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1 INTRODUCTION 

1.1 Background 

A numerical model has already been developed for the 

solution of the Boussinesq equations for shallow water 

waves. This model describes well the physical 

processes of diffraction and refraction of nonlinear 

dispersive wave propagation (Refs l and 21, and 

includes numerical boundary conditions that 

successfully model both total reflection and total 

absorption. Absorption is achieved using a sponge 

layer, as developed by Larsen and Dancy (Ref 3). 

However, in order to model the reflective behaviour of 

real harbour boundaries, which may vary from vertical 

walls through rubble mound structures to gently 

sloping beaches, a new approach is required. It is 

also important to represent the reflection 

characteristics of real boundaries throughout the 

frequency component range of a random sea. 

Review of recent 

literature 

The most common analytical approach to the problem of 

representing outgoing boundaries, is to use radiation 

boundary conditions. Israeli and Orszag (Ref 4) have 

summarised methods of deriving higher order 

approximations to radiation boundary conditions, and 

Chubarov and Shokin (Ref 5) have considered the 

discretisation of such methods, with particular 

reference to nonlinearity and dispersion. Recent work 

in this area for the shallow water equations has been 

completed by Burgess (Ref 6). However, these methods 

are generally derived assuming normally incident waves 

and are less accurate for obliquely incident waves. 

They also require finite differencing of higher order 

terms. 



An attractive approach to radiation boundary 

conditions developed by Liao and Wang (Ref 71, which 

uses an extrapolation series, is accurate for oblique 

incidence. It seems likely that this method could be 

modified to represent partially reflecting boundaries, 

but has the drawback of needing information at several 

previous time levels. 

The governing equations of porous media have been used 

quite successfully (eg Madsen (Ref 8)) to represent 

both reflecting and transmitting boundaries. This 

method requires the empirical tuning of several 

constants in the equations. However, it is not clear 

if these equations are applicable to rubble 

structures. 

The existing absorbing boundary conditions used in the 

Hydraulics Research numerical model (Ref 1) are based 

on the work of Larsen and Dancy (Ref 3). They employ 

a sponge layer, which is used to absorb the energy of 

waves incident upon it. When used in this way the 

sponge layer can be thought of as acting in the same 

way as a shingle beach in a physical model of wave 

disturbance, in that it will absorb waves over a wide 

range of frequencies. In the derivation of the sponge 

layer representation the aim is to select certain 

parameters so as to minimise the reflection 

coefficient of the boundary. It seems equally 

possible that a form of sponge layer could be obtained 

which would behave physically like a partially 

reflecting structure. As far as is known no previous 

workers have made attempts to control a sponge layer 

to represent a partially reflecting boundary. 



1.3 Outline of 

apprcach 

The method finally chosen is based on the sponge layer 

approach of Ref 3, with the aim of increasing the 

reflection coefficient from the present absorbing case 

to give partial reflection. In common with the porous 

media layer, it was anticipated that the sponge layer 

would perform well throughout the frequency range of 

interest, with the advantage of being easier to 

implement than the porous media layer. 

In order to control the sponge layer reflection 

coefficient, it is necessary to derive the governing 

equations inside the sponge layer, from the finite 

difference expressions within the sponge. The 

requirement of continuity across the sponge boundary 

then gives the theoretical reflection coefficient. 

This analysis is necessarily linear, which is also the 

case when analysing the porous media layer (Ref 9). 

The derivation of the theoretical reflection 

coefficient for the sponge layer is given in 

Chapter 2. 

Prior to this some consideration is given to 

alternative formulations of the model boundary 

conditions. This is also discussed in Chapter 2. 

Numerical tests have been conducted to check the 

accuracy and applicability of the sponge layer theory, 

and these are detailed in Chapter 3. The conclusions 

and recommendations arising from this research are 

given in Chapter 4. 



2 THEORETICAL 

BACKGROUND 

2.1 Alternative 

boundary 

conditions 

Before the introduction of a sponge layer, the present 

numerical model used an absorbing boundary condition. 

This was based on the characteristic equation of the 

one dimensional, linear shallow water equation: 

where X is distance, t is time and h is water depth. 

By assuming that the wave propagation obeys equation 

(2.1), a linear condition can be imposed at the 

boundary based on the information one cell before it. 

This boundary condition can be tuned to a specific 

frequency and direction, and will work well for the 

given case. However, as incident waves deviate from 

their assumed behaviour the boundary condition will 

become less effective and wave energy will be 

reflected. Where this type of boundary condition has 

been set up for short period waves a significant 

fraction of the long period energy (eg in the case of 

set down) will be reflected, see Smallman et a1 

(Ref 1) .  

An improvement might be expected with the non-linear 

characteristic equation which for the right-going wave 

is: 

A f i n i t e  d i f f e r e n c e  exp re s s ion  based on equa t i on  

(2.2), which uses linear interpolation across the cell 

before the boundary, is 



- 
where space level it1 corresponds to the boundary. U 

and h are mean values of U and h respectively over the 
fraction of the last cell covered by the wave in time 

At. A simple approximation to u and h would be: 

where d. is the still water depth at the ith cell. 
1 

Numerical tests using this non-linear boundary 

condition for the Boussinesq equations, showed that 

although it was a more effective absorber than the 

previous linear boundary condition, it was still 

unsatisfactory. 

Two obvious inadequacies of the non-linear boundary 

condition are its failure to take into account the 

slowing of the wave due to dispersion, and the linear 

interpolation and approximations made in deriving 

equations (2.3) and (2.4). Unfortunately a 

characteristics-based analysis of the dispersive 

Boussinesq equations is presently intractable, so 

preventing the derivation of an extension to equations 

(2.1) and (2.2). . An attempt to approximate the effect 
of dispersion, using the equation: 

did not improve the effectiveness of the boundary 

condition. Efforts to improve the interpolation and 

approximations of equations (2.3) and (2.41, by using 

slightly more sophisticated expressions, also had a 

negligible effect. 



A further drawback of the absorbing boundary condition 

approach as described above, is revealed when attempts 

are made to apply the method to partial reflection. 

As an example, the linear boundary condition based on 

equation (2.1) can be written as: 

where c is the celerity. R = 1 gives zero velocity at 

the boundary, corresponding to total reflection, and 

R = 0 gives total absorbtion. Numerical tests have 

confirmed that for an incident sine wave, these two 

values of R give very good results. However, as R 

varied between 0 and 1, numerical tests showed that 

even for incident sine waves, the effective reflection 

coefficient was period dependent, and not in general 

close in value to R. Equation (2.6) is therefore 

unreliable for values of R other than 0 or 1, even for 

incident sine waves. This suggests that even if a 

perfectly absorbing boundary condition could be found 

for non-linear, dispersive waves, it would be 

difficult to control it in the case of partial 

reflection. 

2.2 Analysis of the 

sponge layer 

reflection 

coefficient 

Before discussing a method by which the sponge layer 

can be used to represent a partially reflecting 

boundary, some background should be given on sponge 

layers as absorbing boundary conditions. The basic 

idea behind sponge layers is that in the cells 

representing an absorbing boundary the wave elevation 

and velocity are reduced by successive division by a 

function p(x)  (say). This is selected so that it is 

equal to one at the front of the layer and has a large 

value at the back. Thus the wave energy is dissipated 



as it travels through the layer in a similar way in 

which it would be by a gently sloping beach. The 

reflection behaviour of the sponge layer is directly 

related to the choice of the function p and the number 

of model cells over which it is applied. The expected 

reflection behaviour is derived from the finite 

difference scheme. In the following section a method 

of analysis will be used which is similar to that 

given in Larsen and Dancy (Ref 3). 

For simplicity, we consider the one dimensional 

linearised shallow water equations: 

The sponge function p(x) has been introduced in a 

previous report (Ref 1). There, it was used once, at 

the end of the finite difference scheme, to 

progressively reduce elevations and velocities towards 

the boundaries. The scheme used in the present model 

is a predicter-corrector and calculates the elevations 

before the velocities. We will now change the 

application of the sponge, so that the elevations are 

affected before calculating the velocities. This is 

equivalent to the following scheme: 

n 
u n+X n+X 

'i-?j d i UI-l, = + - (-- 
p i - ~  h pi pi- l 



in the usual notation. 

This double application of the sponge is necessary to 

give equations (2.9) and (2.10) a similar form, which 

will be useful in the later analysis. 

To derive the theoretical reflection coefficient we 

first need to re-arrange equation (2.9) as: 

Making the approximation that the RHS of this equation 

is centred at the time level (n+X)At, which will 

introduce an error which increases with increasing 

time step, we can write the differential equation 

corresponding to (2.9a) as : 

Likewise equation (2.10) gives (with the same 

approximation) 

Now making the substitutions, (assuming harmonic 

motion) 

u*(x) iewt z*(x) iwt U = z =- P 9 Pe 

g 
K dK 

lead to the equations 



W 
where k = - XL& 

C r =  (gd) 
(gdlK ' 

( -1 - 1) and 7(x) = {ik - p(x) 
'r 

Equation (2.17) can be compared with equation 14 of 

Ref 3. There, Larsen and Dancy used a Preissman Box 

scheme, involving three time levels, which replaces 

p-1 in equation (2.17) here by p-2. This complicates 

the expression, and makes the subsequent integration 

of 7(x) more difficult. Equations (2.14) and (2.15) 

give 

with a similar equation for U*. Although no general 

method is known for the solution of a second order 

linear ordinary differential equation with variable 

coefficients, equation (2.18) is of a special type, 

with a solution of the form: 

X S X 2 X . Here the sponge layer acts on the region 
S e 
X 5 X 2 X A is a constant, and the solution 
S e ' 
requires zero elevation at the back of the sponge 

layer (at the boundary). Note that in the discrete 

application of this boundary condition, a slight error 

will be introduced, because the elevation will be zero 

at the centre of a cell, not at the back. This will 

decrease as Ax decreases. 



X 
If we now define f(x) = Se ~(s)ds 

then (2.19) becomes 

z* = Bsinh f (X) 
S 

where B is a constant. 

At the start of the sponge layer, the governing 

equations change from equations (2.7) and (2.8) to 

equations (2.11) and (2.12). Continuity of the 

solution is required across this interface; the 

boundary condition is 

where a is a complex reflection coefficient (see, for 

example, Berkhof f (Ref 10) . 

Outside the sponge, the solution can be written 

z = e -ikx + Re ikx 

which corresponds to a unit amplitude right going wave 

and its reflection of amplitude R. 

Substituting equation (2.23) and its differential into 

equation (2.22) allows an expression for the amplitude 

of the reflection coefficient to be derived as: 

1 dz From equation (2.22), ak = ---and thus 
z dx 



Now in the sponge, from equation (2.131, 

and therefore 

iwt 
dz e 

dz* 
- - 
dx- 7 (zz$t p dx 

onx = x s 

g 

However, the sponge function is smoothly varying and 

constrained to be equal to unity at X = X S thus, 

This gives, on substitution of equations (2.27) and 

(2.26) into (2.25) 

Substituting for z* (X) from equation (2.21) , and 
S 

d f noting that - ( = -y(x 2, from equation (2.20) , 
dx x=x 

S 

gives 

sinh f (X - cosh f (Xs) - 2 i g  
S 

R = (sinh f (xs) t cosh f (xS) 1 e 

where we have used p(x S = 1, and therefore y(xS) = ik 

from equation (2.17). 



Thus , 

from equations (2.17) and (2.20) 

X 

Putting M = Je p(s) ds 
X 
S 

leads to 

From equation (2.311, M 2 (xe - xS), and so equations 

(2.32) gives I R (  1. Clearly, by choosing M and X 
S 

-2ik (M+xs) 
such that e is negative, R can be made 

positive. In the special case 

2k(M + X ) = (2n + 1)n where n is an integer 
S 

we have simply 

By careful choice of M and xs, it is expected that the 

reflection coefficient of the sponge can be tuned to 

the desired range of values. 



A particular 

choice of sponge 

function 

In order to calculate M, and so the reflection 

coefficient as given in equation (2.35), it is 

necessary to choose the function p(x). Larsen and 

Dancy (Ref 3) chose a complicated, but initially very 

gently varying function, to ensure complete 

absorbtion. However because we want to reflect a 

certain amount of energy, a simpler function may be 

admissible. As a first attempt, the quadratic 

function will be used. This allows both 

as required, and by increasing or decreasing the value 

of p(xe), M can be varied, since 

We are free to choose X = 0, and then we can put 
S 

X = L, the length of sponge. Then the function e 

gives p(xe) p(L) = N (2.38) 

where N can be viewed as a scaling parameter. 

Substituting equation (3.37) into equation (2.31) 

gives 

so for a given length of sponge L, M is varied simply 

by choosing different values of N, which corresponds 



to the value of p(x) at the boundary behind the 

sponge. 

For X = 0, equation (2.32) simplifies to 
S 

-2 (M-L) /Crk -2ikM 
R = -e e (2.40) 

Clearly for a given wavenumber k, M can be chosen to 

make R real. However, this would not be true for 

other components of a random sea, which would have 

differing wavenumbers. 

The sponge function p(x) is introduced to the scheme 

at (L/&) cells behind the boundary, increasing from 

p = 1 at distance L from the boundary, to the value 

(for equation (2.37)) one cell from the boundary. 

Because zero elevation is imposed at the boundary, the 

sponge function cannot be defined, even discretely 

over the last cell. This will introduce an error, 

which decreases with decreasing h. 

3 RESULTS OF 

NUMERICAL TESTS 

OF THE SPONGE 

LAYER 

3.1 Implementation of 

the sponge 

The sponge layer was introduced to the numerical model 

according to equations (2.9) and (2.10). These 

equations are much simpler than the full two 

dimensional Boussinesq equations. However, it was 

anticipated that with the double application of the 

sponge (both before and after the calculation of the 



velocities) the linear theory would give a good 

indication of the nonlinear behaviour. 

So far, numerical tests have been conducted with the 

model representing a long flume, with the input 

being defined at the opposite end of the flume to the 

sponge. The linear equations have been solved with an 

input sine wave, and the full Boussinesq equations 

have been solved with an input wave closely 

approximating a cnoidal wave (using the first two 

terms of a Stokes' expansion). All these tests have 

been one dimensional, although it is anticipated that 

obliquely incident waves will also be reflected as 

required using the sponge layer. 

To study the response of the sponge layer to a 

spectrum of frequencies, the input wave period was 

varied from 4s to 33.3s, which was considered to 

represent the maximum range from a short period wave 

up to a set down. In all the tests, a space step of 

5m and a time step of 0.7s were used. The constant 

depth of the flume was taken to be 5m, giving a 

Courant number of 0.98. 

3.2 Totally absorbing 

sponge layer 

tests 

It was already known that the sponge function 

previously used in the numerical model (see Ref 1) was 

effective at absorbing waves, even those of 

wavelengths up to at least five times the length of 

sponge. This older sponge function was applied once 

in the program, to the updated elevations and 

velocities prior to beginning the next interaction. 

It was also used with a linear radiation boundary 

condition, and did not prescribe the elevation at the 

back of the sponge. 



Initial tests of the new sponge, using sponge 

parameters N and L such that equation (2.40) predicted 

very small R, indicated that the theory was accurate 

for input wave periods up to 10s. However, longer 

period waves were partially reflected. Therefore, 

further tests were made using the new quadratic sponge 

function, as described in Chapter 2, but with the 

single sponge application linked to a radiation 

boundary condition. It was found that this 

successfully absorbed waves much larger than the 

sponge layer. As an example, a four cell sponge 

(L = 20m) with N = 1.833 caused negligible reflection 

of a 33.3m period wave, with wavelength of 233.3m. 

Tests of a wave generated using the first two terms of 

a Stokes' expansion of a cnoidal wave (referred to 

later simply as a cnoidal wave) indicated that 

nonlinear waves were also absorbed well. 

3.3 Partially 

reflecting 

sponge layer 

tests 

First attempts to control the reflection behaviour of 

the sponge, showed that for a 10s period input wave, 

it was necessary to use less than ten cells of sponge 

to get the required behaviour. Using many cells of 

sponge absorbed more of the wave than predicted by the 

theory. This is an unimportant restriction, because 

in practice we prefer to minimise the number of cells 

in the scheme covered by the sponge layer. 

Initial calculations of R from equation (2.401, with 

the choice 

in order to give real, positive R, showed this to be a 

severe restriction on the choice of R. For example, 



consider a 10 cell sponge with Ax = 5m, so that 

L = 50m. With a 10s period wave in 5m of water, the 

wavelength A = 70m. Also, we can rewrite equation 

(3.1) as 

Hence, n = 0 gives M = 17.5, which is inadmissible 

because it is less than L (consider equation (2.40) - 

this gives I R I  = e -2(M-L)'CrAx). The next value of M 

which gives real, positive R is for n = 1, and is 

M = 52.5. This gives 

All higher values of n give very small R. Therefore 

there is only one useful choice of M which satisfies 

equation (3.21, which is very limiting. In addition, 

in a random sea, only the 10s period component will 

respond to the sponge layer in this way. Therefore, 

all the tests carried out were to investigate the more 

practical use of a complex theoretical reflection 

coefficient, as the viability of the sponge layer 

depends on good performance under these conditions. 

3.3.1 Linear input waves 

For a given length of sponge and period, equation 

(2.40) gives the theoretical variation of R with M, 

where M is directly proportional to N (equation 

2.39)). In Figure 1 the modulus of R is shown 

plotted against a parameter E, where 

which gives 



Clearly E = 0 gives total reflection, and as E 

increases the theoretical reflection coefficient 

reduces. Figure 1 is for 4 cells of sponge and a 10s 

period. As in all tests Ax = 5m and the water depth 

is also 5m. 

To test the theory, numerical tests were made using 4 

cells of sponge and an input sine wave of 10s period, 

for various values of E. The results of these tests 

are tabulated in Table 1, and plotted as linear 

numerical results in Figure 1. As can be seen, the 

agreement with the theoretical I R (  is good for 

R 2 0.3, ie E S 3. For larger values of E, it appears 

that the minimum reflection coefficient achieved is 

about 0.2. It is not surprising that a sponge layer 

only 20m long cannot achieve R S 0.2 for a 70m wave, 

and indeed it is likely that for large E, 

corresponding to a steeply changing sponge, R will 

increase again. The failure of the theory to predict 

the numerical results for large values of E can be 

attributed to the approximations made, as detailed in 

section 2.2. 

All the reflection coefficients deduced from numerical 

results were calculated using a method described in 

the Appendix. This method is based on assuming the 

motion is due to two sine waves travelling in 

opposite directions, different only in phase and 

amplitude. Spectral analysis was inappropriate here, 

as the record length was too short. More data could 

not easily be obtained, as this would required running 

the model with a greater number of timesteps with the 

consequent risk of secondary reflections from the 

paddle contaminating the solution. It was necessary 



to calculate R from elevations calculated.before a 

secondary reflection began to influence-them. 

The results for a period of 10s, shown in Figure 1, 

were encouraging, but for practical applications it is 

important that given sponge layer characteristics 

(N,L) will behave as predicted for other periods. 

Therefore, a similar series of tests were run for a 4s 

period, and the resulting reflection coefficients are 

compared with the theoretical values in Figure 2. 

Again, the agreement with the theorectical I R I  is 

good, and as could be expected for this 20m 

wavelength, a lower reflection coefficient, less than 

0.1, is achieved. The results are also given in 

Table 2. The highest E numerical result in this case, 

E = 9, suggests that there may be an increase in R for 

larger E. 

Further results showing a comparison between numerical 

and theoretical reflection coefficient, for a range of 

input wave periods, are shown in Table 3. 

In an attempt to make a comparison between the 

numerical results and experimental reflection results, 

the response of the numerical model with a sponge 

layer 4 cells long and with E = 5 (or N = 1.75) was 

tested. These results are all contained in Table 1, 2 

or 3, and plotted on the same graph as some 

experimental results in Figure 3. The experimental 

results are for a rip-rap (16 to 20 tonnes with a 

specific gravity of 2.7) placed at four different 

slopes. It can be seen that the sponge layer 4 cells 

wide with E = 5 approximate the 1:3 slope experimental 

results quite well. (Note that the time scaling is 

approximately 1:8, so that the frequency 1 Hz as shown 

scaled to 1/8 Hz.) 



To illustrate the behaviour of the sponge layer, 

profiles of the elevation in the flume are shown in 

Figures 4 and 5, for the case of a 7.5s period input 

wave, and a sponge layer 4 cells wide with E = 1.6 

(N = 1.24). In Figure 4, the profile after 60.9s 

(87 time steps) is shown, and it is clear that the 

first reflected wave has returned to nearly half way 

down the flume, and that the two waves are interfering 

constructively. In Figure 5, the profile three 

time steps (2.1s) later is shown, when the waves are 

interfering destructively. 

3.3.2 Nonlinear input waves 

To study the response of the sponge layer when solving 

the Boussinesq equations in one dimension, a cnoidal 

wave was input at the paddle. Three cases were run, 

all with a period of 10s and amplitude of O.lm, but 

with three values of E for the sponge layer: E = 0.5, 

1.6 and 2.5. Calculation of the reflection 

coefficient for a cnoidal wave cannot be achieved as 

described in the Appendix for the linear case. 

Instead, the flume length was doubled from 

approximately 300m to nearly 6OOm, in order to 

calculate elevations over 128 time steps at several 

positions in the flume. The elevations were then 

spectrally analysed and the results are shown in 

Table 4. The maximum and minimum amplitudes of the 

positions analysed, at the fundamental frequency and 

first harmonic, and for each value of E are shown. 

The reflection coefficient has been calculated in each 

case using the equation 

There are two obvious inaccuracies in this 

calculation: equation (3.6) is derived assuming the 



motion is due to a sine wave and its sine.wave 

reflection, which is not the case here;. also, equation 

(3.6) requires H to be the antinode and H the 
max min 

node of the motion, which is very unlikely to be true 

of any of the positions in the flume chosen for 

analysis. These inaccuracies will result in an 

underestimate of R, and this would appear to be true 

of the calculated reflection coefficient shown in 

Table 4. 

The three calculated reflection coefficients for the 

fundamental frequency, are shown in Figure 1 as the 

nonlinear fundamental frequency numerical results. 

Bearing in mind the likely errors, they are close to 

the theoretical values. The calculated reflection 

coefficients of the first harmonic are less close to 

the theoretical value. However, due to the lack of 

experimental data, it is not known what reflection 

characteristics can be expected of a cnoidal wave. 

To illustrate the performance of the sponge layer with 

an incident cnoidal wave, Figure 6 shows the profile 

in a short flume of a 10s period wave, after 75.6s 

(108 time steps). The sponge layer is 4 cells long, 

with E = 1.6 (N = 1.24). 

4 CONCLUSIONS AND 

RECOMMENDATIONS 

4.1 Conclusions 

1. The theory of sponge layers has been developed to 

allow their use in representing partially 

reflecting boundaries in the numerical model. 

2. The sponge layer theory allows it to be tuned to 

give the required reflection coefficient at a 

specified frequency. For a given set of sponge 



layer parameters, its behaviour across the 

frequency range has been shown to compare 

favourably with physical model results. 

3 .  In addition to representing partially reflecting 

boundaries, the sponge layer approach can also be 

used for totally absorbing boundaries. This 

makes it a more flexible boundary condition than 

many of the others which have been considered. 

4 .  The sponge layer has been shown to respond well 

both to linear and non-linear waves. 

4.2 Recommendations 

1. All the tests described here have been for the 

one dimensional case. Further work will 

therefore be required to ensure the sponge layer 

will reflect obliquely incident waves as desired. 

This will require careful consideration of the 

transverse and horizontal velocity flags in 

setting up the model. 

2 .  Further tests are also required to examine the 

sensitivity of the sponge layer to variations in 

some of its parameters, these include: 

(i) The effect of changes to Ax and At; it is 

likely that decreasing these values will 

improve agreement with the theoretical 

reflection coefficient. 

(ii) Examining the behaviour of the sponge for 

s < < 1 and E > 10. Very small s values 

may lead to instabilities because of the 

imposition of zero elevation behind the 

sponge. Large s will probably increase 

the reflection coefficient, thus allowing 



values closer to unity to be represented 

more readily. 

(iii) Variation in the width of sponge this 

should demonstrate that most physically 

occurring boundaries in a harbour can be 

accurately represented. 

3. To fully validate this method of representing 

boundaries comparisons will need to be made with 

the results from a physical model. 
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TABLE 2 Sponge layer ( 4  cells) results with an input sine wave of period 

T = 10s 

N E: Theoretical Approximate 

I R l Numerical I R I  
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TABLE 4 Sponge layer results with an input cnoidal wave, of period 10s 

The cnoidal wave was approximated by the first two terms of its Stokes' 

expansion. The amplitude of the first term was O.lm. 

Fundamental 1st harmonic Expected value 

N e Spectral component Spectral component R R 

O.1Hz 0.2Hz f=O.lHz f=0.2Hz 

Notes: (i) A series of consecutive flume positions were used to collect 

data, which was spectrally analysed. Therefore the Hmax and 

Hmin values are only exact, if two of the positions 

correspond with an antinode and node respectively. 

(ii) The 'spectral component' O.1Hz corresponds to the fundamental 

frequency of the cnoidal wave. The 0.2Hz component is the 

first harmonic. 

(iii) The reflection coefficients were calculated using the 

expression derived using linear theory: 









Fig 2 C o m p a r i s o n  o f  t h e o r e t i c a l  r e f l e c t i o n  c o e f f i c i e n t  w i t h  n u m e r i c a i  
r e s u l t s  f o r  4s  p e r i o d  w a v e  
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Fig 4 P r o f i l e  o f  wave e l e v a t i o n  f o r  a  7.5s pe r i od  a f t e r  60.9s 











APPENDIX 

Calculation of reflection coefficient for a sine wave 

The wave profile due to an input sine wave and its 

reflection, where the reflection coefficient is R, may 

be written 

q = Acos (wt - kx) + R Acos (wt + kx + +) (A. 1) 

Here, A, W and k are known from the input wave 

conditions. Now if a and b are the elevations at two 

positions X and (X + Ax), at time t, and c and d are 
the elevation at X and (X + Ax) but at time (t + At), 
we can write 

a = Acos (wt - kx) + ARcos (wt + kx + @ )  (A. 2) 

b = (wt-k(x+Ax) ) + ARcos (wt+k(x+Ax)++) (A. 3) 

c = Acos (w(t+At)-kx) + ARcos (w(t+At)+kx++) (A. 4) 

d = Acos (w(t+At) -k(x+Ax) ) +ARcos (w(t+At) +k(x+Ax) ++) 

(A.5) 

Using trigonometrical identities, and for convenience 

putting A = 1, equations (A.3) and (A.2) give 

b = acos kAx + sin kAx (sin(wt-.kx) - Rsin (wt+kx++) 

(A. 6 )  

Equations (A.4) and (A.2) give: 

c = aces wAt - sin wAt (sin(wt--kx) + Rsin (wt+kx+$)) 

(A. 7)  



Equations (A.5) and (A.2) give: 

d = sin wAt sin kAx (a - 2Rcos (wt+kx+$) 

+ c  coskAx+cos wAt (b - a  coskAx) (A.8) 

Manipulation of equations (A.2), (A.6), (A.7) and 

(A.8) to eliminate x,t and 0 finally gives 

az+bz+cz+dz+2ad cos (wAt+kAx) + 2bc cos (wAt-kAx) ' -2(ac+bd) cos wAt - 2(ab + cd) COS kAx 
R = 2 sin kAx sin wAt 

Hence, given the elevations at adjacent cells for 

consecutive time steps, the reflection coefficient for 

the case of a sine wave and its reflection can be 

calculated. 


