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The discrete wave numbers ki are given by,

where
w, =27f, , i=1,...,0.
i i

For the Boussinesq equations the characteristics of
the set down can be determined by examining the one
dimensional form of the differential equations (2.1)
and (2.2). By expanding the various terms in these
equations to second order and by use of equation
(3.1), it éan be shown that the second order elevation

which includes the set down terms is,

(2) n n-1
n (x,t) = 2 2 A cos(wi.t—ki.x+€i.) (3.2)
i=j41 j=1 5,0t R
where
w, ., =0, -0,
ij i 3j
177 %17 K
and €, ,=€, - €_,
1] 1 J

The amplitudes Aij are given by,

W,
- i ij _;_ i i 1 i=4
Aij 2 d U, +—§El . (k + k.)’ j=1 to n-1,i=j,n
ij ij J
where +
k W, W, W, 3 ..
U = i g 4 (Cij 4 J+gk ( J)), j=1 to n-1,i=j,n
ij 2d d k. k. ij k k. (3.3)
. i j :
2 2452
+ k d -gd k
s (1 14 ) -8 ij
3
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Equation (3.2), which was derived from the Boussinesq
equations differs from that which is derived using
Laplace's equation and free surface boundary
conditions taken to second order. In this case the

expression for the second order elevation is,

(2) n n-1 _
n“(x,t) =) ) A ocos (o .tk xte )  (3.4)
i=j+1 j=1 3 oy
where
Aij=ayay [Yij + 4 (k; tanh k,d + k, tanh kjd)
K.k.g
2; == (1 + tanh k.d tanh kjd)]
i
and
wi g 2kk. kiz ka
Y17l g, Wpy(l¥tanh kyd tanh k Q) ooy o]
i 3 i i J J
—
(wij g kij tanh kij d)

The derivation of equation (3.4) is given in Spencer

(Ref 9).

Equation (3.2) and (3.4) cannot be expected to yield
the same values as they arise from different
equations. However, because the Boussinesq equation
dispersion relation is a reasonable approximation to
the dispersion relation derived in potential theory,
we can expect the set down amplitude arising from
equation (3.2) to be a reasonable approximation to
those given by equation (3.4). The approximation
given by equation (3.2) improves as the water depth

decreases,
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3.3 Implementation

and verification

The boundary conditions for the numerical model are
supplied in terms of the elevation, and corresponding
u velocity at a series of grid points at the edge of
the model., These grid points can be thought of as
corresponding to a wave paddle, with the elevations
and velocities being specified in terms of a time
series at x=0 which generated using equations (3.1)

and (3.2) for a given wave spectrum.

In order to verify that the model was working
correctly two test cases were run, and their results
compared with the expected theoretical values of
amplitude or spectral density for both the set down
and primary wave components, For both tests the
mathematical model was set up to represent a wave
flume of 10m depth, with the input wave being
specified at one end and a sponge layer boundary

condition at the other.

The first test which was carried out used an incident
spectrum which consisted of waves at two frequencies
only. 1In this case the group of waves (and hence the
set down) occur with a frequency equal to the

difference between the two primary frequencies.

This type of test will provide a clear indication of
the model's performance as substantial amounts of
energy should only be present in three frequency
components at all locations in a constant depth flume,
these will correspond to the two primary frequencies
and the set down frequency. Similar tests were
carried out in Ref 1 using two sine waves and the
associated set down to provide input to the model,
rather than the wave spectrum representing this

combination which is used here,
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The characteristics of the input spectrum for the

regular wave group test were as follows:
Frequency (Hz) Spectral density (mZs) Amplitude (m)

0.10 79.98 0.5
0.07 28.79 0.3

The set down component calculated by the numerical
model was at a frequency of 0.03Hz with an amplitude
of 0.075m. The mathematical model was run using a 5m
mesh with a time step of 0.34s, giving a Courant
number of 0.67. Using Ax=5m gives approximately 20
points to the shortest primary wavelength. Time
series of the surface elevations were collected during
the model run at a number of positions along the
flume, and a spectral analysis carried out to obtain
the amplitudes of the frequency components at these
positions. The results from this test are summarised

in Table 9,

It can be expected that if the wave group is
propagating correctly in a flume of constant depth
then the amplitude of each of the frequency components
should remain constant throughout the length of the
flume. It can be seen from Table 9 that the amplitude
of the set down is within 8% of its expected value at
all positions along the flume., This confirms that the
model is both generating the correct set down
component from the primary wave spectrum and
propagating it accurately throughout the model area.
An isometric view of the surface elevation for this
test at various times during the model run is shown in

Figure 32,
The second test which was carried out to test the

spectral input used as input a Pierson-Moskowitz

spectrum; this should provide a more stringent test of
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the models capability to propagate correctly a random
wave train with its associated set down component. In
this case the Pierson Moskowitz spectrum which was
used, see Figure 33, was characterised as having a
peak period of 10s. The selection of space and time
steps for the numerical model with random wave input
is less straightforward than for either a sine wave or
a bichromatic wave input. Care needs to be taken that
the space step is selected so that the wavelengths
corresponding to the full range of frequency
components are accurately resolved. For the primary
wave spectrum given here there is significant energy
in the range 0.05Hz to 0.2Hz, and we therefore need to
ensure that the space step is selected so that there
are sufficient points per wavelength for wave periods
of around 5s (frequency 0.2Hz). A space step Ax = 5m,
will give approximately 10 points per wavelength for
the 5s component in 10m depth, and 20 points per

wavelength for a wave period 10s.

Having selected. the space step the numerical model is
constrained by the Courant stability condition, which

for the two-dimensional case is,

1
= (gd)” At _ 4,
CI' —-—A—X——< /2 ’

for its choice of time step. A time step of

At = 0.34s satisfies this constraint, if the
one-dimensional stability criterion Cr € 1 was used
the time step could be slightly longer. However,
whilst the present test is one-dimensional, the model
will in practical situations be required to satisfy

the two-dimensional conditions.

Before discussing the model results, it is appropriate

to comment on the constraints which are imposed by the
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method of analysis which is used. The spectral
analysis procedure used in this model is the same as
that employed in physical model studies. This method
analysis the surface elevation from the model at each
point of interest and calculates the spectral density
at certain discrete frequency intervals. From the
spectral density the significant wave height, zero
crossing period and amplitude of the waves at that
point an be derived. The discrete frequency intervals
are calculated from the length of the wave record and
a smoothing parameter which combines energy for
neighbouring frequency bands. The number of surface
elevations in a time history must be a value of 2% to
facilitate the fast Fourier transform method (see

Ref 10) which is used. Typically in physical models
2048 or 4096 points are analysed. For the present
numerical model either 512 or 1024 points are normally
used, as it becomes expensive,in terms of computer
time, to run the model for a larger number of time
steps. The value of the time step in a physical model
is selected so that the discrete frequency intervals
in the spectral énalysis cover the important range of
frequencies of the wave spectrum used in the physical
model test. It is not possible to do this for the
numerical model as the time step is fixed by the

stability and accuracy considerations.

As a result of this the number of discrete bands in
the spectral analysis covering the important
frequencies will be much lower than for the physical
model case, leading to a loss of resolution in the
calculation of spectral density. 1In addition, the
smaller number of time step used (say 1024) means that
the record length is shorter than for the equivalent
physical model test, and thus fewer waves are being

analysed.

30



With all these points in mind it is clear that
determining the spectral density of several individual
set down components from the numerical wmodel results
will not be straightforward, as the relevant range of
frequencies will be covered by a small number of
frequency bands, and the record analysed will be
fairly short. However, it can be demonstrated that
the model does represent set down beneath random wave
groups. This is done by comparing the spectral
density at frequencies below 0.04Hz at various
positions along the numerical model wave flume with
their theoretical values calculated using expression

(A4) from Appendix 1.

Prior to making this comparison some comment should be
made about the expected value of the set down spectral
density for both the Boussinesq equations and
Laplace's equation (see section 3.2). For frequencies
below 0.04Hz the set down spectra using both
expressions are shown in Figure 33. It can be seen
that for this case the spectral density of the set
down from the Boussinesq equations is within 15% of
the value calculated using Laplaces equation. It has
been shown in Reference 1 that the approximation
derived using the Boussinesaq equations improves as the

water depth decreases.

The results from the numerical model test carried out
using the input Spectrum shown in Figure 33 are
displayed in Figure 34 as the spectra up to 0,04Hz at
various distances (d) from the paddle along the wave
flume. As can be seen, allowing sufficient smoothing
in the Fourier analysis of the wave elevations results
in their being only four points covering the range of

interest. (The model was rum for 2000 time ‘steps and
the last 1024 points analysed.) The results in

Figure 34 demonstrate that the Boussinesq model does

give a reasonable approximation of the set down
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spectral shape, and has the correct spectral density
at the lower frequencies where it will be of most

importance.

At frequencies between 0.015Hz the agreement between
the predicted and expected values is not as good, with
the predicted spectral densities being lower than the
expected values. This is in contrast to the results
shown in Table 9 for regular wave groups where the
agreement of the model results with the expected
values of amplitude was good at the primary
frequencies (0.10Hz and 0.07Hz) and at the set down

frequency (0.03Hz).

The agreement between the calculated and expected
spectral densities is better nearer the wave paddle.
It is likely that at distances d = 362.5m and

d = 462.5m that there will be some low frequency
interference from reflections from the sponge layer
boundary condition. Such reflections are also known
to occur in physical models where the shingle beaches
do not absorb all the long period wave energy. It is
possible that better agreement could be achieved if
more elevations were analysed, say 2048, but in
practise the cost of running the model would be

prohibitive.

In addition to the comparison shown in Figure 34 the
spectral densities at the peak period of the primary_
spectrum were also examined. It can be seen from
Table 10 that at all locations along the flume the
energy at the peak frequency remained within 10%Z of
its expected value. To give a better impression of
the surface profile for a random wave input an

isometric view is given in Figure 35.
In summary, the numerical model solving the Boussinesq

equations has been successfully modified to allow

random wave input. From the results given in this
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4

4.1

4.2

CONCLUSIONS AND
RECOMMENDATIONS

Conclusions

Recommendations

section we conclude that the numerical model gives a
reasonable representation of set down effects for a
random wave train. However, further tests will need
to be carried out to examine these effects for the
varying depth case, where comparison with physical
model results will allow the numerical model to be
assessed more rigourously. In addition, further
consideration will need to be given to the method of
analysis of the numerical model results with respect
to time step constraints in stability, accuracy and

running costs.

The mathematical model which provided a numerical
solution to the Boussinesq equations in water of
constant depth (see Ref 1) has been developed further
to include varjing depth terms and unidirectional
random wave input. The model has been shown to
provide a good representation of the effects of
refraction and shoaling, and diffraction by
breakwaters in varying depth. Comparisons between the
model results and theoretical solutions were good for
the linear case, and the non-linear results appear to
be promising. The model also successfully reproduced
the effects of set down beneath a random wave train in

water of constant depth.

In order to test fully the non-linear aspects of the
mathematical model we require data against which to
compare the results. For the varving deptﬁ case the
governing non—lineér equations do not adwit an
analytical solution. It is therefore recommended that

a series of physical model tests are carried out to
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provide comprehensive data against which to validate

the numerical model.

To further develop the numerical model to allow more
realistic harbour layouts to be represented it is

recommended that:

a) Boundary conditions for the model should be fully
investigated; in particular consideration needs
to be given to representing partially reflecting
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TABLE 2 Results with bathymetry A: numerical solution of equations (2.6) and (2.7)

DEPTH (m) PERIOD T=6s PERIOD T=10s PERIOD T=15s
Position Numerical Theoretical Numerical Theoretical Numerical Theoretical
solution solution solution solution solution solution
(1) 10.0 1.02 1.00 0.99 1.00 0.99 1.00
(2) 8.6 1.02 1.00 0.99 1.03 0.99 1.03
(3 6.6 1.04 1.01 1.03 1.07 1.19 1.09
(4) 5.8 1.02 1.02 1.03 1.09 1.17 1.12
(5) 5.0 1.07 1.03 1.14 1.13 1.11 1.16
(6) 4.2 |  1.05 1.05 1.17 1.17 1.15 1.21
(7) 3.4 1.16 1.08 1.15 1.22 1.33 1.27
(8) 2.6 1.17 1.13 1.34 1.30 1.47 1.36
(9) 2.0 1.29 1.19 1.37 1.37 1.45 1.44
(10) 2.0 1.29 - 1.37 - 1.47 -
(11) 2.0 1.29 - 1.38 - 1.50 -
(12) 2.0 1.29 - 1.38 - 1.45 -

(Input wave amplitude = 1.00m)

Notes
(i) The numerical solution values are the result of spectral analysis of a time
history

(ii) The calculation of the theoretical solution values is explained in Section
2.3.2
(iii) The location of each position given in this table is shown in Figure 1

(iv)  The results are shown graphically in Figures 9-11



TABLE 3 Results with bathymetry A: numerical solution of equations (2.8) and (2.10)

DEPTH (m) PERIOD T=6s PERIOD T=10s PERIOD T=15s
 Position Numerical Theoretical Numerical Theoretical Numerical Theoretical
solution solution solution solution solution solution
(1) 10.0 1.02 1.00 1.01 1.00 1.03 1.00
(2) 8.6 1.00 1.00 1.01 1.00 1.09 1.01
- (3) 6.6 0.99 1.00 0.98 1.01 1.12 1.02
‘ (4) 5.8 1.01 1.00 0.98 1.02 1.13 1.03
(5) 5.0 0.96 1.01 1.00 1.04 1.14 1.06
(6) 4.2 0.97 1.01 1.05 1.05 1.07 - 1.08
(1) 3.4 0.99 1.02 1.10 1.06 1.07 1.09
(8) 2.6 0.98 1.02 1.06 1.09 1.09 1.12
(9) 2.0 0.98 1.03 1.11 1.10 1.14 1.13
(10) 2.0 1.01 1.05 1.12 1.16 1.27 1.19
(11) 2.0 1.05 1.10 1.29 1.24 1.47 1.28
(12) 2.0 1.22 1.14 1.46 1.30 1.46 1.36

(Input wave amplitude = 1.00m)

Notes

(i) The 15s period numerical solution results given in this table, are shown in
Figure 15 as points (i). They are determined by spectral analysis of a time
history

(ii) The calculation of the theoretical solution values is explained in
Section 2.3.3

(iii) The location of each position given in the table is shown in Figure 2

(iv)  The results are shown graphically in Figures 13-15



TABLE 4 Results with bathymetry C: numerical solution of equations (2.8) and (2.10)

DEPTH (m) PERIOD T=6s PERIOD T=15s
Position Numerical Copeland Theoretical Numerical Copeland Theoretical
solution solution solution solution solution solution
(1) 5.00 0.49 - 0.50
(1a) 5.00 0.50 - 0.50
(2) 4.53 0.51 0.50 0.50 0.52 0.50 0.51
(3) 4.15 0.52 0.51 0.51 0.54 0.51 0.52
(4) 3.85 0.52 0.52 0.51 0.53 0.52 0.52
(5) 3.45 0.52 0.52 ' 0.52 0.54 0.52 0.53
(6) 3.05 0.53 0.53 0.52 0.53 0.53 0.54
(7) 2.65 0.56 0.54 0.53 0.57 0.56 0.56
(8) 2.15 0.57 0.57 0.55 0.59 0.58 0.58
(9) 1.75 0.60 0.57 0.57 0.64 0.57 0.61
(10) 1.35 0.63 0.63 0.60 0.68 0.62 0.64
(11) 1.00 0.69 0.66 0.64 - - -
(11a) 1.00 - . - 0.75  0.68 -
(12) 1.00 0.69 0.66 - - - -
(12a) 1.00 - - - 0.72 0.67 -

(Input wave amplitude = 0.50m)

Notes

(1) The numerical solution values are each the maximum of a time history
(ii) The Copeland solution values are from the numerical model (described
in Ref 2) and are averaged across time (see Section 2.3.3)
(iii) The calculation of the 'theoretical' values is explained in Section 2.3.3
(iv)  The location of each position given in the table is shown in Figure 3

(v) These results are shown graphically in Figures 17 & 18



TABLE 5 The non-linear problem with bathymetry A: numerical solutionm

of one dimensional form of equations (2.1) - (2.3)

DEPTH (m) PERIOD T=6s PERIOD T=15s
Position Max Spectral Max Spectral
Elevation Amplitude Elevation Amplitude
(1) 10.0 0.38 0.36 0.10 0.10
(2) 8.6 0.38 0.36 0.11 0.10
(3) 6.6 0.40 0.37 0.11 0.10
) 5.8 0.39 0.36 0.11 0.10
(5) 5.0 0.42 0.37 0.12 0.10
(6) 4.2 0.42 0.36 0.12 0.11
@ 3.4 0.48 0.41 0.12 0.12
(8) 2.6 0.51 0.42 0.14 0.12
9 2.0 0.57 0.47 0.16 0.13
(10) 2.0 0.58 0.47 0.17 0.14
(11) 2.0 0.58 0.47 0.18 0.14
(12) 2.0 0.58 0.47 0.20 - 0.14
(Input wave amplitude (Input wave amplitude
= 0.35m) = 0.1lm)
(i) The spectral amplitude values incorporate the energy associated

with the fundamental frequency (¢ 1/T) and its first two harmonics
(2/T and 3/T)

(ii)  The location of each position given in the table is shown
in Figure 1

(iii) The results are shown graphically in Figures 20 & 21



TABLE 6 The non-linear problem with bathymetry B: numerical solution
of equations (2.1) - (2.3)

DEPTH (m) PERIOD T = 10s
Position Max Elevation Spectral Amplitude
(1) 10.00 0.11 0.10
(2) 9.50 0.11 0.10
(3) 8.85 0.10 0.97
(4) 8.40 0.11 0.98
(5) 7.25 0.11 0.10
(6) 6.55 0.11 0.11
N 6.10 0.12 0.11
(8) 5.38 0.12 0.11
9) 4,98 0.12 0.11
(10) 3.85 0.12 0.11
(1) 2.75 0.14 0.13
(12) 2.15 0.18 0.15
(Input wave amplitude = 0.1lm)
Notes
(1) The spectral amplitude values incorporate the energy associated

with the fundamental ffequency (Z 1/T) and its first two harmonics
(2/T and 3/T)

(ii)  The location of each position given in the table is shown
in Figure 2

(iii) The results are shown graphically in Figure 22



" TABLE 7 Results with bathymetry'D: numerical solution of the linear (equations
(2.8) - (2.10)) and non-linear (equations (2.1) - (2.3)) problems.
DEPTH | Spectral Amplitude Maximum Elevation 4 (Wave Height)
Position (m) = linear spectral - non linear - non-linear
analysis

(1) 5.00 0.02 0.03 0.02
(2) 4.00 0.02 0.03 0.02
(3) 3.03 0.02 0.03 0.02
(4) 5.00 0.11 0.12 0.11
(5) 5.00 0.07 0.08 0.07
(6) 4.35 0.07 0.08 0.07
(7) 3.65 0.07 0.08 0.07
(8) 3.05 0.07 0.08 0.07
9) 2.45 0.07 0.08 0.08

(10) 1.78 0.08 0.09 0.08

(11) 1.28 0.08 0.10 0.09

(12) 1.00 0.09 0.13 0.10

(Input wave amplitude =
Notes
(1)

(ii)

(iii)

Points (1) to (3) are in the shadow of the wedge.

positions are shown in Fig 4.

The linear results are identical to the non-linear.

The results are shown graphically in Fig 26.

The spectral amplitude values incorporate the emergy associated with the

fundamental frequency (= l/T) and its first two harmonies (2/T and 3/T).

The locations of all the



TABLE 8 Results for the breakwater gap problem, and comparison with

theoretical results

Wave Amplitude (m)

Position Present Model Montefusco Smallman
(spectral analysis) (Ref 6) (Ref 5)
1 1.36 1.20 1.10
2 1.27 1.13 1.00
3 1.18 1.07 0.90
4 1.08 0.99 0.80
5 0.99 0.89 0.70
6 1.10 1.00 1.00
7 1.01 0.92 0.90
8 0.74 0.83 0.80
9 0.67 0.75 0.70
10 0.58 0.67 0.60
11 0.55 0.58 0.50
12 0.52 0.49 ' 0.40
13 0.49 ‘ 0.46 0.30
14 0.46 0.43 0.20
15 1 0.80 0.79 0.70
16 0.59 0.64 0.60
17 0.43 0.52 0.50
18 0.27 0.36 0.40
- 19 0.16 © 0.29 0.30
20 0.13 0.24 0.20

(i) The gap configuration is shown in Figure 29. The depth
everywhere is 10m, the incident wave period is 10s, and
the gap width is therefore 1.75 wavelengths

(ii) The Montefusco results were obtained by interpolating

between given values.



TABLE 9 Random wave tests for regular wave groups with primary
frequencies 0.07Hz and 0.10z. Water depth 10m, Ax = Sm,
At = 0.34s. Expected wave amplitudes are 0.075m at £ = 0.03Hz
O.3m at £ = 0.07Hz and 0.5m at £ = 0.10Hz

Dist from ~ Amplitude (m) at
paddle (m) f = 0.03Hz f = 0.07Hz £ = 0.10Hz
2.5 0.073 0.33 0.47
62.5 0.071 0.33 0.44
112.5 0.076 0.32 0.45
162.5 0.073 0.30 0.46
212.5 0.077 0.32 0.47
262.5 0.079 0.34 0.47
312.5 0.076 0.32 0.46
362.5 0.070 0.31 0.46
412.5 0.075 0.30 0.48
462.5 0.078 o 0.31 0.48
512.5 0.070 0.31 0.47

562.5 0.081 0.33 0.47



TABLE 10 Random wave tests tests with Pierson Moskowitz spectrum Tp = 10s

Water depth = 10m, Ax = 5m, At = 0.34s, 1024 time steps analysed,

Af =
Dist from Primary component at 0.109¥z
paddle (m) S(f) (w2s) a(m)
2.5 14.4 0.58
62.5 13.1 0.55
112.5 13.3 0.55
162.5 14.5 0.58
212.5 16.7 0.62
262.5 13.9 0.56
312.5 15.7 0.60
362.5 16.5 0.61
412.5 16.7 0.62
462.5 16.0 0.61
512.5 _ 13.9 0.57
562.5 15.8 0.60

Expected value 14.1 0.57
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(2.8) - (2.10)) for bathymetry B, period T =10s. Input wave amplitude
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Fig 25 Surface wave elevation for non-linear waves, period T = 10s,
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APPENDICES.






Boussinesq equation

APPENDIX 1

DERIVATION OF SET DOWN AMPLITUDES

The expression for the second order elevation for the

Boussinesq equation at any point x at time t is given

by
(2) n n-1
X,t) = A.. (w. .t-k. .x+e..) (A1)
n ( ’ ) ]Z-=j+1 2-'::1 ij cOs mlJ ij E]—J ’

where Aij is defined in the expressions following

(3.2), and the notation of section 3.2 is retained.

By substituting m = i-j, equation (Al) can be

rewritten as

(2) o-j n-1 )
X,t) = A, . cos(w., .t-k,, .x+g. .
" '©) £=1 §=1 jomi %00 5m3 " jam i jum

" (A2)

It should be observed that the term . . is
. J+m]

independent of j as,

o . P - W.

ISR I

2 (F. - f.

T 54m T Y

2 Af ((j+m - %) - (§ -3))
2% Afm.

"

i

again reference should be made to the notation of

section 3.2. To make the dependence of wi+mj clear we

will write

w = wj+mj = 2% Af m,

so that (A2) becomes

n-j n-1

P, =77 a.

.cos (wt -k, .x+e. .)
m=1 j=1 ™™ "

1+m]



The above can be rewritten as,

(2) n-1 n-k
(x,t) = A, .cos (wt-k, .x+eg. .)
" ’ £=1 §=1 j4m] (o j4mj €i4mi’?

which allows us to put the expression for second order

elevation in the following form:

D0 = E—l D cos (wt + 6m) (43)
n ’ L m wm .

1

In equation (A3) D is the set down amplitude

associated with the difference frequency wm, which is

given by,
n-m
2 = - 2
Vm (§=1 Ajmi % Cjmi = Kjeni®)
n-m
i - 2
+ (§=1 Aj+mj sin (€j+mj kj+mjx)) y (A4)
and 6m is such that
n-m
A, .sin (eg., . - k. .x)
§=1 j+mj j4mj j+mj
tan ém = (A5)
n-m
Yy A, .cos (e, .-k, .x)
- J*mi j+mj j+mj
J
Laplace's equations Using a similar analysis to that given above for
and free surface equation (3.4) it can be shown that the second
boundary condition order elevation term can be written in the form,
(2) ot - =
n (x,t) =Y D cos(w t + m), (A6)
=1 ™ m

where ﬁm is the set down amplitude associated with the
difference frequency aﬁ. Following equations (A4) and

(A5) D and §_ are given by
m m



D2 = - 2
D (ijl Aiimy 08 (ess kj+mjx))
(A7)
n-m
A - 2
PO Ry 05y T K i)
and
n-m _
A, . si X - . .
. 2-:1 jtmg S Rpuns® - i)
tan § =4 , (AR)
m n-m
A, .cos (k. .x -g. .)
§=1 jtmj j+mj j+mj

where Aij, j =1 to n-1, i = j+1, n is given by the

expression following equation (3.4).

Equations (A4) and (A7) can be used to calculate the
set down amplitude for a particular difference
frequency resulting from the Boussinesq equations, and
from Laplace's equation and its free surface boundary

conditions.,








