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The develoPment of a numerical uodel for the solution of the Bouseineeq
equatione for shallow water weves. Varieble depth case. I) V Jonee and

J V Snallman, Report No SR 159, February 1988.

ABSTRACT

Thie report deecribes the further development of a finite difference
which was originally fornuleted to eolve the Boussinesq equatioae in
of constaat depth. Ttre main objective of the work reported here was
extend the uathematical nodel to allos the effects of depth variation
included. rn addition, changes ryere aleo uede to the existing nodel
boundary conditions to allow a random wave train to be specified as input.

The first stage in the implementation of the varying depth terma was to
extend the predictor-corrector finite difference scheme so that advantage
could be taken of the computer power of the distributed array processor
(DAP)- once this sas complete the model was tested f i ret  foi  a
one-dimensional sloping bed to check that shoaling was correctly
represented. The results from the nodel for this caae.yere conpared with
theoretical solutions, and the agreement was found to be good.

A eeries of tests were then car:ried out to test the trro dimensional caae.
These involved both tests to examine linear and non-linear refraction and
shoalingr and also diffraction by breakwaters in varying depth. Good
agreement was found between the model results, theoretical solutions and the
reeulta from other mathematical uodels where these were available.

The remainder of the report describes the implenentation of randou wave
boundary conditions in the nodel. Couparisons were made yith theoretical
results and it was found that the numerieal model gave,a reasonable
representation of set down effecte for a random wave train in sater of
constant depth. It was reeonrmended thet further tests ehould be ,carried out
to examine these effects in sater of varying depth, once physical model
results are available for comparison. This would allow the numerical nodel
with random weve input to be tested more rigorously.

rn cooclusion, the extended numerical model was found to give a good
representation of the effeets of refraction and shoaling, and diifraction by
breakwaters in varying depth- Ttre nodel "also suceessfully reproduced the
effects of set dorn beneath a randou save train in.rrater of constant depth.

model
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INTRODUSTION

SOTUTION FOR

VARYING DEPTH

The development  of  a numer ical  model  for  the solut ion

of  the Boussinesq equat ions for  shal low water  waves ln
water  of  constant  depth was descr ibed in a repor t  by

Snal lman et  a l  (Ref  l ) .  Two speci f ic  recommendat ions

given there wefe that  in  order  to represent  more

real is t ic  s i tuat , ions the numer ical  nodel  should be

developed fur ther  to inc lude the ef fects of  vary ing

depth,  and to a l low random inc ident  r^raves.  The

present  repor t  g ives deta i ls  of  the inplernentat ion

both of  these aspects in to the ex is t , ing numer ical

node l .

The remainder of  th is  repor t  is  d iv ided into t ,hree

ma in  chap te rs .  A  d i scuss ion  o f  t he  Bouss inesq

equat ions for  vary ing depth is  g iven in Chapter  2,

together  wi th a descr ipt ion of  the nuner ica l  method

which was used to solve them. Several  test  problens

were solved using these equat ions for  var ious

bat ,hsrnetr ies.  The resul t ,s  f rom these tests are arso

given in Chapter  2,  t ,ogether  wi th deta i ls  of

compar i .sons wiLh theoret ica l  so lut ions and other

nunerical nodels. The inplenentation of a random $rave

input  in to the Boussinesq model  is  descr ibed in

Chapter  3.  Deta i ls  are a lso g iven in th is  chapter  of

tests which were carried out Lo ensure that the nodel

was operat ing correct ly  wi th raodom inc ident  r raves.

The conclus lons and recommendat ions ar is ing f rom the

research descr ibed in th is  repor t  are g iven in the

f inal  chapter .

The two d imenslonal  Bousslnesq wave

given in a prev ious repor t ,  (Snal lman

2 . L  O u t l i n e  o f

approach

equat ions were

et ,  a1 ,  (Ref  11 ,
9

\
I



rrhere their derivation and meaning were

For convenience they are restated here:

expla ined.

Es, a
e * -
d t  d 1

a u  0 q
i r + U F +
o f  d x

(utr) + Lo y

0 q  3 s

"5T 
= -88; *

0 y  0 y  3 y  E 7
ET.*r5;*"8 =-gry*

1  a [33 ( "a )  *'  - a *2a t

- L a'f 33"-
o  - ^  ,  ^

d x -  d t

I  , r  03 ( , ra)
z "\t;-vt5T *

(vh) = 0 ( 2  . 1 )

( 2 . 2 )

3 3  ( v d ) r
f f i l
d ;  d y d  t '

o 3.,
t r e

d x  d y  d t

1-6 uzl-al" ̂- d ;  d y  d t

a3 (. 'a)r
t  lo . '

03. ,  \+ _ )
o Y t  E t

( 2 .3 )

where u and v are depth averaged velocity componeuts

(r" - I  )  in  the hor izonta l  x  and y d i rect ions

respect ive ly ,  z  is  the water  sur face e levat ion (m)

above datum, which is  the st i l l  water  leveL,  and

h = d+zr  nhere d is  the mean water  depth (n) .  In

Ref  1,  the equat ions were solved for  the case where

the depth d was everywhere constant .  We now consider

the more general  case where the depth var ies as a

function of x and y.

In order  to inc lude the ef fect  of  depth var iat ion,  we

need  to  so l ve  equa t i ons  (2 .1 )  t o  (2 .3 )  wh i ch  i nvo l ve

te rms  i nc lud ing  the  d i f f e ren r i a l s  o f  ( ud )  o r  ( vd ) .  To

do th is  i t  is  necessary to modi fy  the f in i te

di f ference scheme which was used to solve the

equat ions for  the constant  depth case.  This

rnodi f icat ion to the f in i te  d i f ference scheme is

e x p l a i n e d  i n  S e c t i o a  2 . 2 .

To gain understanding of  the behaviour  of  the

numer ical  model  wi th vary ing depth,  the problem has

been considered in four  s tages.  The s implest  of  these

is g iven by the one d imensional  l inear  shal low water

equat ions,  which are obta ined by neglect ing the th i rd



order and non-ltnear

o f  equat ions  (2 .  l )  to

terns in the one dimensional forn

( 2 . 3 ) :

d z 0
- ! _

0t 0x

0u dz
ar + e6;

b z - 0
0 t ' 0 x

0u dz
ar + 8a;

(uh)  =  $

= Q

(uh)  =

=|a

0

rd90l
0xz0t

, . b 3 t \
\o.2or J

( 2 . 4 )

( 2 . 5 )

( 2 . 6 )

( 2 . 7 )

The nuuerical model has been used to solve Lhese

equat ions for  a one-dimensional  shoal ,  that  is  the

case in which the waves are normal ly  inc ident  on a

s lop ing  bed  w i th  pa ra l l e l  con tou rs  ( see  F ig  l ) .  The

resul ts  f rom the numer lcal  nodel  for  th is  case are

d e s c r i b e d  i n  S e c t i o n  2 . 3 . 1 .

The next  s t ,age $ras to extend equat . ions (2.4)  and

(2 .5 )  by  i nc lud ing  the  d i spe rs i ve ,  t h i r d  o rde r  t e rms :

-tu,

These equat ions were solved numer ical ly  for  the sane

ba thyme t r y  as  was  used  fo r  equa t i ons  (2 .4 )  and  (2 .5 )

The nodel  resul ts  are descr ibed in deta i l  in  Sect ion

2 . 3 . 2 .

The next stage lras to consider an extension to two

d imens ions  o f  equar ions  (2 .6> and,  (2 .7 ) .  Th is  i s

equ iva len t  to  l inear is lng  equar ions  (2 .1 )  to  (2 .3 ) ,

which results in the fol lowing:

( vh )  =  6 ( 2 . 8 )
d z  A  - .  A
or+o* (un)+E



0u
ur=-g .  a 3  ( v d )

? !F-.-F-F
d x  o y  d t

(2 .e )

(  2 . 1 0 )

E 2
rr' *
o x !a

-tu' r  83, ,
- 3x2o t .  0 3 . ,

Y f f i
d x  d y  d t

0 y  3 s
ET=-sE * r  a3  (ud)\8Frt-tr

-Iu'(
-  a3  ( va )  r* - J

Brit .
w *
o x  d y  d t

la

2.2  The f in i te

di f ference

scheme

The solut ion to these equat ions was found for

bathymetr ies which a l low both shoal ing and ref ract ion

of  the waves to take p lace (see Figs 2 and 3) .  In

addi t ion,  a breakwater  was int roduced to s tudy

d i f f r ac t i on  ( see  F ig  4 ) .  These  resu l t s  a re  d i scussed

i n  S e c t i o n s  2 . 3 . 3  a n d  2 . 3 . 5 .

Final ly,  the ful1 non-l inear problem given by

equat ions  (2 . t1  to  (2 .3 )  was  so lved.  Th is  was done

f irst ly for a one dimensional shoal,  secondly for the

bathynetry which al lows shoal ing and refract ion, and

lastIy for a case where di f f ract ion by a breakwater

l tas represented. The solut ions of the two dimensional

non- l inear  p rob lem are  d iscussed in  Sec t ions  2 .3 .4  and

2 . 3 . 5 .

The f in i te  d i f ference scheme descr ibed in Ref  1 was

formulated to solve the constant  depth form of

equa t i ons  (2 .1 )  ro  (2 .3 ) .  Some mod i f i ca t i ons  t o  t he

scheme given in Reference 1 are requi red to the th i rd

order  terms,  to a l low for  a vary ing depth.  The f in i te

d i f f e rence  app rox ima t i ons  to  t he  d i f f e ren t i a l s  o f  u

and v,  which form the last  terms of  equat ions (2.2)

and (2.3)  here,  can be der ived f rom the constant  depth

scheme s inply  by changing thei r  coef f ic ients f rom l - /3

to  -1 /6 .  The  d i f f e ren r i a l s  o f  ud  and  vd ,  wh i ch  fo rm

r  o3 (ua)'m

a 3 v  . l

av2a t t



the  penu l t imate  te rms in  equar ions  (2 .2 )  and (2 .3 ) ,

require addit ions to the scheme.

The di f ferent ia l  operators are ident ica l  to  those for

constant  depth,  and so the f in i te  d i f ference

descr ipt ion of  the terms can be wr i t ten inrmediate ly .

In the notat ion of  Ref  1,

Il

L r J ' t

.  ^ r !  
/ -  

' ,

I  r"al] l? . . .  -2(ud)]*? , *
1 + r t J l - i  1 r l - ?

(, ,a)}*i . ,
1 - r  r  l - i

r  s3 (va)  rnLFryT?ri, i-+ =

\. r, \);; \_,/.

zAt(ax)2

1
ztriryE

-<"uli:1, r_*1
( 2 . 1 1 )

]
2

(2 . t2 )

t 
( "d) l:i, . - ("d) l:!,, - <"ar il|, i -r*t"u)lli, : -,

-("a)ll? .+(va)T-tl l!, i*t"a)l;, 5-1 - ("a)fli, :-r,
I,-

i+*, i

r  33 (ua )  r nt f tFf l  i - * ,  j - l  
=

1,(ud)i l ]-a-,"u)l l i ,3-:-t,a)i+l-
lAsAyAg t 

,- -- '  - (ud) T-]-:*t"al i l i  , i-r*( 'u) i, . i-

[ 3 3 (.'a) t ,,' i5 l ' , -* , j -1

-rl-
3zz+(ud)  i - i , i -z rz

arz-(ua)l  - i , i - t1,

(  2  . 1 3 )

I 
("d)l: i, .-2(vd)fl i , i-r*( 'cl i l !, 5-z

- ("d)l-i, .+z (va) fli, .i_r - r'ull-i, :-rt
2 ( L y ) z L 1

( 2 . 1 4 )



2.3  Numer ica l  resu l ts

The constant  depth f in i . te  d i f ference expresslons are

g i ven  i n  equa t l - ons  (4 .5 )  and  (4 .6 )  o f  Re f  l .  To

generate the equlvalent  vary ing depth expresslons,  two

simple changes to these equat ions are requi red.

F i r s t l y ,  t he  s i gns  and  coe f f i c i en t s  o f  t he  t e rms

represent ing the th i rd order  d i f ferent ia ls  of  u and v

must  be ehanged,  as expla ined above.  Secondly,  the

e x p r e s s i o n s  i n  e q u a t i o n s  ( 2 . 1 1 )  t o  ( 2 . 1 4 )  n u s t .  b e

mul t ip l led by (2At) ,  to  achieve the correct  form, and

then  i nco rpo ra ted  i n to  equa t i ons  (4 .5 )  and  (4 .6 )  o f

Re f  1 ,  acco rd ing  t . o  equa t i ons  (2 .2 )  and  (2 .3 )  he re .

The stabi l i ty  and accuracy constra ints  of  t ,h is  vary lng

depth f in i te  d i f ferent  schene,  are of  a s in i lar  form

to those for the constant depth scheme. The sane

methods are aLso used to impose boundary conditions

around the edges of  the f in i te  d i f ference mesh.  These

were d iscussed in deta l l  in  Reference 1.

The new f in iEe d i f ferenee scheme descr ibed in

Sect ion 2.2,  inc ludes terms which model  the ef fect  of

vary ing depth.  However,  for  a bed of  constant  depth,

the new scheme should give exactly the same solution

as Lhe constant  depth scheme. The new scheme was used

t ,o solve a constant  depth case descr lbed in

Ref '  I ,  and ident ica l  resul ts  were obt ,a ined.  This

indicat ,es that  the new f ln i te  d i f ference expressions

correct ly  represent  the re l -evant  terms in the

equat l -ons for  constant  dept .h.

A11 the resul ts  presented in th is  chapter  are for  a

s ing le  s i nuso ida l  i npu t  wave ,  t he  pe r i od  and  amp l i t ude

of  which are var ied for  d i f ferent  cases.  The wave is

int roduced a long one boundary at ,  a  l ine of  u veloc i ty

point .s .  These may be thought  of  as represent ing a

wave paddle.  In  a l l ,  f ive bathynetr ies were used in

t . he  va r i ous  tes t s  ( see  F igs  I  t o  4  and  29 ) .  Fo r  t hose



bathymetr ies where th is  paddle extead.s over  the ent i re

western s ide of  the mesh,  a sponge layer  absorbing

boundary condi t ion (see Ref  l )  is  used.  on the eascern

side.  For  the wedge breakwater  (see Fig 4) ,  an

addi t ional  sponge layer  a lso covers the nor th s ide,

and for t,he breakwater gap (see Fig 29) sponge layers

cover  the nor thern,  eastern and southern s ides.

2 .3 .1  So lu t i on  o f  l i nea r  sha l l ow  wa te r  equa t i ons

In th is  seet i .on,  the nuner ica l  so lut ion of

equa t i ons  (2 .4 )  and  (2 .5 )  w i t h  ba thyne r r y  A  ( see

Fig 1)  i -s  d iscussed.  The resul ts  are shown in

Figures 5 to 8 and tabulated in  Table l .  The f i rs t

three graphs show the variation in maximum wave

anpl i tude wi th water  depth,  for  t ,he per iods 6,10 and

15s  respec t i ve l y .  I n  each  case ,  a  t i ne  h i s to ry  o f  512

values for  each of  12 posi t ions at  d i f ferent  depths,

has been spectrally analysed, and the wave anpllt,ude

so predicted is  g iven by the curves label led spectra l

analys ls .  Addi t ional ly ,  the maximum anpl i tude of  each

tinne hist.ory is shown, as the curves labelled maximum

anpl i t ,ude.  The chosen posl t ions are indicat ,ed in  the

Figure 1.  A s in l lar  notat i .on is  used for  a l l  the

tes t s  desc r i bed  i n  l a te r  sec t i ons .

The two remaining curves on Figures 5 to 8 are the

theo re t i ca l  so lu t i ons  (a )  and  (b ) .  These  so lu t i ons  do

no t  i nco rpo ra te  t he  s lope  d i scon t i nu i t i . es  ( see  F ig  l ) ,

which are a considerable compl i -eat ion,  and so t ,hey can

only gi-ve an approximate indication of wave behaviour

wi th bathynetry A.  Both solut ions are der i "ved f rom

equa t i ons  (2 .4 )  and  (2 .5 ) .  So lu t i on  (a )  l s  ob ra ined

by  assuming  a  gen t l e  change  i n  dep th  re la t i ve  t o

wavelength,  and the fo l lowing forn for  u and.  z ,

s i nuso ida l  i n  t ime :



u = uo(x) . i(ort-Jt ax)

z = zo(x).r(r 'r t-Jt ax)

Hence,  i f  A is  the
n

d e p t h d , a n d A  i s
n o

w i t h d e p t h d , t h e n
o

= constant

wave amplitude at.

the wave anplit,ude

( 2 .  1s )

(2 . r 6 )

( 2 . 1 7  )

po in t  n ,  wL th

a t  po ln t  o ,

where to is  the angular  f requency,  and k is  the

wavenumber .  Subs t i t u t i ng  equa t i ons  (2 .15 )  and  (2 .16 )

i n to  equa t i ons  (2 .4 )  and  (2 .5 ) ,  and  mak lng  some

sinpl i fy ing assumpt ions leads to the wel l -known

re la t i on :

{zo(x) 12 t  Ga)

oo = [ ] ) t 'u
n

This equat lon forms the

r e s u l t s  h e r e ,  A o  =  1 . 0 .

I f  a  l inear  var iat ion Ln

that

d = d o - p x

where p ls  the gradlent  of  the

e q u a t L o n s  ( 2 . + 1  a n d  ( 2 . 5 )  c a n

assumi-ng a separated solut ion

.  i o t
z ( x , t )  =  z o ( x ) e -

( 2 .  1 8 )

bas ls  o f  so lu t lon  (a ) ;  fo r  the

water depth is assumed, such

( 2 .1e  )

va r i a t l on ,  t hen

be solved exact ly ,  by

o f  t he  f o rm :

( 2 . 2 0 )

A
o

Some man ipu la t i on  o f  equa t i - ons  (2 .4 )  and  (Z .S ) ,

us ing  equa t i ons  (2 .19 )  and  (2 .20 ) ,  l eads  to  t he

equat ion:

and



d,2z

v2 --2
dv2

where

dz.r# 4 u 2 y 2 z o
= Q (2 .2 r )

( 2 . 2 2 )

(2 .23>

( 2 . 2 4 )

pc

This has t ,he general  so lut ion

zo (x )  =  c1  Jo (o )  +  cz  yo (o )

d r

y=(x- f ) t

e = -*h ri- "l*where

and  J  ,  Y  a re  Besse l r s  f unc t i ons  o f  t he  f i r s t  and
o o

second k inds,  respecLively .  The constants C1 and C,

can be found using the init lal values of wave

elevat ion and speed.

Equa t i on  (2 .23 )  g i ves  t he  t , heo re t i ca l  so lu t l on  (b ) .

This inc ludes ref lect ions f . rom the s lope,  and is  an

lmprovement  over  solut ion (a) .  The int .er ferenee

pat tern caused by Ehe ref lect ions,  which resembles a

perturbat ion about .  the s lmpler  soLut ion,  is  in  each

graph i .n  phase wi th the s in i lar  pat tern ln  the

numer ieal  resul ts .  The fwavelengthr  of  the

inter ference is  the same in each case,  and appears to

be approxinate ly  proport ional  to  per iod.

The numer ical  resul ts  have a re lat ive ly  exaggerated

inter ference pat tern,  whlch is  probably connected Lo

the s lope d lscont lnui t ies which are not  nodel led by

the theoret ica l  so lut ions.  Whi le there is  general ly

good agreement, between the numerical and theoret,tcal

values,  the theoret ica l  va lues are lower than t ,he

maximum ampl i t ,udes,  par t icu lar ly  wi th a 6s p 'er iod.

Apparent ly ,  th is  is  at  least  par t ly  due to energy

ref lected between the s lope and paddle,  which causes

the  e leva t i on  a t  pos i t i on  I  t o  be  g rea te r  t han  1 .0 .



In case these ref lect ions become less signl f lcant

after a tine long enough to allow many refl_ectLons, an

extended run for the 10s period was performed.

Ilowever, no substantial change was found in the

r e s u l t s .

Probably a lso because of  the d isconLinui ty  at  the t ,oe

of  t ,he s lope,  the var iat ion at  a point  on the s lope is

not .  s inusoidal ,  despi te the s inusoidal  input  l rave.  An

indicat ion of  th is  behaviour  can be seen f rom the

difference between the spectral analysis and maxinum

ampl i tude values in  F igs 5 to 7.  F igure B shows that

the fur ther  the point  is  f rom the toe of  the s lope,  ln

t .he d i rect ion of  decreasing dept .h,  the more s lnusoldal

is  the shape.  Ref lect ions at  the end of  th is  p late

are prevented by the sponge layer ,  shown in F lgure 1.

This feature wi.l l  be because the model, does not

properly resolve rsaves travel-l ing across the sudden

change in depth. This effegt can be expected to be

amel iorated by t ,he ln t roduct ion of  d ispers lon l "nto the

equa t i ons  ( see  the  nex t  sec t i on ) .

An ext,ra factor which makes Lhe 6s period case less

reliable, is the variation of the Courant number C, as

the water  depth changes.  This is  def ined as

C .  =  / ( gd ) ( 2 . 2 5 )

where At ,  Ax are t .he f in i te  d i - f ference increments in

t ine and space respect ive ly .  The stabi l i ty  condi t ions

C- < I  and C < t / {2 apply respect ive ly  to one and twor r
di .mensional  problems.  Accuracy considerat ions a lso

require C -  t ,o  be c lose to 1 or  I /  /2  Lo the respect ive- r

p rob lens .  F rom equa t i on  (2 .25> ,  1 t  i s  c l ea r  t ha t .  t he

accuracy condi t ion cannot  be sat is f ied at  both large

and smal l  depths.  This means that  in  the nuner ica l

model the wave travels slower in shbl{ow water than in

Ar
A;

t 0



t .he physical  s i tuat ion.

per iod,  for  t ,he s i tuat ion

celer i ty  at  the 2nn depth

corresponding 10s per iod

Analysls shows that for a

nodelled here, t,he error

is approximately 6%. The

error Is neat 2%.

6s

1n

2 .3 .2  The  e f f ec t  o f  i n t roduc ing  d i spe rs ion

In th is  sect ion,  the numer ical  so lut ion of

equa t i ons  (2 .6>  and  (2 .7 )  w i t h  ba thyne t r y  A  ( see

F ig  1 )  i s  d l scussed .  The  resu l t , s  a re  shown  i n

Figures 9 to 12,  and tabulated in  Table 2.  The graphs

show curves labelled maxlmum anplitude and spect.ral

analysis, which have the same meaning as explalned in

Sec t i on  2 .3 .1 .  The  ex t ra  conp l i ca t i on  o f  t he  t h l rd

order  terms in equat ion (2.7) ,  means that  an approach

s in l l a r  t , o  t heo re t i ca l  so lu t i on  (b )  g i ven  i n  2 .3 .1  i s

not  pract ica l  here.  Instead the Lheoret ieal  so lut ion

shown in F igures 9 to 1 l  is  der ived f ron the sol -ut ion

of  Laplacers equat ion for  the veloc i ty  potent ia l ,  wi th

l lnear ised f ree sur face boundary condi t , ions (see

S toke r ,  Re f  7 ) .  ' Th l s  g i ves  t he  d i spe rs ion  re la t l on :

o2 = gk tanh (kd)

^dcuC' cdkz

where k is the wavenumber and o

The group veloc i ty  Co is  def ined

('*a#%.)

where C is  the celer i ty ,  and

Equat ton (2.26)  can be solved

method to g i -ve k,  s ince o and

(2 .27 )  t hen  g i ves  Co ,  a t  t he

( 2 , 2 6 )

the angular frequency.

a s :

( 2 .27 )

( 2 . 2 8 )

the Newton-Raphson

known. Equat ion

d .

(r)
v - k

using

d are

depth

1 l



Now equat ion (2.18) has the more general  form

c l

on = (#)o oo e.2s)
gn

Thls equat lon appl les for  l inear  but  d lspers ive wave

mot ion,  and for  a s imple shoal  such as bathynetry A.

I f  equa t i ons  (2 .4 )  and  (2 .5 )  a re  used ,  t hen
I

C,  =  (Sd ) ' ,  and  equa t i on  (2 .2g )  reduces  to  equa t i on

(2 .18 ) .  S ince  C ,  i s  known  a t .  a  g i ven  dep th ,

equat ion (2.29)  g ives the theoret ica l  so lut ion shown

in the Figures.  This cannot  be expected to agree

exact ly  wiLh the numer ical  resul ts ,  for  t .hree

pr inc ipal  reasons,  over  and above l in i ta t ions in  the

numer ical  model :  (1)  equat ion (2.26)  is  der ived

assuming constant  depth,  and so cannot  s t r ic t , ly  be

used for  vary i .ng depth.  However,  in  pract lce th is

equat ion can be appl ted to a gent ly  vary ing depth;

( i i )  as wi th the theoret ica l  so lut ions of  t ,he last

sect ion,  the bed s lope d iscont inui t ies are not

node l l ed ;  ( i i i )  equa t i on  (2 .26 )  d i f f e r s  f r on  rhe

d i spe rs ion  re la t , i on  o f  equaL ions  (2 .01  and  (2 .7 )  -

t ,h is  is  d iscussed in Ref  l .  l lowever,  despi t .e  l ts

l in i ta t ions,  the theoret . ica l  so lut ion should g ive a

good approximat ion to the numer ical  resul ts .

I t  can be seen f ron Figs 9 to 1 l  that  the model

resul ts  are 1n good general  agreenent  wi th the

theoret ica l  so lut ions.  The most  ev ident  change

int roduced by the d ispers ion,  is  to  produce a

near-s inusoidal  var lat . ion everywhere.  Thls is

lndicated by the a lmost  ident ica l  spectra l  analys is

and maximurn anpllt,ude results, and also by the

prof i - les shown in F igure 12,  which d lsplay a.

s inusoidal  var lat ion wi th t ime at  three d i f ferent

depths.  This change is  probably because d ispers ion

spreads the energy across waves of  d i f ferent  speeds,

t 2



and so the bed d iscont inui t ies are ef fect lve ly

snoothed.

Conpari .ng Figures 9 to 11 (with dlspersion) with

F lgures  5  to  7  (no  d ispers ion) ,  there  are  bo th  c lear

sini lar i t ies and di f ferences. A sini lar interference

pattern, due to ref lect ions off  the slope (see the

las t  sec t lon) ,  occurs  in  bo th  se ts  o f  g raphs .  Aga in ,

the 6s period nu er ical  result ,s are furthest f rom the

theoret, ical  solul ion, and have the largest wave

anpl i tude at the toe of Lhe slope. The reasons for

this behaviour for the 6s case wi l l  be sinl lar to

those di .scussed in the previous sect ion.

2.3.3 The extension to two dinensions by including

refraet ion

Thls sect lon describes the numerlcal  solut ion of

equat ions (2.8) to (2.10).  Two bath5rmetr ies have been

used for these tests:  for bathynet.ry B (Fig 2),

results are shown in Flgures 13 to 16, and for

bathymetry C (Fig 3) the results are shown in

Figures 17 to 19. The results are tabulated ln

Tables 3 and 4 respect ively.  In these graphs, the

curves labelled spectral analysis and maxi-nnum

anplitude have the same meanlng as before. The

theoret ical  solut ion is based on the theorv of wave

ray paths across the vary ing bed.  A wave ray

defined as a l ine always perpendicular to the

crest .  On the assumpt ion of  conservat ion of

between rays,  l inear  theory g ives:

g 2 C  b = c o n s t a n t
o
o

( 2 . 3 0  )

1 s

wave

energy

where A is  the anpl i tude of  the wave,

veloc i ty ,  aad b the separat i -on of  che

the  no ta t i on  used  p rev ious l y :

C, the group

rays. Hence in

1 3



cb ,
A  =  f  

g o  o ) t  a- - n  \ c  b  r  " o
g n n

For  a  shoa l  w i t hou t  re f rac t i oo ,  bo  =

e q u a t i o n  ( 2 . 3 . 1 )  r e d u c e s  t o  e q u a t i o n

(2 .3 r )

brr' and

( 2 . 2 9 ) .  T h e

c
n

c
o

re f rac t i on  o f  a  ray  obeys  Sne l l r  s  l aw ,  i e .

si.n c
n

s i n  c
o

( 2 . 3 2 )

where c.  ls  the angle between the ray path and a l ine
L

perpendicular  to  the bed contours.  As descr ibed in

Sect , ion 2.3.2,  the wavenuober at  a g iven depth can be

found  f rom equa t i on  (2 .2 .6 ) ,  wh l ch  i n  t u rn  g i ves  t he

ce le r i t y  c -  f r om equa t . i on  (2 .28 ) .  Th i s  a l l ows
t-

calculat , ion of  the angle co f ron equat l .on (2.32) ,

whlch g ives the rat io  (bn/bo) .  The group veloc i ty  C*

is  found as descr ibed in Sect , ion 2.3.2,  and hence A,

can be found f ron equat ion (2.31) .  The theoret lcaL

solut lon g iven is  based on th is  equat ion.  I t  g ives an

approxination to the physical sl-tuat.ion which neglects

ref lect ions,  d i f f ract ion and the ef fects of  the bed

dlscont lnuLt i .es,  and is  s t r ic t ly  only  val id  for

constant  depth,  a l though can be appl ied to a gent ly

vary ing depth.  Fur ther ,  the d lspers ion re lat ion of

the equations solved numerlcally ls not identlcal to

the d ispers ion re lat lon used for  the t ,heoret lca l

solut lon.  However,  even wi th these l in i ta t l_ons,  the

theoret . ica l  so lut ion can be expected to prov ide a good

basis for  ver i f lcat ion of  t ,he resul ts  f rom the

numer lcal  model .  I t  can be seen f ron the appropr late

f igures t ,hat  for  both of  the bathynetr ies used ln the

tests,  the numer ical  nodel  resul ts  are in  good generaL

agreenent  wi th the theoret ica l  va lues

The resul ts  wi th bathynetry B wi l l  be d iscussed f i rs t

The posi t , ions chosen for  analys is  (see Fig 2)  are

spread throughout  the basin at  a range of  depths.  The

L 4



resul t ,s  at  these posl t ions are shown ln F igures 13 t ,o

15.  For  the 15s case resul t .s  were a lso taken at  an

al ternat ive set  of  polnts,  a long a l ine perpendicular

to the contours,  and star t ing near the lower edge of

the basin.  These posi t ions are a lso shown in

Figure 2 and the extra set ,  o f  resul ts  is  shown in

F igu re  15  l abe l l ed  as  po in t s  ( i i ) .  Th i s  was

pr inc ipal ly  done as a check on the resul ts  taken for

the or ig inal  locat ions,  t ,o  ensure that  these were

pr inc ipal ly  depth,  rather  than locat lon,  dependent .

Al though the resul t ing curve for  points ( i i )  is

smoother ,  t ,he same feat ,ures are apparent .

The wavelengths of  the in ter ference pat terns wl th

bathymetry B are clearly similar t,o t.hose of

bathynetry A,  despi te the d i f ferences in  geometry and

gradient  of  s lope.  I t  i .s  l ike ly  that  the J-arge

anpl i tudes found at  posi t ion 12,  near  to the top wal l ,

which are par t ieu lar ly  pronounced for  the 6s per iod,

are partly caused by reflect.ed energy. The boundary

condl t ion at  the top wal l  is  designed to absorb \ raves

of nornal incidence, but it allows some energy fron

glancing waves to ref lect .

As wi th the st ra ight  shoal ,  the d ispers ive terms in

the equat,ions ensure an almost si.nusoidal variation

everywhere, which is shown i.n Figure 16 for three

posl t ions.  However,  a s igni f icant  change caused by

t,he refraction, is a reductlon in wave anplitude over

par t  of  the basin,  to  below the input  anpl i tude of

1 .0n .  Th l s  app l i es  t o  t . he  6s  and  10s  pe r i ods .  The

reason for  th is  is  c lear  i f  two adjacent  wave rays are

fo l lowed across the s lope.  The ref ract ion spreads the

rays  f u r the r  apa r t ,  and  so  f rom Equa t i on  (2 .30 )

reduces the wave ampl i tude.  At  shal lower depths,  the

decrease in C_ more than conpensates for  th is ,  andoo

Iarger  wave ampl i tudes are found.

1 5



The l5s per iod case deviates f rom the previous resul ts

wlth bathynetry A, by havlng a larger anplit.ude at the

toe of  the s lope.  I f  th is  large e levat ion is  the

resul t  o f  construct ive ln ter ference between t ,he

inconlng wave and ref lected waves,  then i t  wi l l  te

sensi t ive to both the bathynetry and the d is tance

already travelled by the input si_ne wave. Comparison

of  F igures I  and 2 shows that .  both of  these

geometr ica l  factors change considerably,  and so the

d l f f e rence  i n  resu l t s  i s  no t  su rp r i s l ng .

Bathymetry C has a much shallower gradlent than

bathynetry B (compare Flgs 2 and 3) ,  and the greatest

water  depth is  5n.  I t  is  t ,herefore a less st r ingent

test  of  the numer ical  scheme and governing equat ions.

Figures 17 and 18 show a conparlson bet.ween the

numerLcal  resul ts  of  th is  model ,  and those of  an

al ternat ive f in l te  d l f ference model ,  due to Copeland

(net  21,  for  an Lnput  wave ampl i tude of  0.5n and the

pe r i ods  6s  and  10s ,  respec t i ve l y .

Spectra l ly  analysed resul ts  for  the present  model  were

not  avai lable.  Copeland's  nodel  resul ts  are

anpl i tudes averaged across a t ime h ls tory,  whereas the

results shown for the present rnodel are maximum

anpl l tudes.  Therefore i t  is  to  be expect ,ed that  t .he

naximum ampl l tudes wi l l  be the greater ,  as is  the

case. The Copeland solut,ion has a tendency,

independent ly  of  per iod,  to  have a const .ant  e levat ion

between t .he depths 2.2m and 1.8rn.  Despi te thLs,  the

solut ions agree wel l  wi th each other  and the

theoretLcal  so lut lon,  par t icu lar ly  for  the 6s perLod,

whlch is  the case considered by Copeland in h ls

or lg inal  work.  I t  seens logical  that  the numer ical

values should exceed t ,he theoret ica l  ones,  s lnce the

theoret lca l  so lut ion does not  lnc lude d l f f ract ion or

re f l ec t i on  e f f ec t s ,  wh i ch  the  f i n l t e  d i - f f e rence

nodel  does represent .

B
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Flnal ly,  to glve a general  lmpression of the surface

behavlour,  isometr ic plot .s are shown ln Figure 19,

across part  of  the basin with bathynetry C, for a l5s

period. The refract ion effects can be clear ly seen,

and the var iat ion with t lne 1s as expected, because

Lhe t iues 50, 100, 150 and 200s are equivalent.  to 3+,
1 7

65T, l0T and 13f l  respect ively,  where T ls the

per iod .

2.3.4 The introduct i-on of non-l inear terms

This Sect ion descr ibes the numer ical  so lut ion of

Equa t i ons  (2 .1 )  t o  (2 .3 ) .  The  p rob lem has  been  so l ved

1n one dinension wtth bathymetry A, and in two

dimensions with bathynetry B. For the one dinensional

problem, the per iods 6s and lOs were used.  For  the 6s

per iod,  the resul ts  are shown ln F igures 20 and 23,

and  fo r  t he  10s  pe r l od ,  i n  F igu res  21  and  24 :  resu l t s

for  both per iods are tabulated ih  Table 5.  For  the

two d imensional  problen the per iod 10s was used,  and

the resul ts  are shown in F lgures 22 and 25(b) ,  and

tabulat ,ed in  Table 6.  F igure 25 contrasts lsometr ic

v lews of  the lOs per iod solut ions wi th bathynetr ies A

and B. As wel-l as showing non-linear rnodel resuLts,

Figures 20 t,o 22 al-so show the equivalent l inear

spectra l  analys is  resul ts  for  conpar ison.  The maximum

anplitude curve has the same meaning as before, and

the curve labelled input frequency eomponent glves the

wave amplltude associated with the input frequency.

The spectral anplitude curve is calculated using the

energy associated wl th tbe i .nput  f requency and i ts

f i rs t  two harmonics,  whi le  the curve label led

l  (waveheight , )  is  se l f -explanat ,ory,  and is  inc luded to

put  the maximum ampl i - tude values in to perspect ive.

The conplex i ty  of  the non- l inear  problem does not

adni t  a  theoret lca l  so lut ion.

L 7



The lnput wave anplltudes used t,o produce these

resu l t s  we re  0 .35n  fo r  t . he  6s  pe r i od ,  and  0 . l n  f o r  t . he

10s per lod.  Such re laLively  smal l  anpl l tudes were

chosen  pa r t l y  because  equa t i ons  (2 .1 )  t o  (2 .3 )  a re

val id  for  snal l  anpl l tudes (a (< d) ,  and par t ly  to

ensure no breaking waves occurred,  as these are

outs ide the scope of  the model .  The most  s t , r ik ing

feaEures of  F igures 2O to 22,  in  compar lson wi th

previous l inear  rnodel  resul ts ,  are the large values of

maximum ampl i tude.  However,  th is  can be s l ight ly

misleadi-ng, as shown by the * (waveheight) curve, and

also by Figures 23 and 24.  I t  is  c lear  that  the

shoallng non-linear wave develops a more cnoldal forn

at shallow depth. This behaviour has been found

before both experimentally (Ref 3) and wlth another

numer lcal  model  (nee +; .  The d is t lnct ive wave shape,

wit,h sharp peaks and shallow troughs, is caused by the

lnteraction of t,he input. wave with its excited

harmonLcs.  F lgure 23 is  for  t .he.6s per iod,  and shows

that Ehe wave has settled to a steady shape ln the 2m

depth area,  which is  ev ident  a lso ln  the constant

maxLmum anplitude values for the same reglon Ln

Figure 20.  In  contrast ,  F igure 24 shows t .hat  the lOs

period wave changes forn in thls area, and t,his ls

ref lected in  the increasing anpl i tude for  th is  region

shown in Flgure 21. It is l ikely that a much longer

area at  the 2n depth would a lso a1low the 10s per iod

wave to set t le .

The linear spectral analysis curve has been included

ln Figures 2O to 22,  for  compar ison wi th the spectra l

anpl i tude resul ts  of  the non- l lnear  model .  Ident ica l

input waves were used in each ease, and so very

s in i lar  curves can be expected.  In  fact ,  the spect , ra l

ampl i tude curve ls  consistent ly  s l ight ly  larger ,

par t icu lar ly  in  the more shal low water .  This

phenomenon is supported by the work of Elgar and Guza

(Ref  3) ,  who have compared exper inenta l  resul ts  wi th

1 8



those of  both l inear  and non- l inear  numer ical  models.

They found that  the l inear  model  under-predicts ,  whi le

the non- l inear  model  over-predicts  the energy Levels

a t  h ighe r  f r equenc ies ,  pa r t i cu la r l y  i n  sha l l ow  wa te r .

They suggest  th is  faul t  in  the non- l inear  model  may be

due  to  t he  cond i t i on  a  <<  d  no t  be ing  sa t i s f i ed .

An in te res t ing  exper imenta l  resu l t  (Ref  3 ) ,  wh ich  the

non-l inear model predicts for a 10s period with

bathymetry A (the relevant results are shom in

Figure 2l-) ,  is the transference of energy from

input frequency to one of i ts harmonics. This

evidenced by the reduct ion in energy, along the

plateau, of energy associated with the input

frequency, with a corresponding increase in the

spec t ra l  ampl i tude.  Add i t iona l l y ,  exper imenta l

with a mi1dly sloping beach (Ref 3),  have shorm

the lowest frequency \raves are almost colnpLetely

ref lected, whi le the highest frequency lraves are

prinar i ly progressive. this helps to explain

waveheights ac the toe of the slope which are greater

than the input waveheight.

The inclusion of the l inear spectral  analysis curves

in Figures 20 to 22, shows that the wavelength of the

interference pattern caused by the incoming and

ref lected naves, is unchanged by the introduct ion of

the non-l inear behaviour,  for both bathynetr ies A and

B. The pattern evident ly depends pr incipal ly on the

bathymetry.

Figure 25G),  which is  for  the 10s per iod wave wi th

bathpnetry A,  demonstrates the development  of  a

cnoidal  wave,  wi th sharp peaks and shal low t roughs,  as

the wave shoals.  F igure 25(b)  shows the equivalent

s i tuat ion for  bathymetry B,  where the wave both shoaLs

and ref racts.  The smal l  e levat ions at  the far  end of

the

i s

2m

to ta  1

t e s  t s

that
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the basin ln  each case,  are because of  the sponge

layer boundary condit, lon Ehere.

2 .3 .5  D i f f r ac t l on  f r om the  co rne r  o f  a  "wedge"

breakwater

In th is  Sect lon,  the abi l i ty  of  the numer lcal  scheme

to nodel  d l f f ract ion 1s d iscussed.  Bathynetry D,

shown in F igure 4,  has been used,  which i .s  a

modi f ied vers lon of  bathymetry C.  A wedge has been

int roduced across 2/3 of  the open boundary,  as shown,

and so d i f f ract ion can be expected f rom i ts  corner .

Posi t ions chosen for  analys is  are s i tuat ,ed in  the

shadow of  the wedge (nunbers l ,  2  and 3) ,  a t  t ,he end

of the channel beslde the wedge (number 4), and

following the approxinate pat.h of a tay across the bed

(numbers 5 to l2) ,  as shown in F igure 4.  An extra set

of  th i r teen points have a lso been used,

behaviour  a long a l ine between posl t ions 4 and 5,  and

o

4

study the

at  in termediate points a long the ray path to c lar i fy

the in ter ference ef fect  due to ref lected energy f rom

the s lope.  These ext , ra points are not  shom in

Figure 4,  but  i f  the i r  posi t ions are requi red,  they

ean easi ly  be found using Ftgure 26.

As before, a sponge layer at the end of t,he basln ls

designed to absorb the waves inc ident  there.  This

tesf ,  was carr ied out .  wl th a 10s per lod input  wave,  of

anpl i tude 0. lm,  for  both the l inear  and non- l inear

cases,  and the resul ts  are shown in F lgures 26 to 28,

and tabulated i.n Table 7.

The t i t les of  the eurves shown in F igure 26 have the

same meaning as expla ined in Sect ion 2.3.4.  They g ive

a comparison between t,he l inear and non-linear

resul ts .  The non- l inear  spectra l  anpl i tude curve 1s

ident lca l  to  the l inear  spectra l  analys is  curve,

therefore both are p lot ted as one.  As in  the previous
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sect ion,  the ]  (waveheight)  curve puts the maximum

arnp l i t udes  i n to  pe rspec t i ve .  F igu re  27  i s  a l so  use fu l

i n  th is  respec t ,

a t  p o s i t i o n  1 2 .

l inear  so lu t ion ,

te rms.

as it shows the non-linear wave shape

I t  i s  p lo t ted  v i th  the  s i .nuso ida l

to show the effect of  the non-l inear

As expected,  the anpl i tudes at  posi t ions l ,  2  aad 3,

in  the shadow of  the wedge,  are smal l .  This  can be

seen in F igure 26,  and a lso in  F igure 28,  which shows

elevat ions across most  of  the basin at  four  d i f ferent

t imes ,  f o r  t he  non - l i nea r  case .  Wh i l e  F igu re  28  i s

ef fecc ive at  showing the general  features of  the f low,

in par t icu lar  the d i f f ract ion and ref ract ion,

Figure 26 is  more ef fect ive at  showing the var iat ion

in arnpl i tude across the basin.  The drop in ampl i tude

between posi t ions 4 and 5,  due to d i f f ract ion at  the

wedge corner ,  can be seen.  The toe of  the s lope

af fects the f low in the constant  depth area in  f ront

of  i t ,  causing the n in inum ampl i tude to occur  at  a

pos i t i on  nea r l y  20n  i n  f r on t  o f  t he  t oe .  A l so  c l ea r

is  the now fami l iar  in ter ference pat tern,  due to

ref lected energy,  as the wave shoals.

2.3.6 Di f f ract ion by a breakwater  gap,  wi th constant

water  depth

The work descr ibed in th is  sect ion was conducted as a

fu r the r  t es t  o f  t he  numer i ca l  node l r s  ab i l i t y  t o  mode l

d i f f ract ion,  and a lso to ensure that  a sponge layer

introduced on the southern boundary was functioning

co r rec t l y .  The  l i nea r i sed ,  cons tan t  dep th  f o rm  o f

e q u a t i o n s  ( 2 . 1 )  t o  ( 2 . 3 )  w a s  s o l v e d ,  a n d  t h i s  a l l o w s

compar ison wi th the ear l ier  theoret ica l  work of

Montefusco (Ref  6)  and Smal lman (Ref  5)

The solution dornain is shown in Figure 29. trlaves

per iod 10s are normal ly  inc ident  on a breakwater

o f

gap
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2.4 Summary

to  the west . ,  which opens onto an area of  const .ant

depth 10m. The nor thern,  easLern and southern wal ls

of  the harbour are 1 lned by a sponge layer  20 eel ls

wLde, where the cell .t idth is 5rn. The layer is thus

100m wide,  which equals approxinate ly  orre wavelength

of  the inc ident  wave.  For  conpar ison wi th the two

cheorecical  so lut ions,  the gap width was chosen as

1.75 wavelengths.  The twenty analys is  posi t , ions shown

in the f igure were chosen to correspond wi th the

theo re t i ca l  so lu t i on  pos i t i ons .

Figure 30 shows a compar ison beLween the spectra l ly

analysed resul ts  of  che present  nodel ,  and the

Lheoret ica l  so lut ions.  These are a lso tabulated in

Table 8.  Overal l ,  the agreement  is  good,  lnd icat ing

that  d i f f ract lon in to the breakwater  shadow ls  wel l

represented, and that the sponge layers are acting to

absorb wave energy. Further, the solution was found

to be synmetr ic  about  Lhe centre.  l ine and therefore

the soutbern sponge layer must be operatlng

eorrect ly .  F igure 31 shows t ,hat  the s inusoidal

behavlour of the input wave, is reproduced withln the

harbour,  as to be expected for  a l inear  solut lon.

The numer lcal  uodel  for  a solut ion of  the Boussinesq

equatlon ln rtater of constant depth, has been extended

to lnc lude the ef fects of  depth var iat ion.  This

requlred the int.roductlon of new terms in the finite

di f ference scheme represent ing the governing

equat i -ons.

The new f in i te  d i f ference scheme has been tested for  a

var iety  of  bathymetr i -es and harbour geometr les.  Good

agreement  has been found wi th both theoret ica l

solut ions and another  f in i te  d i f ference nodel ,  for

l inear  shoal ing and ref ract lon.  For  the fu l l

non- l lnear  scheue,  a l though no other  theoret ica l

2 2



3 . 1

RANDOM INCIDENT

WAVES

Background

solut lons or sui table numerLcal results are avai lable,

good qualitative agreement. has been found with

experimental  results.

Addi t ional  tests carr ied out  to  examine d i f f ract ion,

us ing a wedge breakwater ,  and a lso a breakwater  gap,

produced good resul ts .

It is iuportant that a numerical nodel of wave

disturbanee in harbours should represent  as far  as

possible the wave eonditions whi-ch occur in nat.ure.

In the approaches to a harbour r{aves wil l be random

and nul t i -d i rect ional  (shor t  crested) ,  and t ,he a lm

should be to reproduce this in harbour wave

disturbance models. Physical nodels have already made

signi f icant  progress towards th is  end,  see Bowers

(Ref  8) ;  numer ical  models are,  in  general ,  s t i l l  sone

distance away. However, having eonsidered both

unidirectional regular and bichromatic wave trains

(see Ref 1) the next stage in the deveLopment of the

present nodel is to represent unidireetional random

wave J-nput .  This  process is  descr ibed ln the

fo l lowing par ts  of  t .h is  ehapter .

Before proceeding to the deta i ls  of  t .he inplenentat ion

of  random waves,  l t  is  worth restat ing that  one

signi f lcant  feature of  the present  model  is  i ts

abi l i ty  to  represent  the propagat ion of  set  down

beneat,h wave groups. This was demonst,rated for a

system consist ing of  s ine qtaves of  two f requencies and

i ts  assoeiated set ,  down in Snal lman et  a l  (Ref  1) .

This is  the s lmplest  example of  set  down beneath wave

groups,  but  l t  should be recal led that  in  der iv ing the

boundary condi t ions for  th is  case,  the second order
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3.2  Boundary

condit , ions

terms needed to be specl f ied so that  the correct  set

down behavlour is achieved, and no spurious long waves

are in t roduced at  the boundary.  The same holds t fue

for  the nore complex s i tuat ion of  set  down beneath a

random wave train. Here set down wll l occur between

al l  the d i f ferent  f requency components of  Lhe wave

spectrum. The second order terms which are required

at  the boundary for  the case are d iscussed in sect ion

3 .2 .  A  desc r i p t i on  o f  t he  t es t s  used  to  ve r i f y  t he

node l  r esu l t s  i s  g i ven  i n  sec t i on  3 .3 .

The f i rs t  order  e levat ion of  a unid i . rect ional  random

wave traln at positlon x and tlme t nay be written in

d i sc re te  f o rm  as

n(1)  (x , t )  =  i  a i  cos ( r i r  k i_* i  *  
" i . )i - l

( 3 .1 )

here ar ,  ar .  and k.  are the anpl i tude,  radiao f requency

and wave number associated wi th the d iscrete

f requenc les  f . ,  i =1 ,2 . . . n ,  and  the  e ,  a re  random phase

terms.  The d iscrete f requencies can be def ined ln

terms of  the f requeacy increment  Af  as,

f ,  =  A f  ( i -+ )

The anpl i tudes a.

energy frequency

i  =  l ,  2 . . . . . n .

can be wri t t ,en in terns of the

spec t rum,

t . + L t / 2
^ r 2 = 2  f '  s ( f ) d f ,-  

f  . -L f . /2
l-

which can be approximated as,

^ r '  =  2 .S ( f  , ) . 4 t .
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The dlscrete wave numbers k.  are gi-ven by,

u .2
l-

k . 2  =
1

and

where

w -2d .2(ed - +-)

where

o ,  =  2 n f .

For the Boussinesq equat ions the character is t ics of

the set down can be determined by examining the one

dimenslonal  forn of  the d i f ferent ia l -  equat ions (2.1)

and (2.2) .  By expanding the var ious cerms 1n these

equations to second order and by use of equat,ion

(3.1) ,  i t  can be shown that  the second order  e levat ion

which lncludes the set down terms is,

i  =  1 1 . . . ; o .

-  ( r ) .
J

-  k .
J

-  e . .
J

/ ^ \  n  n - l

n\ ' t  ( x , t )= l  I  A*
i=  j+ l  j= l  - ' .

where

c o s ( r , r . . t - k i i " + t i i )  ( 3 . 2 )

j = l  t o  n - l , i = j , o
( 3 .3 )

u ) . .  =
LJ

k . .  =
L J

9 . .  =
1 J

( l ) .
l-

k .
l_

e .
1

The anpl i tudes Orj  
"ru 

given by,

k .  .  a . a .  k .  .  t l t .  t l l .

A . ,  = ; u  A  U . . + - 5  
t J  { . =  t  +  J )  ,  j = l  t o  n - l , i = j , r" i j  r r j  *  - i j '  2 d  r r j  ' k ,  k .

+
a . a .  k . .  , t r r .  t r l _  o -

,, j j--ji ( i j i j.
" i j  2 d  d  k .  k . 'u,,r$/n11>'

w .  . 2  ( t  +  k  . . 2 a 2 )
] . J  IJ

3

-ed krj
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Equatlon (3.21, which was derived fron the Bousslnesq

equat ions di f fers from that whlch ls der ived using

Laplace's equat ion and free surfaee boundary

condit ions t ,aken to second order.  In this case the

express ion  fo r  the  second order  e leva t lon  is ,

/ ^ \  n  n - l
n\ ' / (x , r )= l  I  A . . "os

i = j+ l  j = l

where

( r r j . - k . j * + e i j )  ( 3 . 4 )

I r j  =  
"a " j  [ i i :  *  ]  (kr  tanh krd + k .  ranh k.d)

and

t r  
( t  + tanh k-d tanh k:d)]

k . 2
1?,, t r l . r ( l+tanh kid tanh k .d

k . 2
J

to. cosh UrU , . i  cosh k.d

, )( 0 * . r '  -  8  k ,  .  t a n h  k -  .
rJ  r -J  l -J

d)

The der ivat lon of  equat ion (3.4)  is  g iven ln Spencer

(nee s ; .

Equat . ion (3.2)  and (3.4)  cannor be expected to y ieJ-d

the same values as they ar ise f rom di f ferent

equat . ions.  I lowever,  because the Boussinesq equat ion

dispers ion reLat ion is  a reasonable approximat ion to

the d i .spers ion re lat ion der ived in potent ia l  t ,heory,

lre can expect the set down arnplitude arlsing fron

equat ion (3.2)  to  be a reasonable approximat ,Lon to

those  g i ven  by  equa t i on  (3 .4 ) .  The  app rox ima t i on

given by equat lon (3.2)  improves as the water  depLh

dec reases
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3.3  Imp lenenta t lon

and veri f lcat ion

The boundary condit, ions for the nunerieal model are

suppl ied ln  terms of  the e levat lon,  and correspondlng

u veloc i ty  at  a ser ies of  gr id  points at  the edge of

the model .  These gr ld points ean be thought  of  as

corresponding to a wave paddle,  wi th the e l -evat ions

and veloc i t ies being speci f ied in  terms of  a t ime

ser ies at  x=0 which generated us lng equat ions (3.1)

and (3.2)  for  a g iven wave specErum.

In order  to ver i fy  that  the nodel  was work ing

correct ly  t rJo test  cases r rere run,  and thel r  resul ts

compared with the expeet.ed theoret.ical values of

anpl i tude or  spectra l  densi ty  for  both the set  down

and primary wave eomponents. For bot.h test,s the

nathematical model was set up to represent a rrave

flune of 10m depth, with the input wave being

speclfied at one end and a sponge layer boundary

condi t ion at  the other .

The first t,est which was carried out used an incident

spectrun which consisted of  waves at  two f requencies

on1y. In this case t,he group of waves (and hence the

set. down) occur with a frequency equal to the

di f ference between the two pr inary f requencies.

This type of  test  wi l l  prov ide a c lear  ind icat ion of

the nodel 's  per formance as substant ia l  amount .s  of

energy should only be present  in  three f requency

components at  a l l  locat ions in  a constant  depth f lume,

these wi l l  correspond t ,o the two pr imary f requencies

and the set  down f requency.  Sin l lar  tests were

carri-ed out in Ref 1 using two si.ne \raves and the

associated set  down to prov ide input  to  the model ,

rather  than the wave specLrum represent , ing th is

combinat ion wtr ich is  used here.
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The charact,er ist . ies of the input spect.rum for

regular nave group test were as fol lows:

Frequency (Hz) Spectral  density (m2s)

0 . 1 0  7 9 . 9 8

0 . 0 7  2 8 . 7 9

the

Anpl l tude (n)

0 . 5

0 . 3

The set down component calculated by the numerlcal

model  { ras at  a f requency of  0.03H2 wi th an ampl i tude

of  0.075m. The nathemat lca l  model  was run us i .ng a 5m

nesh wi th a t ine step of  0.34s,  g iv ing a Courant

number of  0.67.  Using Ax=5m gives approximat .e ly  20

polnts to the shor test  pr lnary wavelength.  TLme

ser ies of  the sur face e levat lons were col lected dur ing

the model run at a number of positions along the

f lume, and a spect . ra l  analys is  carr ied out  to  obta in

the anplitudes of the frequency couponent.s at these

posi t ions.  The resul ts  f rom th is  test .  are sumnar ised

in  Tab le  9 .

It can be expected that. if the wave group ls

propagat ing correct ly  in  a f lume of  constant

t.hen the anplitude of each of the frequency

should remain constant throughout. the length

fLune. It can be seen fron Tab1e 9 t,hat the

of  the set  down is  wi th in 8% of  i ts  expect ,ed

depth

componencs

of  the

anplitude

al l  posi t lons a long the f lurne.  Thls conf i rns

nodel is boLh generating the correct set down

component fron the prinary wave spectrum and

value at

that t,he

propagat ing i t  accurate ly  throughout  the model  area.

An isonetr ie  v iew of  uhe sur face e levat . ion for  th ls

test  at  var ious t imes dur ing the model  run is  shown in

F i g u r e  3 2 .

The second test  which was carr ied out  to  test  the

spectra l  input  used as lnput  a Pierson-Moskowi tz

spectrum; th ls  should prov ide a more st r ingenL test  of

28



the models capabi l i ty  to  propagate correct ly  a random

wave t ra in wi th i ts  associated set  down component .  In

th is  case the Pierson Moskowi tz  spectrum which was

used,  see Figure 33r  was character ised as having a

peak per iod of  10s.  The select ion of  space and t i rne

steps for  the numer ical  model  wi th random l rave input

is  less st ra ight forward than for  e i ther  a s ine wave or

a b ichromat ic  wave input .  Care needs to be taken that

the space step is  se lected so that  the wavelengths

corresponding to the fu l1 range of  f requency

components are accurate ly  resolved.  For  the pr imary

\ tave spectrum given here there is  s igni f icant  energy

in the range 0.05H2 to 0.2H2,  and we therefore need tg

ensu re  t ha t  t he  space  s tep  i s  se lec ted  so  tha t  t he re

are suf f ic ient  points per  wavelength for  wave per iods

o f  a round  5s  ( f r equency  O .2Hz ) .  A  space  s tep  l x  =  5m,

wi l l  g ive approximately  10 points per  wavelength for

the 5s component in 1Om depth, and 20 points per

wavelength for  a wave per iod 10s.

Having selected the space step the numerical  model is

constrained by the Courant stabi l i ty condit ion, which

for the two-dimensional case is,

^  -  (ga)*  a tt t= f f< r t {z

fo r  i t s  cho ice  o f  t ime s tep .  A  t i rne  s tep  o f

A t  =  0 . 3 4 s  s a t i s f i e s  t h i s  c o n s t r a i n t ,  i f  t h e

one-d imens iona l  s tab i l i t y  c r i te r ion  C,  a  1  was used

the  t ime s tep  cou ld  be  s l igh t ly  longer .  However ,

wh i ls t  the  present  tes t  i s  one-d imens iona l ,  the  mode l

w i l l  in  p rac t ica l  s i tua t ions  be  requ i red  to  sa t is fy

the  two-d imens iona l  cond i t ions .

Before  d iscuss ing  the  urode l  resu l ts ,  i t  i s  appropr ia te

to comment on the constraints which are imposed by the
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ne thod  o f  ana l ys i s  wh i ch  i s  used .  The  spec t ra l

ana l ys i s  p rocedu re  used  i n  t h i s  mode l  i s  t he  same as

that  employed in physical  model  s tudies.  Tt r is  method

ana l ys i s  t he  su r face  e leva t i on  f r om the  mode l  a t  each

po in t  o f  i n te res t  and  ca l cu la tes  t he  spec t ra l  dens i t y

a t  ce r ta in  d i sc re te  f r equency  i n te rva l s .  F rom the

spec t ra l  dens i t y  t he  s i gn i f i can t  wave  he igh t ,  ze to

crossing per iod and ampl i tude of  the waves at  that

point  an be i ler ived.  The d iscrete f requency in tervals

are calculated f rom the length of  the \ f ,ave record and

a s$oothing parameter which combines energy for

neighbour ing f requency bands.  The number of  sur face

elevat ions in  a t ime h is tory must  be a value of  2n to

fac i l i ta te the fast  Four ier  t ransform mett rod (see

Re f  10 )  wh i ch  i s  used .  Typ i ca l l y  i n  phys i ca l  mode ls

2O48 or  4096 points are analysed.  For  the present

numer ical  model  e i ther  512 or  1024 points are normal ly

used,  as i t  becomes expensive,  in  terms of  cooputer

t ime,  to run the model  for  a larger  number of  t i rne

steps.  The value of  the t ime step in  a physical  model

i s  se lec ted  so  tha t  t he  d i sc re te  f r eguency  i n te rva l s

in the spectra l  analys is  cover  the i rnpor tant  range of

f requencies of  the wave spectrum used in the phvsical

mode l  t es t .  I t  i s  no t  poss ib le  t o  do  th i s  f o r  t he

numer ical  model  as the t ime step is  f ixed by the

s tab i l i t y  and  accu racy  cons ide ra t i ons .

As a resul t  o f  th is  the number of  d iscrete bands in

the spectra l  analys is  cover ing the important

f requencies wi l l  be much lower than for  the physical

mode l  case ,  l ead ing  to  a  l oss  o f  r eso lu t i on  i n  t he

ca l cu la t i on  o f  spec t ra l  dens i t y .  I n  add i t i on ,  t he

smal ler  number of  t ime step used (say 1024) means that

the  reco rd  l eng th  i s  sho r te r  t han  fo r  t he  equ i va len t

physical  model  test ,  and thus fewer hraves are being

ana lvsed .

3 0



Wi th  a l l  t hese  po in rs  i n  m ind  i t  i s  c l ea r  t ha t

deterru in ing the spectra l  densi ty  of  several  ind iv idual

set  down components f rom the numer ical  model  resul ts

wi l l  not  be st ra ight forward,  as the re levant  range of

f requencies wiL l  be covered by a smal l  number of

f r equency  bands ,  and  the  reco rd  ana l ysed  w i l l  be

fa i r ly  shor t .  However,  i t  can be demonstrated that

the model does represent set down beneath random wave

groups.  This is  done by cornpar ing the spectra l

dens i t y  a t  f r equenc ies  be low  Q .O4Hz  a t  va r i ous

posi t ions a long the numer ical  model  wave f lume wi th

the i r  t heo re t i ca l  va lues  ca l cu la ted  us ing  exp ress ion

(A4) f rorn Appendix 1.

Prior to making this comparison some comment should be

made about  the expected value of  the set  down spectra l

densi ty  for  both the Boussinesq equat ions and

L a p l a c e r s  e q u a t i o n  ( s e e  s e c t i o n  3 . 2 ) .  
. F o r  

f r e q u e n c i e s

below 0.04H2 the set  down spectra us ing both

exp ress ions  a re  shown  i n  F igu re .33 .  I t  can  be  seen

tha t  f o r  t h i s  case  the  spec t ra l  dens i t y  o f  t he  se t

down f rom the Boussinesq equat ions is  wi th in L5Z of .

t he  va lue  ca l cu la ted  us ing  Lap laces  equa t i on .  I t  has

been shown in Reference 1 that  the approximat ion

de r i ved  us ing  the  Bouss inesq  ecua t i ons  improves  as  t he

l ra te r  dep th  dec reases .

The  resu l t s  f r om the  numer i ca l  mode l  t es t  ca r r i ed  ou t

us ing the input  Spectrum shown in F igure 33 are

d i sp layed  i n  F igu re  34  as  t he  spec t ra  up  to  O .O4Hz  a t

va r i ous  d i s tances  (d )  f r om the  padd le  a long  tbe  wave

f1ume.  As  can  be  seen ,  a l l ow ing  su f f i c i en t  smoo th ing

in  t he  Fou r i e r  ana l ys i s  o f  che  wave  e leva t i ons  resu l t s

i n  t he i r  be inq  on l y  f ou r  po in t s  cove r i ng  the  range  o f

in terest .  ( t t re rnodel  r { ras run for  2000 t i rne steps and

the  l as t  LO24  po incs  ana l ysed . )  The  resu l t s  i n

Figure 34 demonstrate that  the Boussinesq model  does

give a reasonable approximat ion of  the set  down
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spec t ra l  shape ,  and  has  the  co r rec t  spec t ra l  dens i cy

at  the lower f requencies where i t  wi l l  be of  most

importance.

At frequencies between 0.015H2 the agreement betveen

the predicted and expected values is not as good, with

the predicted specEral densit ies being lower than the

expected values. This is in concrast to the results

shown in Table 9 for regular wave groups where the

agreement of the model results with the expected

values of aruplitude was good at the primary

frequencies (0.10H2 and 0.07H2) and at the set down

f requency  (0 .03H2) .

The agreement between the calculated and expected

epectral  densit ies is better nearer the wave paddle.

I t  is l ikely that at  distances d = 362.5m and

d = 462.5m that there will be some low frequency

incerference from ref lect ions from the sponge layer

boundary condit ion. Such ref lect ions are also known

co occur in physical  models 'where the shingle beaches

do not absorb al l  the long period save energy. I t  is

possible that better agreement could be achieved i f

more elevat ions were analysed, say 2048, but in

pract ise the cost of  running the oodel would be

proh ib i t i ve .

In  addi t ion to the compar ison shown in F igure 34 the

spec t ra l  dens i t i es  aE  the  peak  pe r i od  o f  che  p r imary

spec t rum se re  a l so  examined .  I t  can  be  seen  f rom

Tab le  10  tha t  a t  a l l  l oca t i ons  a long  the  f l ume  the

energy at  the peak f requency remained wi th in 102 of

i t s  expec ted  va lue .  To  g i ve  a  be t te r  imp ress ion  o f

t he  su r face  p ro f i l e  f o r  a  random wave  i npu t  an

i some t r i c  v i ew  i s  g i ven  i n  F igu re  35 .

In  summary ,  t he  numer i ca l  mode l  so l v i ng  the  Bouss inesq

equa t i ons  has  been  success fu l l y  rnod i f i ed  t o  a l l ow

random wave input .  From the resul ts  g iven in th is
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4 . L

CONCLUSIONS AND

RECOUI{ENDATIONS

Conc lus ions

l+ .2  Recommenda t i ons

sec t i on  we  conc lude  tha t  t he  nune r i ca l  mode l  g i ves  a

reasonab le  rep resen ta t i on  o f  se t  down  e f f ec t s  f o r  a

random wave t ra in.  However,  fur ther  tests wi l l  need

to  be  ca r r i ed  ou t  t o  examine  these  e f f ec t s  f o r  t he

vary ing depth caser  where compar ison wich physical

mode l  resu l t s  w i l l  a l l ow  the  numer i ca l  mode l  t o  be

assessed  more  r i gou rous l y .  I n  add i t i on r  f u r t he r

cons ide ra t i on  w i l l  need  to  be  g i ven  to  t he  me thod  o f

ana l ys i s  o f  t he  numer i ca l  mode l  resu l t s  w i t h  respec t

to  t ime  s tep  cons t ra in t s  i n  s tab i l i t y ,  accu racY  and

runn ing  cosCs .

The mathemat ica l  rnodel  which provided a numer ical

so lu t i on  co  the  Bouss inesq  equa t i ons  i n  wa te r  o f

cons tan t  dep th  ( see  Re f  1 )  has  been  deve loped  fu r the r

to  i nc lude  va ry ing  dep th  t e ros  and  un id i rec t i ona l

random vave input .  The model  has been shown to

p rov ide  a  good  rep resen ta t i on  o f  t he  e f f ec t s  o f

re f rac t i on  and  shoa l i ng ,  and  d i f f r ac t i on  by

breakwaters in  vary ing dePth-  Compar isons betsreen the

rnode l  r esu l t s  and  theo re t i ca l  so lu t i ons  we re  good  fo r

the  l i nea r  case r  and  the  non - l i nea r  resu l t s  appea r  t o

be  p ro rn i s i nq .  T ' t r e  mode l  a l so  success fu l l y  reo roduced

the ef fects of  set  do! 'n  beneaCh a random wave t . ra in in

wa te r  o f  cons tan t  dep th .

I n  o r d e r  t o  t e s t  f u l l y  t h e  n o n - l i n e a r  a s p e c t s  o f  c h e

m a t h e m a t i c a l  m o d e l  w e  r e q u i r e  d a t a  a s a i n s t  w h i c h  t o

c o m p a r e  t h e  r e s u l t s .  F o r  t h e  v a r v i n g  d e p t h  c a s e  t h e

eove rn ing  non - l i nea r  equaE ions  do  no t  ado i t  an

ana l y t i ca l  so lu t i on .  I t  i s  t he re fo re  recommended  tha t

a  se r i es  o f  phys i ca l  mo< le l  ces t s  a re  ca r r i ed  ou t  t o

33



provide comprehensive data

the  numer i ca l  mode l .

To  fu r the r  deve lop

rea l i s t i c  ha rbou r

recommended  tha t :

a g a i n s t  w h i c h  t o  v a l i d a t e

the  numer i ca l  mode l  t o  a l l ow  more

layou ts  t o  be  rep resen te< l  i t  i s

a ) Boundary condit ions for the

inves t iga ted ;  in  par t i cu la r

to be given to represent ing

structures, (eg rubble roound

mode l  shou ld  be  fu l l y

cons ide ra t i on  needs

p a r t i a l l v  r e f l e c t i n g

b r e a k w a t e r s ) .

b )

c )

Imp lemen ta t i on  o f  nu l t i  d i r ec t i ona l  i nc iden t

hraves in  the model  should be invest igated.

Extension of  the present  equat ions to inc l "ude

energy losses due to seabed f r ic t ion should be

examined.

Some thought  should be g iven to the future

inc lus ion  o f  t he  e f f ec t s  o f  t i da l  cu r ren ts  i n  t he

m a t h e m a t i c a l  m o d e l .
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TABLE 2

DEPTH (rn)

Pos i t ion

( 1 )

(2 )

(3 )

(4 )

(s)
( 6 )

( 7 )

( 8 )

(e)
(  10 )

( r1)
( 12 )

10 .0

8 .6

6 .6

5 .8

5 .0

4 .2

3 .4

2 .6

2 .0

2 .0

2 .0

2 .0

Resulte with bathynetry A: numerical  eolut ion of equat iono (2.6) and (2.7)

PERIOD F6s

Numerical  Theoret ical

so lu t ion  so lu t ion

PERIOD F10s

Numerical  Theoret ical

so lu t ion  so lu t ion

PERIOD T=l_5s

Numerical  Theoret icaL

s o l u t i o n  s o l u t i o n

1 . 0 2

1  . 0 2

1  . 0 4

1  . 0 2

1 . 0 7

1 . 0 5

1 . 1 _ 6

1  . 1 7

r .29

t . 2 9

t . 2 9

L . 2 9

I  . 00

1  .00

1 .01

t . 02

1 .03

1  . 05

1  .08

1  . 13

' . ' ,

0 . 99

0 .99

1  . 03

I  . 03

I  . 14

1  . 17

1 .15

r . 34

1  . 37

L .37

I  . 38

1  . 38

1 .00

1  . 03

1 .07

1  .09

1 .13

1 .17

L .22

1 .30

' . ' '

0 . 9 9

0 . 9 9

1 . 1 9

1  . 1 7

1 . 1 1

1 . 1 5

1  . 3 3

1 . 4 7

r .45

L . 4 7

1 . 5 0

r .45

1 .00

I  . 03

1 .09

1  . 12

1 .16

L .2 t

L .27

1  . 35

r . 44

( Input  wave ampl i tude = 1.00n)

Notes

( i )

(  i i )

(  i i i )

( iv)

The numerical  solut ion values are the result
his tory

of spectral  analysis of a t ime

values is explained in Sect ion

table is shown in Figure 1

9 -  1 1

The  ca l cu la t i on

2 .3 .2

The locat ion of

The resul ts  are

of  the  theore t ica l  so lu t ion

each posit ion given in this

shown graphical ly in Figures



TABLE 3

DEPTH (n)

Pos i  t ion

( 1 )

(2 )

(3 )

(4 )

(s)
( 6 )

( 7 )

( 8 )

(e)
(  10 )

(  11 )

(  12 )

10 .0

8 .6

6 .6

5 .8

5 .0

4 .2

3 .4

2 .6

2 .0

2 .0

2 .0

2 .0

( i i )

(  i i i )

( iv)

PERIOD T=6s

Numerical  Theoret ical

so lu t ion  so lu t ion

PERIOD T=10s

Numerical  Theoret ical

so lu t ion  so lu t ion

PERIOD T=15s

Numerical  Theoret ical

so lu t ion  so lu t ion

Reaulte sith bathFnetry A3 numerical  aolut ion of equat ions (2.8) and (2.10)

L  . 0 2

I  . 0 0

0 . 9 9

1  . 0 1

0 . 9 6

0 . 9 7

0 . 9 9

0  . 9 8

0 . 9 8

1  . 0 1

1  . 0 5

L . 2 2

1  .00

1  .00

1 .00

1  .00

1  . 01

I  . 01

1 .02

1  . 02

1 .03

1  . 05

1 .  10

1  . 14

1  . 0 1

1 .01"

0 . 9 8

0  . 9 8

1  . 0 0

1  . 0 5

1  . 1 0

1  . 0 6

1 . 1 1

t . L 2

L . 2 9

t . 4 6

1  . 0 0

1 . 0 0

1  . 0 1

L  . 0 2

1  . 0 4

1  . 0 5

1  . 0 6

I  . 0 9

1 .  1 0

I  . 1 6

1 . 2 4

I_ .30

1  . 0 3

I-  .09

t . t 2

1  . 1 3

1 .  L 4

1  . 0 7

1  . 0 7

1  . 0 9

L . L 4

t . 2 7

L . 4 7

L . 4 6

1  . 0 0

1  . 0 1

1  . 0 2

1 . 0 3

1  . 0 6

I  . 0 8

1 . 0 9

1  . 1 2

1 . 1 3

1 . 1 9

L . 2 8

1  . 3 6

(Input wave ampl i tude = 1.00m)

Notes

( i ) The 15s period numerical  solut ion results given in this table, are shown in
Figure 15 as points ( i ) .  They are determined by spectral  analysis of a t ime
hi's tory

o f  t he  t heo re t i ca l  so lu t i on  va lues  i s  exp la ined  i n

each posi t ion g iven in the table is  shown in F igure 2

shown  g raph i ca l l y  i n  F igu res  13 -15

The  ca l cu la t i on

S e c t i o n  2 . 3 . 3

The locat ion of

The  resu l t s  a re



TABLE 4

DEPTH (n)

Pos i t ion

Reeults si th bathynetry c:  numerical  aolut ion of equat ions (2.9) and (2.10)

PERIOD F6s

Numerical  Copeland Theoret ical

so lu t ion  so lu t ion  so lu t ion

PERIOD F15s

Numerical  Copeland Theoret ical

so lu t ion  so lu t ion  so lu t ion

( 1 )

(  la )

( 2 )

( 3 )

( 4 )

( 5 )

( 6 )

( 7 )

( 8 )

(e)
(  10 )

(  11 )

(1La )

(12)

( rza)

5 .00

5  .00

4 .53

4 .L5

3 .8s

3 .45

3 .05

2 .65

2 , t 5

r . 75

1 .35

1  .00

1 .00

1  .00

1 .00

0 .49

0 .51

0 .52

0 .52

0 .52

0 .53

0 .56

0 .57

0 .60

0 .63

0 .69

0 .69

0 .  50

0 .51

0 .52

0 .52

0 .  53

0 .54

0 .57

0 .57

0 .63

0 .66

0 .66

0 .50

0 .  50

0 .51

0 .51

0 .52

0 .52

0 .53

0 .55

0 .57

0 .60

o.uo

0 .50

0 .52

0 .54

0 .  53

0 .54

0 .  53

0 .57

0 .59

0 .64

0 .58

0 .75 .

0 .72

o.  so
0 .51

0 .52

0 .52

0 .53

0 .56

0 .58

0 .57

0 .62

0 .58

0 .67

0 .50

0 .51

0 .52

0 .52

0 .53

0 .  54

0 .  56

0 .  58

0 .61

0 .64

( Input

Notes

( i )

( i i )

(  i i i )

(  iv )

( v )

I
I
I

wave ampl i tude = 0.50n)

The numer ical  so lut ion values are each the maximum of  a t ime h is tory

The Copeland solut ion values are f rom the numer ical  model  (descr ibed

in  Re f  2 )  and  a re  ave raged  ac ross  t ime  ( see  Sec t i on  2 .3 .3 )

The  ca l cu la t i on  o f  t he  r t heo re t i ca l r  va lues  i s  exp la ined  i n  Sec t i on  2 .3 .3

The locat ioa of  each posi t ion g iven in the table is  shown in F igure 3
These  resu l t s  a re  shown  g raph i ca l l y  i n  F igu res  17  &  1g



TABLE 5

DEPTII (rn)

Pos i r ion

PERIOD T=6s

Max Spectral

Elevat ion Ampli tude

PERIOD T=15s

Max Spectral

Elevat ion Arupl i tude

The non-linear problem rrith bathymetry A: numerical solution

of one dineneional forn of equat ions (2.1) -  (2.3)

( 1 )

o)
(3 )

(4)

(s)
( 6 )

( 7 )

( 8 )

(e)
(  10 )

(  11 )

(  12 )

10 .0

B .6

6 .6

5 .8

5 .0

4 .2

3 .4

2 .6

2 .0

2 .0

2 .0

2 .0

0 .38

0 .38

0 .40

0 .39

0 .42

0 .42

0 .48

0 .51

0 .57

0 .58

0 .58

0 .58

0 .36

0 .36

0 .37

0 .36

0 .37

0 .36

0 .41

0 .42

0 .47

0 .47

0 .47

0 .47

0 .10

0 .11

0 .11

0 .11

0 .12

0 . t 2

0 .12

0 .14

0 .16

0 .17

0 .  18

0  .20

0 .  10

0 .10

0 .10

0 .10

0 .  10

0 .  11

0 .12

0 .12

0 .13

0 .  14

0 .  L4

0 .14

( Input  wave ampl i tude

=  0 .35n )

(Input vave amplitude

= 0.  l rn)

Notes

( i )  The spectral  ampl i tude values incorporate the energy associated

with the fundamental  f requency (= 1/T) and i ts f i rst  two harmonics
(2 /T  and 3 / r )

( i i )  The locat ion of each posit ion given in the table is shown

in Figure 1

( i i i )  The resu l ts  a re  shown graph ica l l y  in  F igures  20  & 2L



TABLE 6

DEPTtt (n)

Pos i t ion

The non-linear problem with bathynetry B: numerical solution

of  equat ions  (2 .1 )  -  (2 .3 )

PERIOD T = 10s

Max E leva t ion  Spect ra l  Ampl i tude

( 1 )

(2 )

(3 )

(4 )

(s)
( 6 )

( 7 )

( 8 )

(e)
(  10 )

(  11 )

(12)

1 0 . 0 0

9 . 5 0

8 . 8 5

8 .40

7 . 2 5

6 . 5 5

6 .  1 0

5 . 3 8

4 . 9 8

3  . 8 5

2 . 7  5

2 . L 5

0 . 1 0

0 . 1 0

0 . 9 7

0 . 9 8

0 . 1 0

0 .  1 1

0 .  1 1

0 . 1 1

0 . 1 1

0 . 1 1

0 . 1 3

0 . 1 5

= 0 .  1n)

0 .11

0 .  11

0 .10

0 .  1L

0 .11

0 .  11

0 .12

0 .12

0 . t 2

0 .12

0 .14

0 .18

( Input  wave ampl i tude

Notes

( i )  The spectral  ampl i tude values incorporate the energy

with the fundamental  f requency (= 1/T) and i ts f i . rst
(2lT ar.d 3lr)

( i i )  The loca t ion  o f  each pos i t ion  g iven in  the  tab le  i s

in Figure 2

( i i i )  The resulrs are shown graphical ly in Eigure 22

assoc ia ted

two harmonics

shown



TABLE 7

DEPTH

Pos i t ion  (m)

Spectral  Ampl i tude

= l inear  spec t ra l

ana lys  i s

0 .02

0 .02

0 .02

0 .11

0 .07

0 .07

0 .07

0 .07

0 .07

0  . 08

0 .08

0  .09

I ' laximum Elevation

-  non l inear

0 .03

0 .03

0 .03

o . t 2

0 .08

0 .08

0 .08

0 .08

0 .08

0 .09

0 .10

0 .  13

(l lave tleight

non- l inear

0 .02

o.a2
0 .02

0 .  1L

0 .07

0  . 07

0 .07

0  . 07

0 .08

0 .08

0 .09

0 .  10

Reeulte with bathynetry D: numerical solution of the linear (equations

(2 .8)  '  (2 .10) )  and non- l inear  (equat ions  (2 .1 )  -  (2 .3 ) )  p rob lems.

I)

( 1 )

( 2 )

( 3 )

( 4 )

( 5 )

( 6 )

( 7 )

( 8 )

(e)
(  10 )

(  11 )

(  12 )

Notes

( i )

(  i i )

5 . 00

4 .00

3 .03

5  .00

5 .00

4 .35

3 .65

3 .05

2 .45

1  . 78

1 .28

1 .00

( Input  wave ampl i tude = 0.1-n)

The spectral  ampl i tude vaLues incorporate the energy associated lr i th the

fundamental  f requency (= r /r)  arra i ts f i rst  two harmonies (2/T and 3/t) .

The l inear  resu l ts  a re  ident ica l  to  the  non- l inear .

Points (1)  to  (3)  are in  the shadow of  the wedge.  The locat ions of  a l l  the

posi t ions are shown in F ig 4.

( i i i )  The resu l ts  a re  shown graph ica l l y  in  F ig  26 .



TABLE 8

Pos i t ion

1

2

3

4

5

6

7

I

9

L0

1 1

L 2

1 3

L4

1 5

16

L 7

18

1 9

2 0

Results for the breakwater

theoret ical  results

Wave

Present  Model

( s p e c t r a l  a n a l y s i s )

1  . 3 6

r .27

1  . 1 8

1 . 0 8

0 . 9 9

0 .80

0 .  59

0 .43

0 .27

0 .16

0 .13

gap problem, and comparieon rith

l i tude  (m)

Montefusc<>

(Ref  6 )

L . 2 0

1 . 1 3

1  . 0 7

0 . 9 9

0  . 8 9

0 .79

0 .64

0 .52

0 .36

0 .29

0 .24

Smal lman

( R e f  5 )

1 . 1 0

1  . 0 0

0 . 9 0

0 . 8 0

0 . 7 0

I  . 00

0 .90

0 .80

0 .70

0 .60

0 .  50

0 .40

0 .30

0 .20

0 .70

0 .60

0 .50

0 .40

0 .30

0 .20

Notes

( i )  The gap conf igurat ion is  shown in F igure 29.  The depth

everywhere is  l_0m, the inc ident  wave per iod is  10s,  and

the  gap  w id th  i s  t he re fo re  1 .75  wave leng ths

( i i )  The Montefusco resul ts  were obta ined by in terpolat ing

between g iven values.

1  . 10

1  . 01

0 .74

0 .67

0 .58

0 .55

0 .52

0 .49

0 .46

1 .00

0 .92

0 .83

0 .7  5

0 .67

0 .58

0 .49

0 .46

0 .43



TABLE 9 Random save tests for regular wave groups rith priuary

frequencies 0.07llz aad 0.102. l{ater depth 10n, A1 = 5or
At = 0.34s. Expected wave ampl i tudes are 0.075m at f  = 0.0382

0.3m at f  = 0.07H2 and 0.5m at f  = 0.10H2

Ampl i tude (m) at

f  =  0 . 0 7 H 2

Dist  f rom

paddle (n)

2 .5

62 .5

TL2.5

t62 .5

2 t2 .5

262 .5

3t2.5

362.5

4L2 .5

462.5

5I2.5

562.5

f  =  0 .03H2

0 .073

0 .071

0 .076

0 .073

0 .077

0 .079

0 .076

0 .070

0 .075

0 .078

0 .070

0 .081

f = 0.1-0ltz

0 .47

0 .44

0 .45

0 .46

0 .47

0 .47

0 .46

0 .46

0 .48

0 .48

0 .47

o .47

0 .33

0 .33

0 .32

0 .30

0 .32

0 .  34

0 .32

0 .31

0 .30

0 .31

0 .31

0 .33



TABLE 10 Random wave

Water depth

A f =

Dis t  f rom

paddle ( rn)

2 . 5

6 2 . 5

Lt2.5

1 6 2 . 5

2 L 2 . 5

2 6 2 . 5

3 L 2 . 5

362.5

4 t 2 . 5

462.5

5 L 2 . 5

562.5

Expected value

tes ts  tes ts

= 10m, Ax -

with Pierson Uoskowitz spectruu Tp = 1Os

5n, At = O.34s, L024 t iue steps analyeed,

Primary component  at  0.109H2

s ( f )  1m2s ) a ( m )

t4 .4

1 3 . 1

1 3 . 3

14.5

1 6 . 7

1 3 . 9

1 5 . 7

1 5  . 5

L 6 . 7

1 6  . 0

1 3 . 9

1 5 . 8

t4 . l

o.5a

0 . 5 5

0 .  5 5

0 .  5 8

0 . 6 2

0 . 5 6

0 . 6 0

0 . 6 1

0 . 6 2

0 . 6 1

0 . 5 7

0 . 6 0

0 . 5 7



FIGURES.





c,
>
tg

(u
cn
c
o
a

t/,

e
i n3
l l

E g \

CJ
CL

. 9 - r
v1

rtt n't
C\I

(\l

E
o
r

l t

E' .;
c

E o

,
a

o-

(\l

(U
>
q

c,
ctr
e
c,
CL

t/l

G

o - . o E  t t -  q ,P.
= ) >
E r o
c l t

{-- o

t

E
-t
,o
o-

dimensionaIProf i le and plan 0f  bathymetry A :  0neFig 1



lu a-
ctr aJ
c
o r o
cL -t

VI

G
g

tu
a

a
trt
-+
rn
\at

,
C,
C'

t
o

CL
IJ

o
o-

E
o

l l

E

-r
I
I
I
I

E

3

E
-f

{
ct\
ct

E
o
o

E
v,
'E

.ct

OJ

c
OJ
IJ

C
ct

u
CJ

t/,

o- ,o'E 'cr - dJor q.l

= r D
E 3
ct

g

t
t-(U

'El

-,
a9
o-

ref  ract ionFlg 2 Prof i te and plan 0f  bathymetry B :  Shoal  and



L

o,
>
to

qJ
trn
c
o
ct-

V'

to
t\l

I
(\l

Ifo

T

4\

c
.9
L'(U
th

c,

o
l-

a-

T
E

rn
Fl

*
l-

I
I
I
I
I

Eg

e
r,r1
\c,

(u
cn
c
o
CL

v'l

IA
c
o

v,
o
o-

IU
-t
E
ao

CL

o -  r o t  E d  o ,

Prof i le  and
ref  ract ion

ptan of  bathymetry [ :Al ternat ive shoaI



o,
:>l
to

IU
trt
G
o
a.

t/l

c\l

E

l l

'trt

(l

L'
(U
IA

(u

o
L

d

U'

.9
=
v,
o
o-

CJ
cn

E
c,
=

€
t-T--

I
I
I
I
I
I

g

e
lJ1
\cl
c'.

E
Ln
(\l

v

(U
cn
C,
o
CL

VI

E,
v1
ao

-ct

o

CJ
L

c(U
U

o
C,

.o
#
U(u

t/1

(U
(fi

.E'
(U

=

o -  r o t t . E t -  o ,

Fig 4 Prof i le  and ptan
refract ion wi th

of bathymetry D
wedge breakwater

Al ternat ive shoat



3€
o . r : o
= v r . E t -
: v t s =
= > o ;
F A v '
: C J

,o ,o ,o
IJ tJ

E t A + . F
= L C J C ,
E L L

. = u C t O
x c r q j c ,
t o C L . g . E
Z . t / r F F

-
. \

. \

/

!
( .

o
\Ct

ctl
tL

t,
(U
U\

G
o

v,
o

G

^q l
r l

I
I

qs
o c a

o
g\

o
o

CA @
r -+ tn GI Ct

C.|
\Cl 'E lJ1

J T

= + -
gl-

E

NumericaI  solut ion of  10 l inear shal low
{2.41 & {2.5},  for  bathymetry A, per iod
= 1.0m

h/ ater equat ions,  see eqns
T = 6s.  Input wave ampl i tude

Fig 5



(\l

.ct

c
.o
:t
o
v)

,lt
tJ

c,
a-
o
c,

3
c,

( u o'E ./t .t
: ' a 5
: > o
* E t

L

t'o ,o to
U

E n t
= t - o ,
F + a -

.= L, (t
x ( u ( U
n t c L . c

= t-/l

o

-+

_ s_t
o b

t/l

\

I
I

o
AI

o
m

c>
-f

oA
c - l

I

I
f

O ( l -
.J3

\

tt

I
i

\.. t
\\.

q -  L n
ttt

\

\

i
I
1

\ l
i

\ !
\ \ \
\ \  \

\l r CN
tl.

c,
c
vl

l r \ F
o l I 'a

o
CL

c\l

U'{ u g

_a'g-
tal s

\.

rf t?l

e e
9 r u u l
E E ' F

t\

5 <;_
CL
E

shattow watel
per iod T = 10s

equat ions,  see eqns
Input rvave ampt i tude

NumeticaI solut ion of 10 l inear
(2.1) & (2.5),  for bathymetry A,
= 1.0m

Fig 6



j ' i
; t

i i
i

i
i
\ '\

Q 2
t r , :
o ; -

tal

\
\
\
i

!

\I\

l u c
CL'=- F o r - - + - -

;E i:

.... ...."-)i

\
\

i
,
i
(

3€
c

q r A . 9
- t v r E t

J

; . A 3 =:P;ad
E F E;
s r i .;
.E ibb
l! oJ qJ c,

# a f f

^t
I3 \ l
I

E

CL
o t u
o c l

o
c

o
o

t t a \

.9u-
tu
|u
vl

c
.9
*
t
o
o-

@ r \o (\: orj-r (U if rn
J E  J  J=

E + _
E

Numer icaI  so lut ion of  1D l inear  shat tow w ater  equat i0ns,  see eqns
(2.41 & (2.5) ,  for  bathymetry A,  per iod T = 15s.  Input  wave ampt i tude
= 1.0m

Fig 7



E
{
a?t

t l

E

CL
e,
ct

E
ro
rcl

t l

ct-
a,

ct

E

E
o

u
4,

CL
c,

q

no

\o

Lrr(..1
(t
l l

+

a

r  | t r  r r r  -  q  t  u ' l  t . ' !  Ao:  T T :
. - i  . - . :  J  - :  o  o o c;  oo? ? ? ?

c,
a

ao

o,
t!

<4

I
o

I

Fig I Wave etevat ion ptot ted against  t ime at
T = 10s, ni fh bathymetry A. Numerical
& (2.51. Input wave ampt i tude = '1.0m.

four  sur face points ,
so lut ion of  equat ions

per iod
12,t+l



I

q
rt'r

o
rc,

A
o lr- l

I
I

3E=
a . 5

o
CF

e
o--

-."_- u't

9!
l!

a,
a,
v',

.o

c(t

vl
ct

CL

c( u C '
E t A . ;

J

+ a n =
5
* ] 6 v l
r o ; E

tJ

s Et
C + t -

.= L, ct) < u ( u
t E 6 - . e
= V r ) -

sg--
l/.1 -A

iI
i t
. l

i i
iI

j.L L-

q
O

-+

Numerlca[  fesutts showing
Solut ion of  equat ions (2.61
htave ampl i tude :  1.0m

the ef fect  of  in t roducing
& (2.71,  bathymetry A,  T

dispers ion.
= 6s.  fnput

Fig 9



: l
: l
: l

i i: .
: I
: r

!i:.
:t
: l
: l

i i
r l
1 . \

-T\-
' . N

...\. \

u !
- c L =gE

t r

o

o- rtl
ttr

o
rO

".\..x\
' t . : \ -

\>.'ta,--t'.i

\ . j /

{
i \
i \ .

i tr
"""\,...

o, E 
\r"\t*.

E ?, : \ iI
E a a \ i!
F E 6 \ i i
s T r \i\
= t h \'i
r y  a  E  \ i .t L / 1 f - \ t

i i | \\
i i i \1
: i  l  \ i

\t
- s e --\l--_e 

f  -
v1 -o

?t3 \ l

=l
sF=

cn
r!

at
CJ
v,

o

c
c,

U'
o

CL
cl
o

a

(t,rt OJ C{
; ' - E * . j =

65+
E

Ll -+

NumericaI  lesul ts showing the
Solut ion of  equat ions (2.61 &
wave ampt i tude = 1.0m

effect  of  introducing
Q. ' l l ,  bathymetry A, T

dispe rs ion
:  10s. lnput

Fig 10



..'\

'.r
: t'. I

it. : \
: r  o J 4
.: : o,E

a J o
E t E
=

. F v l =
= > o
9 . . ; ; .
E
, o ; l ;

U

s E5
F + a -. = u o
x < U ( u
t r o c L . c

= t / r F

a
rA-..--n

a\l

A
o l
c j l

I
I

os
co 

s=
o - 9

o
9.

ctl
u-
|U
o
vl

o
.i r0
v-e

\Ct tft -t o ct\
e

E
C'

vl
o

o-,"n (u GJ
J P  - .  J

+

CL

Numer icat  fesut ts  showing
Solut ion of  equat ions {2.61
hraYe ampt i tude = 1.0m

the ef fect  of  in t roducing d ispers ion.
& {2.7 l r ,  bathymetrY A,  f  = 15s '  lnPut

Fig 11



e
q

il

4

CL
a,
6t

E
.f
rct

t l

CL
a,
cr
-cl

E
o

t l

E

tL
a,
ct

'o

\c,

Itr
F1

o

l l

+

: i = 3: :: 3 ? + + ? ? ?+

G
o

to

o,
ll-l

<--

Fig 12 Wave elevat ion ptot ted against  t im at  three
per iod T = 15s, wi th bathymetry A. Numerical
(2.61 and ' .2.7lr .  lnput h/ave ampl i tude = 1.0m

surface points,
solut ion of  equat ions



a, i4
c L =
o b -

\ .^  \  \ r r

(\l

o
rri- e\

€

o

+
I

€ I3E=

c
q , . 9

. E t &

: ' v ,g
= - o
ct- ; vl
F
,9 ,o ,o

TJ
e ' -

E +
f L < U
F + L

. = L J o
x ( u ( u
to cL -E

E V I F

-f

6 F
.P cn
r f
v,
O C ,

cL l,
3

fn o o\
o

-
F

(u
'E

:t
t +--
ct-
e

Fig 13 Num.er icaI  sotut ion 0f  2 dimensiona[ l inear yater equat ions ( ,eqns
(2.81 -  (2.10 1 for  bathymetry B, per iod f  = 6s.  Input wave ampt i tude
= 1.0m



H-g-\.- --E 5- - -
\ v r

"\....\.
' . . , \_

tr, j t
\ i l
\ll
i \
i l \
"t\.;*

\.'i)
Y

,/\
tt\ 

\.

.. '{
' \ .

1..\.
t " . . \
\ . ,
\  i \
I  i \
\  i t
\  : i
\ii
i:t
\i

i'tt

-=* 3 - -tjl'-
t t r , b

o r o' E t , l  E
: ' ' . , :.=
* 6 v ' l
,o ,o ,D

tJ

5 ET
F + a -

. = L r o
x c J o J
n t c L E
E t-ar

+
I.r f I-9G

G'

5.g
E r.r-
2S

A U ,ctr

o

o . - -
o

lJl -t ,n or\.:
(U

-trt
=
=
o-
E

Fig 14 NumericaI  solut ion
(2.8) -  (2.10 l )  f  or
= 1.0m

of  2 d imensiona[  l inear
bathymetry B,  per iod T

equat ions (eqns
Input  wave ampt i tude

wafer
= 10s.



c , i l_ , _85_
, \ V '
i -..
i- t..
\ .  ' \

o
F i€  

e

o
,r'l

€ l
+ l

$=

o
\c,

o

o
qt

I
r l
\
\
\
\
\
\
\

t v l

.c .g
o o

g - 9 c
ct

v r v l E
t v 1  =
> \ : h O

G ; v r
rg t0 t0

u
,E aD .F
c - L ( U

+ - + a -
u u Oq r ( u ( u
cL a. .E

tll l,ar l-

\
t
\
I
I
I
\

\ l
_ ' ) .  I  _

-t

o J g

o= r-
l/r .cr

vl

a,'c,
:t
€ + -
trl-
E

o
c t -  e

ct

c
.9
*
vl
o

C

(t\

o
ota'r-$

J
lJ1q

a\a
cn

tL

c,
0
IA

v,

E
CL

Fig 15 Numer icaI  so lut ion of  2 d imensionaI  t inear  water  equat ions (eqns-  
12.8)  -  (2.10)) for  bathymetry B,  per i0d T = 15s.  Input  wave ampl i tude
= 1.0m



E
Itt

Fl

l l

,'E

CL
c,

ct

L'

E
rct

n
G

CI
t

EI

tl

E
-f

oo

tl

E

CL
a,

ct

,c

r\ t1 nn e q t u': ttl -<?: rt'! T I a - T I !
- :  ;  I  - {  - J , j O  c '  O  O  O  F -  F  F;  . ;  +  F  o  o  o  o  o e l  T  I  I  

- T  
r  r  r  t

(:t

tl

c
.9
t <---

OJ

l!

Wave elevat ion ptof ted
I  = 10s, bathymetry B.

against  t ime at  three
Numerical  solut ion of

points,  per iod
(2.81 - (2.10)

surfare
equat ions

Fig 16

Input  waYe ampt i tude = 1.0m



L
(u (a
a-'ct
o c
J 4 a

F

o-

0-c ,5
: €  =
= = o
= o v t
tt' 

-vr E
E = r E
= e | ,
F t o a -

x-s. E=3tr

q
t\t

o
tn-\c,

o
-.!t

o
t/1

,2
*'aE. - -

ta, -o

e
.9
t
o

o-

Itt
U1
o

{t
o

\Ct
e

CJ
-,=
= < -
CL
e

- l !

I r:r
E  l i L
A4 B;n
d.= Je

Numer icaI  so lut ion 0f  l inear ised r la ter  eguat ions (eqn (2.8)  -  (2.10] ,
l / i th  bathymetry [ ,  per iod T = 6s,  and compar ison r l l i th  resul ts  of
a d i f ferent  numer ica l  mode[ .  fnput  rdave ampl i tude = 0.5m

Fig 17



,E

I
i

cr.]3
-  4 = - - -

3U
tlr

I
i

q

s tcE
= o E

i ! =

= o v t
e | / l
o

-vt g
E t &
= c ( u
F ,lt a-' i !3
, g = E
E . . : F

tt1

CN
rL

c,
a,
vt

o

E
o

v,
ct

CL

o
t/r

L,r1
O

r
o

Lf.l

o

+
I

e

E

CL
c,

o

\\,lt
i\
i\\
t \ \

\.

!
I
i

(=t

-f

\ \

I

I
I
I

|f,
C , E
cL'=

t/r D

# -ro.
: ' O

E<-
CL
E

Numericat  sotut ion of  l lnear ised !raler equat lons (eqns,(2.81 -  {2.10},
wi th bafhymetry [ ,  per iod T = 10s, and conpar lson ]r l th fesul ts 0f
a di f ferent numericaI  model.  Input t+rave ampt i tude = 0.5m

Fig 18



Cf,
c,

e
e,
CU
l

l+l-
F.

U)
o

o
,t)

T
td-
,-

a,
c3

c,
ct

I
LrJ-
F

(1,
C=

€
v)
T

td-
F

Surface wave elevat ion
for per iod T = 15s, at
(at  = 0.25s)

acfoss par t  o f
t imes 50s,  100s,

with bathymetry [ ,
and 200s af ter  start .

basin
15 0s

Fis 19



o

l o

l -

l . l-l -c

I
J .r -,.,
l^
lo

{e
l-
l r n

l . r  +-1c -  |

lt
l= f '
loo S=
I  o-=

i3F
l c n

l *
l:H

I
J
Itr G
a\t oi.r =
o s ,

€t
CL

o

t/)

t c

3:6- -  - l -

.r.
rnl
o

-; c,
tn -c! I

o
€
o

(u'c,
=

:= <-_
o-
e

\rl

i
I

t ' l

{
o

. \ ' \ .
\ . \

. \

*
c(u vt
o v ,
trL >,
E 6( u q J P c .

= - t t o
J

+ + - : \
: = E = u t D
c L t r n = c . -
-E 'EFE ' i i' o * . F * c ,

E;=3*= /o t r ;
eJ i o
= ^ r l r = o J. t t f c L + . 9
z - J ( / t = _ l

o
LN

o

c-. t
ul u'!
e o

Numericat
(2.3 )), w ith
0.35m

solut ion of  non-t inear water equat i0ns (see eqns (2.11-

bathymetry A, per iod T = 6s.  Input wave ampt i tude =

Fig 20



-.=\q
'-,_:\

' l

i
I
\.
\
\

9-u'r
l'r

o
ro

*
c( U t a

o t
c L 5
E . oq r o c

P € u t !

t  =E 36
c t c n = c L
E'E  EEI@ * f r * q r

E ; = E *= , o t r . i
E J i'= u : t!

= t - r q r = o r
. 3 { c L 9 . E
L ; t / r = _ t

qt
FI

. c l

:9=

cn
IL

t,
c,
vl

n
c
C'

v,(,
a.

o
oI\

o
o

t \
i t
t t

i
i
i
\
i
i
i-i
I

s$
l t r .E

9 e @ t \ i a r \ ( ' - a t n' - t l i t - i -aqqga
o o O a o O O e . c ' o a ; o

(U
E=
l5 {-
CL
€

Fig 21 Numer ica l  sotut ion of  non- t ineaf  water  equat lons (see eqns (2.1]
(2.311,  wi th bathymetry A,  per iod T = 10s.  lnput  r rave amp[ l tude =
0.1n



c>

o
u r i - o

o
{ t - t \

o

+
c
OJ a

o v r
trL >\
E . D

o r o r g c
E E v r O
E # 1 >
= E = s t o
; C N = E L

F'E Hgi i' e * t O C r O J
a.

E
; r o P , ;
.EJ* -b
f s H a E
E l r n - S 5

t
I

?
q f
€ c L

tu
a

o
CF

o
o

t_-Z
EB--
a,ar -a

- e

c\

cn
u-

o,
c,
.A

vl
c,
.c,
+
vl
C'

.o-

, i n ( \ F ; : l t l
F - C

< ; e c ; c ; c l
o

o c \ ! 9 r - +
r t F . e : -
o o o o o

o.,
E'
=
:= .*-
cr.
E

NumericaI
(2.3)),  with
0.1m

solut ion of  non- l inear
bathymetry B,  pef  iod

t rater equat ions (see
T = 10s. Input wave

eqns t2.1) -
ampl i tu de =

Fig 22



N

e
c'

o-

it

rlE'

ltl
f'.!
o
ll

F Gt tYt -+ ttl

; = f 
" " 

f f

c
-9
E +--
i,

t

3: .e t ! -+ rri (\.
o e e 4 > € t 6 l

Wave elevat ion ptot fed
bathymetry A {see Fig
lnput wave ampl i tude =

against  t ime
1),  non- l inear
0.35m

at points  11 and 12,
solut ion,pet iodJ=6s,

Fig 73



rct

lJ'l
lt':

o
l l

.!-

!

o c o \ c r - + o € . 9 - t q ! - t : 9 9 9 o ^ l - +
- - - - r - q q q q q q ? ? q - . - -
c ;  o  o o o  o  < t  o o  o  c t ? ?  ?  ?  ?  ? ?

c.
.9

9+
g
1r'

Fig 21 Wave elevat ion ptot ted
bathymetry A (see Fig
Input h,aYe ampl l tude :

against  t ime
1),  non-t inear
0.1m

at points 11 and 12,
solut ion,  per iod T = 10s.



T lME"70.3eS

ta)

T IME"70.3eS
{b}

Fig 25 Surface wave elevat lon
70.32s af ler  start ,  for
{at  = 0.3516s1

for  non- l inear
(al  bathymetry

waves,per iodT;10s,
A,  {b}  bathymefry B



0.13

0.12

0.11

0.10

0.09

0.08

Ampt i tude

t
10.07
I

0.06

0.05

0.04

0.03

0.02

Poslt lon 4

!
!
!

I

Slopa
ends

I
I
I
il

l ' laxlmum ampti tude

1/2 lutavehclght)

Linaar spectraI analYsis

- ' t ' \ . - ' t ' '

2-7$-----z

i i -'''''''-

\.
\.

\\

\\

\r
\ \

\\

\ \

\

!
I
i
i

L inear and non-t inear numerical
0),  per iod T = 10s. Input wave

solut ions wi th a
ampl i tude = 0.1m

wedge (bathymetry

I

Fig 26



Llnaar

F-- -  Non- l lnear

\

t \
/ \

i\
, \

l\
!F
i/ \
il \
t l \

i/ \
i/
t l

i/
I At = o.?3*

0.13

0.12

0.11

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

-0.0[

-0.05

-0.06

-0.07

-0.00

-0.09

-0.10

-0.11

-0.12

-0.13

0.01
EtevatiXnO.,

|  
-0.01

| 
-0.02

I -0.03

Fig 27 Wave elevat ion ptot ted against  t ime
period T = 10s, comparing the l inear
Input rrave ampl i tude = 0.1m

at point  12,  bathymetry D,
and non-t lnear solut ions.



ct)
cr.t
Lt7

t'.
co

r
t{.t-
F

U)
rI,
ct
+
tl

l,t J-
F

cn
'I,
t\

m
cn
I

lrl-
F

CN
@
@

,;
t
T

lrl-
F

Surface t . lave etevat ion across part  of  basin wi th bathymetry 0,
for  non-t inear waves. Per iod T = 10s, elevat ion shown at  t imes
46.88s, 93.76s, 140.61s and 187.52s af ter  start .  (at  :  0.2344s)

Fig 28



J _\_\_ \_ \ _\_\_ \ _\ _\ _\_

r/
I
I

I
I

I
I
I

x-uFl

I
( @ F \ C t t n l
TTiTTrt|lt lx x xx x  x- \ . ' .

I
I

x-rfl
I

I
x-c{
I
I

lrrrffTil T--
-t tYl (! r c' O^OOr\\O i?FTF  

I  E
l ' -

l +
l ' -I u'l
r c '
l o -

\\_\_\.j
)

)

)f
)F
) c f ,

)

\

rl
.l T
.l I
.l
.l
..1
.l
.'.1
.l

EI
IU
qJ

.tJ

rn
q,

o
(\J

(U

.o

(U
c,'l
C
o
CL

tll

+
> l

Egl g
*.El i

Fig 29 Breakwater gap conf igurat ion, for 10s peniod incident wave. 6ap width
= 1.75 x (wavetengthl



o
t!

C'\

CI

\C'

rjl

-t

rn

sl

.3
UI

g6

EF s
;E 3 F

F L b

E *  o ,  E

#SEE

t
l c ' \
yr (\'

€,r
$g

u] -t rn N - q q oq \ 9 u'! { r'1 ry - q
+ F ' i j # # T i O O O e | O O € | e t c ) c )

(U
E
J-. 3 < -
o-
E

Fig 30 Dif  f ract ion by a breakwater gap, with constant water depth



*,

E
c'
o-
tt

I.|"t

tr
c'
o-
|!

\o
rtln1
I

l l

o q q t\ \c n -i, ' .t sf r q 5 i 3 : 5 : : 3 3 :#  e c o  o o  o e o < a  o  r  r  r  f l  I  I  T - i  r

3-
q,

Fig 31 Wave etevat ion ptol ted againsi  t ime at
T=10s, for breakwater gap (see Fig 29l.

two surface points,  per iod
input  ampl i lude = 1.0m



ctt

ct

.d
CD

t
L-r-
F

<n
€:1

tn
I

IlJ-
F-

{J

o

II'
o
m
!

lr,-
F

ttt

ct

u;
tcu
ll

Lrl-
F

Fig 32 Surface etevat ions -  regular  wave groups



Primuy wave spectrum

S(mzs)

Set doyn spectrum
\ (Laptace's equation)
. - \ -  /'.1{

) - \. / - . - r
Set'dovr} '- \1
spectrum 

- ' :)-

!d-"::lt'q 
'\'l

equat ion)

0.02 0.01 0.06 0.08 0.10

Frequency (H.)

0.1? 0.14 0.16 0.10

Fig 33 Specl rum for  random wave input



{
e
o

o
I

N
o
e

o
o

j

o
o

0
o

o
o

o
o

{
o
I

q
o

q o
;

o

o
e

J 9
o

q
o

{
o
e

m
o
o E

h

N€
5 t l

N E
q
o

a
o

J < ?
o

q
e

+
q
o

q
e

E
h

*6i
N t r
O E
o

q
o

o
o

o x
; \
/ \

c v \
. / \

I
I

\

?r

\

)

o
! : ;

9 o ;
n

0
?
o€
q

g

€
o

o
a

x
I
I
I

I

x

J

2
a

€
J

t,
a
x

g

I

I
I

I

Fig 34 SpectraI  densi t ies for  Piers0n-Moskowi tz  input



c|.J
Q

,d
ct
CA
t

tl'l-
F

ct)

o

rt){.ru
t

lrJ-
t -

(rf

(:t

,d
(f'

I
l!
:t
F

rt|
o

ul
I

llJ=
F

gf0upsFig 35 Surface etevat ions -  random wave





APPENDICES.





Boueeinesq equation

APPENDIX 1

DERIVATION OF SET DOWN

The expression for the

Bouss inesq equat ion  a t

by

n - 1

I
-i=1

0 J . .  .  =
J +nl

=

=

' j *  - ' j

2n  G . .
J'fln

2n L f  ( ( - i+m

2n Afrn.

A}IPLITUDES

second order

any point  x

e levat ion for  the

at  t ime t  is  s iven

where  A i - j  i s  de f ined in  the  express ions  fo l low ing

Q.2) ,  and the  no ta t ion  o f  sec t ion  3 .2  i s  re ta ined.

By  subs t i tu t ing  m =  i - j ,  eguar ion  (Rt )  can  be

rewri t ten as

n ( 2 )  ( * r t )  =

n ( 2 )  { * r t ;  =
n - 1

I=, 
oj*,

I t  should be observed that

independent  of  j  
" " ,

c o s ( o . -  . t - k . -  . x + e . .  . )
J+mJ J+mJ l+trl j

(A2 )

the  te rm o .  .  i s
lfln-l

n

I
i= j+1

A . .
1 J

n - j

I
m=l-

f . )
J-+) -  ( i  -+))

again reference should be

sec t i on  3 .2 .  To  make  the

w i l l  w r i t e

0 ! - = 0 : - : = 2 n A f m r
m J+rn-]

so that  (A2)  becomes

(  t \  n - l

n ' - ' ( x r t )  =  I
m=1

nota t ion  o f

o f  o .  .  c l e a r
-1fin1

made to the

dependence

n - 1

I
-i =1

k .  . x
-1finJ

A .  .  .  c o s  ( u r - t  -
J rrnl m

*  t j * j )



/ ^ \  n - l  n - k

n t ' /  ( * r t )  =  I  I  A r * ,  cos  (o - t  -
m=l i=l J+rnJ m

I  n \  n - l

r r t " ( x r t )  =  I ,  D *  cos  (o l t  +  611 .
m=1

which a l lor*s us to put  the expression

e leva t i on  i n  t he  f o l l ow ing  fo rm:

The above can be rewr i t ten as,

In eguat ion (A3) D,

assoc ia ted  w i th  t he

given by,

and 6m is

tan $p =

Us ing  a  s i r n i l a r  ana l ys i s

equa t i on  (3 .4 )  i t  can  be

order  e levat ion tenn can

/ 4 \  n - l

n t " ( * r t ) = I - f r * cos (w - t
m=1

k . -  . x  +  e . -  . ) ,
l f ln-l l+m-]

for  second order

j 2  = f t  Am ' i=1

n-m
*(I

j = 1

is  the set  down ampl i tude

di f ference f requen"y gr i ,  which is

j * 1  " o "  
( t j * j  k j * r i * ) ) 2

o- i * j  s i n  ( t  j * r j  
-  k i * r5 * ) )2 , (A4 )

(  A3 )

(  A 5 )

( A 6 )

such that

n-m
I  e .  s i n  , r j * . i  -  o j * j * )
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