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E C BowerE BSc PhD DIC

Report No SR 193 February 1989

ABSTRACT

Itre importance of non-Linear lrave forces in causing ranging of vegsels on
their moorings is orplained. Varj.ous mathernatlcal repreEentations of theEe
forces have been investigated wj.th the help of published data. Due to their
conplexity the ainount of computational effort needed to calculate the forces
exactly is very great and approximate nethods have been sought.

It has been found that for one t1rye of force vhich can be er<pressed as a
product of first order wave pressures and vesseL movements a rreLL known
fPProxination, suggested by Newnan and used in offshore applications, will
lead to large underestimates in the force. This is due to spatlal gradient
effects, ignored ln the Newman approxirnation, becornlng more important for
the coastal applicatlons of i.nterest here where resonant periods of
oscilLation of noored vesseLE are generally shorter than the resonant
periods of structures moored offshore. Therefore, more exact oqlressJ.ons
for this t1rye of force have been forrmrlated.

A second tlpe of non-linear wave force requLres solutj.on of the dlffraction
of random waves, by the vessel, to second order in the wave arntrlJ.itude. Ttrts
problem also requires a large computationaL effort to obtein en exact
solutlon and three different approxinations have been lnvestLgated. By
applying the approxinate treatments to a relatlvel.y sirnpLe siiuatlon sludied
experimentally wlth regular wave groupE, where second order dlff,ractlon waE
shown to be a controlling factor in the reEultant non-linear wave force, it
has been possibJ.e to identify the beEt of the three approximations.

As a result of this nork, mathematical equations have been obtaj.ned which
can be o<pected to provLde a good descrJ.pti.on of non-linear wave forces and
r0oments on ships. Ilowever, these e:qlressions will require more progranrnlng
than originally plarured due to the need to represent exactly non-linear
forces of the first t54pe. Ihe further work needed to incorporate non-Linear
forces and moments into the conputer models ITNDERKEEL and SHIPI'IOOR has been
described. Tttis work is needed to provlde a more comprehenslve check on the
suggested approxlmate treatment of the second order diffraction problen and
on tirne domain representations of non-linear forces and nonents. Such work
wj.ll. lead ultimately to a flnaL validation of the conputer model of a moored
ship against full scale data.
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INTRODUCTION

Engineering feasibility studies for the development of

new ports and the extension of existing ones to

aeconunodate the large vessels of today are

increasingly taking on a conrnon form. Initially,

computer models are required to investigate a wide

range of parameters. Having established favoured

schemes, a random rilave physical rnodel is then used for

final optimisation.

A suite of computer models is presently under

development at Hydraulics Researeh (HR) to satisfy the

requirement for a realistic first estimate of harbour

and ship response to wave action. Ihe work described

in this report covers the forrulation of a suitable

set of eguations for describing non-linearrrave forces

on ships. Once progranrned these equations will extend

the capabilities of UNDERIGEL (Ref 1) a computir model

of the linear response of a vessel to waves, to enable

important non-Iinear rrave forces to be represented.

The implernentation of these equations on a computer

wi.1l be described in a subsequent report. In this

report various methods of representing non-linear wave

forces are evaluated with the aid of published data in

the literature and through comparisons between

theoretical and experirnental results. This leads to a

recorrnended set of equations for describing non-linear

wave forces on ships.

Although the forces under di-scussion are smaller than

the (linear) forces at the wave period they usually

cause larger movements of moored vessels. This

process is illustrated schematically in Figure 1. A

typical \rave spectrum, in this case with a peak in

spectral density S(f) at a frequency (f) of 0.1 Hertz

or a period of 10 seconds, will produce a force with a

spectrum SF(f) like that shosn in Figure 1. There is



a non-linear wave force which occurs at wave group

periods, ie at 1ow frequencies, in addition to the

main linear force at ordinary lrave periods. Once

moored, vessels of 5,000 tonnes displacement and above

have resonant periods of oscillation on their moorings

of 20 seconds to several minutes depending on the size

of the vessel and the compliance of the moorings

This is illustrated in Figure 1 by the sharply peaked

frequency response function at a (resonant) period

longer than the wave period ie at a low frequency.

The reason for this shape of the resonant response is

that being long period, the hydrodynanic darnping is

low and this tends to give a very narrow response

function centered on the resonant fregueney.

Multiplying the frequency response function by the

force spectrum will give rise to a response spectrum

like that in Figure I. It can be seen that although

the low frequency force is snaller than the wave

frequency force, it produces a larger response and the

loads in the moorings can be nany times the non-linear

wave force. This means moored vessels will tend to

range (move horizontally) on their moorings at wave

group periods (low frequencies) with the response at

wave periods occurring mainly in the vertieal motions

of heave, pitch and ro11. It can be seen, therefore,

that the aecurate representation of non-linear wave

forces is vital if realistic estimates of moored ship

movements are to be obtained and any subsequent berth
rrdowntimel defi.ned.

The approach described above can be developed further

to enable a time history of the non-linear wave forces

to be defined and this is the ultimate aim of the

work. Then non-linear wave forces can be represented

in the computer model SHIPMOOR (Refs 2,3) along wi.th

the }inear forces at wave periods already represented.

Linear forces are calculated using the present version

of UNDERIGEL to define the relevant hydrodynamic



coefficients for a given ship. These coefficients

allow the time histories of the linear forces to be

constructed and then used in sHrpMooR which integrates

the shiprs equatj.ons of motion in the time domain. It

is necessary to solve these equations in the time

domain to allow for non-linearities present in

conventional mooring systems. The most significant

non-linearity is caused by fenders being stiffer than

mooring lines which .in turn leads to subharmonJ.c sway

motions of a vessel on and off the fenders at a period

which is a rntrltiple of the wave period (Refs 2,3) an

effect first described by Lean (Ref 4). Such

subharmonj.c motions eould never be represented using
just a frequency domain computer rnodel like IINDERKEEL.

Once the combined tNDERKEEI/SHIPMOOR model is ful1y

developed, with the capability of representing both

linear and non-linear wave forces, it will provide a

realistic description of the response of moored ships

to waves with mainly wave period vertical motions and

Iong period horizontal motions on the rnoorings. due to

a mixture of subharmonic response (caused by.

non-linearities in the moorings) and wave grouping

response (caused by non-linear wave forces). Such

complex moored ship behaviour has been observed in

many random wave physical models of harbours carried

out at HR over the years and it is only by including

the basi.c physics within the mathematical fonmrlation

that realistic estimates of berth tenability can be

obtained from computer models.

It is of interest to compare a "d5mamicil description

of a moored vessel in waves, like that outlined above,

with the approach often used in the offshore industry

for the design of moori_ngs. A "deterministic"
approach has been much used which involves defining a

design wave (typically a maxirn:m wave occurring during

an extreme storm event) to estimate the maxirrum

mooring load just at the wave period and adding this



to the mean loads produced by steady wind, current and

wave forces. fn taking this approach all long period

dynanic effects due to subharmonic responses and wave
group responses are ignored and the probabilistic

nature of real responses is side-stepped. Hence the

description 'rdeterministic" or, as the approach is
sometimes called, rrguasi-staticrr. A comparison was

made, for a barge shaped vessel moored in deep water,

of the mooring loads calculated using a deterministic,

or quasi-static method, and loads calculated using a

fully dlmamic model (Ref 5). In the case of the

dynanic rnodel a source nethod (Ref 6) was used to

calculate the response at wave periods and the Newman

approximation (Ref 7) was used to represent the

non-linear arave forces. It was found that due to long
period responses the naxfunum rnooiing loads resulting

from the dynamic nodel were 25 to 35% higher than

those predicted by the quasi-static method. It is

also interesting to note that the parameters chosen in

Reference 5 for this conparison, a relatively short
period sea of 8s zero crossing period and very long

resonant periods of some 250 seconds, are the most

favourable for the Nenman approximation. It will be
demonstrated in the next Section of this report that

for seas with longer periods, and for shorter resonant
periods of moored vessels (which are more appropriate

for coastal applications) the Newman approximation can

result in large underestimates of the slowly varying

force. This indicates that even for long resonant
periods the quasi-statie approach will lead to much

Iarger underestimates than 25?., in maxirmrm mooring

Ioads for extreme seas, where wave periods are longer.

The fact that mooring failures have not been

widespread in the offshore industry may well be due to

the large safety factors applied in mooring designs.

With the drop in the price of oil, however, there is

now pressure to trim most costs including that of the

moorihgs and so there is a clear requirement for more



APPROXIMATE
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realistic nodels which take full account of the long

period dynamic behaviour. In addition to reali.stic

physical modelling more accurate methods of

calculating non-linear wave forces are available

(Refs 8,9) and these will be considered further in

subsequent sections of this report.

Perhaps it is worth naking the point that the

necessary funding to enable large safety factors to be

applied in mooring design for port applications has

never been available. Ttris means accurate modelling

techniques are also needed in harbour design both to

describe wave action in harbours and the resulting

movements and mooring loads for the vessels using

harbours. The "d5mamicil modelling technique outlined

above, in which both non-linear moorings and

non-linear wave forces are taken into account, will

provide realistic estimates of berth tenability

provided the total spectrum of wave energy, including

the disturbance at wave group periods, is defined at

berths within the harbour. A computer model capable

of providing a description of both the ordinary waves

and wave group disturbances is under development in a

separate research contract entitled rrFurther

development of the Boussinesq nodel of waves in

harbours". Used together these realistic corrputer

models of vessel and harbour response will form a

powerful design tool in feasibility studies.

To understand approximate rnethods of calculating

non-linear wave forces it is necessary to appreciate

the mechanisms causing these forces. Ttre four main

components for a vessel in regular l,raves (single

period waves of uniform height) were first identified

by Pinkster (Ref B). They are illustrated

schematically in Figure 2. Once these effects are



understood it will be easier to generalise to the case

of irregular or random waves. As drag forces on ships
are negligible in most circr:rnstances relative to
inertial forces, they are ignored in what follows.

The surface elevation term in Figure 2 is the

integral of the wave pressure over the area between
the surface elevation and the displaced equilibrium

water line on the vessel. Because the integral is
taken over an area that is of first order in the wave
amplitude, it leads to a non-lienar term that is

related to the square of wave amplitude.

The second term is the integral, over the mean
submerged afea, of the quadratic velocity term in the
equation for the water pressure (a Bernoulli effect).

Being guddratic this tenn is proportional to the
sgqare of wave amplitude.

To understand the third tern j.t is necessary to

appreciate that the pressure acting on the submerged
surface of the vessel, after movement by the Iraves,
gives rise to a second order force. Ttris effect is
described by (Taylor) oqranding pressure on the

displaced body surface about the equilibrir.un position

of the veqgel keeping terms to second order and then

integrgting over the mean submerged area of the

vessel .

the fourth tern is caused by rotation of the vessel ie
rol1, pitch and yaw. Wave forces on the vessel act
normal to the body surface and as the body rotates in
the waves, resolutes of the first order wave force

will deveiop in hori-zontal and vertical directions.

These resolved forces will be second order in the

sense that they are given by the product of first

order wave forces, including hydrostatic restoring



forces, lrith first order angular rotations of the

vesse l .

In regular waves all of the above effects lead to a

steady force, sometimes called a steady drift force,

only if the vessel scatters the waves. Ttris occurs

because there is a steady flux of momentum in a

regular wave whieh is proportional to the square of

wave amplitude. Scattering of the waves by the vessel

will induce a steady second order force due to the

change produced in the momentum fh.rx. ff scattering

does not occur, ie the vessel moves with the waves,

then the momentum flux carried by the waves remains

intact and no steady drift force develops (Ref 10).

We.can now generalise these results to the case of

more realistic wave motion. The simplest

representation of irregular waves consists of the

superposition of two waves with frequencies f1 and f2,

say. These waves produce a beating effect aS they

pass into and out of phase with one another to produce

regular rrave groups. The resultant wave amplitude or

envelope fluctuates with a period given by the inverse

of the difference frequen"y I rr-r, I tr i.g sl. It can
be seen that the momenturn flux carried by such waves,

which is proportional to the square of wave amplitude,

wiII also fluctuate at the difference frequeney and

scattering of the waves by the vessel will then

produce both a mean and a slowly varying force at the

difference freguency via the mechanisms outlined

above. Ttris is il lustrated schematically in Figure 3

where the resultant force is assumed to 1ag the wave

envelope with a phase difference of <112.

In the liJnit of no wave scattering we have seen that

the mean dri-ft force tends to zero but this does not

happen to the slowly varying component of the drift

force. There will be a spatial gradient in the second



order pressure effects acting along the surface of the

vessel, in the direction of the lraves, whether or not

the waves themselves are scattered by the vessel. For

example, such a gradient exists in the incident waves

because the wave envelope has a wavelength given by

Zt/lUr-Xtl *rere the individual wavelengths are 2n/kt
and 2t/kz. This means all of the main mechanisms

leading to the steady drift force in regular lraves, as

illustrated in Figure 2, produce a slowly varying

force in irregular waves for two reasons. One is

associated with scattering of the waves by the vessel

and the second is because of the existence of spatial

gradients in the slowly varying drift force.

The spatial gradient effect is the (second order)

counterpart of the (first order) Froude-Kryloff wave

force which is defined by integrating the pressure in

the incident wave field over the submerged surface of

the vessel. For a vessel in a head sea, wave

scattering effects are small and the Froude-Kryloff

force forms a good approximation to the total wave

force (Ref 1). fn similar fashion, the spatial

gradient effects in the slowly varying drift force

will form a good approximation to the total drift

force nhen there is little vave scatterj.ng. Ihis

approximation was used by Bowers (Ref ll) to eic.plai.n

Iong period ranging of container ships in a physical

model of a proposed seaport (Ref 12). When noored in

a proposed berth near the seaport entrance a large

container vessel, some 2BOm in length at full scale,

was found to surge on its moorings with a periodicity

of a minute or so, and with movements approaehing the

wave height, in random wave head seas with periods of'

only some 5 seconds. In explaining this behaviour it

was demonstrated i-n Reference 11 that there is an

additional mechanism leading to a slow1y varying drift

force. This is a long period disturbance which

travels with groups of waves and acts like a long wave



2.L  Nevmanrs

approxination

in producing a force on a vessel. This disturbance is

called set-down beneath wave groups because Bernoulli

pressures in groups of large waves cause a reduction

in water pressure which leads to a depression in the

mean water leve1 beneath the large waves (Ref 13).

There is a compensating rise in mean level between

groups of large waves. This surface effect induces a

long period wave-like flow beneath the surface which

acts on the submerged part of a ship to produce a

slowly varying drift force. Set-down itself is

produced by spatial gradients in the incident waves

and so the force due to set-down is allied to the

gradient effects already described in the second order

drif t  force.

The four mechanisms in Figure 2 for producing both

steady and slowly varying drift forces, together with

the slowly varying force due to set-down, help to

explain the non-linear wave forces that excite the

long period resonances of moored ships.

In the light of the discussion of the mechanisms

causing long period non-linear lrave forces it can be

seen that pairs of wave components with freguencies

f_, f_ will cause a nurnber of somewhat complex forcesm - n
at the difference frequen"y I r--r- | . In an irregular

l m  n l
or random sea there will be a large number of wave

components and an even larger number of possible pairs

of components: for N wave components there will be Nz

possible pairs. This shows that even with

interpolation of a more limited number of non-Iinear

components, representation of al} the non-linear wave

effects is a large task.

The approximation suggested by Newman (Ref 7) is to

use simply the steady part of the non-linear force, as



given by m = n, to represent the total force. . This

involves calculating effectively N non-linear nave

force components instead of Na components and, in

addition, using a far field calculation for obtaining

the horizontal components of the steady non-linear

wave force. Ttris far field calculation is

considerably easier to carry out than the integrations

of second'd, i rder effects,  over the vesselrs surface,

that are required to obtaj.n the complete non-linear

wave force. The basis of the Newman approximation is.

that the resonant periods (T*) of interest for

horizontal motions of ships on their moorings are long

enough for the coefficients of the wave forces at the

relevant difference freguencies to be approximated by

the steady force coefficients,
.  1  l -  _  ri e  -  =  l f  -  f r r l  =  0 .. R  r m

This in turn means that only those non-linear forces

arising from wave scattering by the vessel are

represented. fn particular the long period spatial

gradient effects present in the absence of scattering,

which rnclude the force due to set-down, are ignored.

The Newman approxirnatj.on has been much used in

offshore applications as it enables a rdlmamic'r model

to be developed for long period resonances of

structures on their moorings without having to carry

out complex calculati-ons. Ttre resonant periods of

interest are sometimes ver5r.tong. For example,
'fishtailing' of a tanker on a single point mooring

typically occurs at periods of l0 mi.nutes or.more

although tethered buoyant platforms can have

resonances in surge, s'rray and yaw at one to two

minutes in water depths of 200m to 400m.

Nevertheless, it is clear that in the.lfunit of a long

enough resonant period, the spatial gradient effects

10



present in the absence of scattering will become snall

because the relevant difference frequencies are smalI

and spatial gradients associated with those difference

frequencies will also tend to be srnall. Set-down is

also smal1 in deep water which tends to reduce its

contribution to the long period non-linear wave force.

For these reasons it has been clained by a number of

authors that the Newman approximation can be oqpected

to lead to a reasonable representation of non-linear

wave forces for offshore applications. Ttris point has
been mede in Reference 14 where comparisons are
presented between Nerrmanrs approxi:nation and other

more exact calculations of the long period non-linear

wave force on cylinders of various cross section in

beam seas in deep water. But, yet again the example
given is for a short peri-od sea of zero crossing

period 5.5 seconds. Ttris will favour the Newman

approximation because wave scattering is strong for
short period seas. Extreme seas t34pica11y have zero
crossing periods longer than 1.0 seconds and even

though scattering of waves is rnuch reduced the

resulting forces are higher because the waves

themselves are larger. There appears to be less

information in the literature on the accuracy of the

Newman approximation for extreme sea states although
in one application to a semisubmersible platforn it
was found that the approxination seriously

underestimated the responses even with a resonant
period of about 3 minutes (Ref i5).

For the coastal applications of interest here the

reduced water depth has two main consequences. One is
that resonant periods of interest are generally

shorter because the length of mooring lines is that

much less and this results in stiffer characteristics.

The second consequence of shallower water is that

set-down is amplified. Indeed, where the primary

waves themselves are deemed shallov water waves, the

t l



2.2 Check on

accuracy

non-linear wave force due to set-down becomes the

largest part of the spatial gradient force present

in the absence of scattering. Both these consequences

of a reduced water depth will tend to reduce the

accuracy of the Newman approximation. It is

necessary, therefore, to study the accuracy of the

approximation in the light of the requirements for

coastal  appl icat ions.

The force due to set-down can dominate the spatial

gradient effects in coastal applications but the

Newman approximation, taken on its own, ignores all

such effects.  I t  wi l l  be necessary, therefore, to

allow for a separate set-down force and use the Newman

approximation to represent all the other forces'if

more lengthy calculations are to be avoided. To judge

the accuracy of this process tre use data in the

Iiterature in Section 2.2 to check the ability of the

Nercman approximation to represent all the non-linear

wave forces apart from that due to set-down. ltre

accuracy of approximate methods of representing the

set-down force, or as it is sometimes called the force

associated with the second order potential, will be

considered subsequently (see Section 4)

Here we use data presented by Standing (Ref 16) for

the case of a vessel moored in quartering seas

(fig a). In this work long period non-linear wave

forces were calculated by two methods. One involved

using the Neman approximation and the other was a

more exact calculation of the required forces.

Responses of the moored vessel were then estimated for

comparison with experimental data. The model used for

the oqperimental work had the follorcing dimensions.

L2



Length

Beam

Draught

Water depth 7.62m

This nodel represented a drill-ship just under l00n

long at a scale of about L to 20. However, the

calculations of non-linear Irave forces were only

presented for wave periods of 12 seconds or less at

full scale which is not representative of the periods

of extreme sea states. In order to use the available

data to judge the accuracy of the Nevman approximation

over a greater range of wave periods we can assume a

scale of 1 to 50 instead of 1 to 20. Then, the

longest wave period considered becones 19 seconds at

full scale and the vessel dimensions become:

Length

Beam

Draught

4 .7m

0.76m

0 .29

235m

3Bn

14 .5m

These dimensions are representative of a 85,000 tonne

vessel. For smaller ships there will be less

scattering of the \raves, making the Newman

approximation less accurate. The opposite will hold

for larger vessels

In a random sea the incident wave elevation can be

defined as the sum of N wave components:-

N
n = I  am cos(rr l* t  *  e*),  ( l )

m=l 'r

where the anplitudes of the wave components am are

given by the lrave spectrum S(f)

u lo  =  2  S( fm)d t ,

l 3



the radian wave frequency is defined

u* = 2nf;,

and e, is a random phase. The general e:<pression for

the long period non-linear wave force is then given

b y : -

NN
F(t )  = I  I  a*ar ,  {P(u* ,urr )cos[ (ur-urr r ) t+e*-errJ

m=l n=1

by

* Q(rrr*,urrr) sin[ (r^rr-urr) t + e*-errJ ]

The approximation proposed by Nelman is the

fol lowing: -

u, +lr,
P(um,rrr) = t(# ,

Q (rrr*, utrr) = o

Ttre steady component of F(t) is defined by the
terms in (2) of the form afr P(.or*,o*) 1nd so we
Newman approximation involves using the steady

t +tr, td +r,
coefficient r 

$i , # as the coefficient

Iong period force at the difference frequency

(rrrr-rrrrr).

trt *ul
mn

2"

(2 )

sum of

see the

force

of the

To calculate non-linear wave forces it is necessary to
solve first for the response of the vessel at ordinary
wave periods. Ttris is achieved by Standing through
the use of oscillating sources placed on surface
elements that cover the huII. The source strengths

are chosen to satisfy the boundary condition on flow

normal to hull  surface (Ref 17).

t 4



Having obtained these source strengths it is then

possible to calcul-ate directly the mean components of

the surge and sway non-linear wave forees, as well as

the mean component of the non-linear yaw moment,

through the use of oq>ressions derived by Faltinsen

and Michelsen (Ref 6). These expressions are based on

the change in wave momentum caused by scattering of

the waves by the vessel and they make use of

relationships obtained originally by Newrnan (Ref 18).

ltre expressions are relatively easy to evaluate

because they can use a I'far fl-eldtr assumption. Ttris

means the mean components of the horizontal non-linear

wave force can be obtained without too rmrch

calculation. Through this approach Standing wis able

to calculate the coefficients of the mean forces used

to represent the long period non-linear forces in the

approxiraation suggested by Newman (Ref 7). This was

done for the vessel moored in quartering seas.

fn addition to estimating the long period non-linear

wave forces via the Newman approximation, Standing

also carried out more exact rrnear fieldtt calculations

of the forces. ltris involved integrating second ordei

expressions, for the effects described in Figure 2,

over the hull of the vessel after first using the

source method to define the vesselrs responses at

ordinary wave periods. After these lengthy

calculations it was possible to define a matrix of

coefficients for the long period components of both

the surge and sway forces. Ihese matrix elements are

given by:-

F  = { p z  + O z
nn nn lnn

where P and
mn

Equat ion  (2 ) ,
%
ie

1 5

are the coeffici-ents defined in



Prn, = P(o* '  t ' tn) '

q* = Q(urr, rrrrr).

The rnatrix F__ is synrnetric and calculations werenn
carried out for the vessel moored in quartering seas

using 10 basic wave frequencies. This meant that

coefficients for 55 pairs of frequencj.es were reguired

including the 10 values on the diagonal defined by

m = n. The results appear in Tables I and 2 for the

Iong period surge and sway forces, respectively. It

was possible to compare the more exact ,rnear fieldt'

calculations of the diagonal coefficients, which apply

to the steady non-linear lrave forces, with the sfunpler
rrfar field'r calculations of those same coefficients.

Good agreement was found and this forrned a cheek on

both sets of calculat ions.

Having obtained exact ocpressions for the long period'

forces on the moored vessel tre are in a position to

check the accuracy of the more approxi:nate method

proposed by Nevman. This can be done for a range of

wave conditions and a range of resonant periods (for

the vessel on its mooring) by the following method.

We choose the period of the peak of the spectrum for

the wave condition to equal 
I 

ana choose the resonant
n

period (T*) to equal 
+ 

By eomparing the exact
m n

coefficient F,* with the coefficient ltl on the

f + f  f + f
diagonal at frequencies 

Y, # 
we obtain the

following from Tables I and 2.
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Periods (s)
IpG") In!il

le .2  (  .0s2)  23 (  .0e6)
56  (  . 070 )

111 ( .061 )

14 .3 ( .070 )  20 ( ,L20 )
s6  (  . 088 )

111 ( .07e )

B.e( .112)  se( . r2e)
125  ( .  120 )

Surge fqrqe (KN/m2)
F  l F l  q
I{nn lr l  6 error

106  L2 .4  -88
35  2 .0  -94

12 .5  1 .8  -86

69 .5  63  . 3  -  g
51 .5  18  -65
18 .5  13 .6  -27

80 .5  128 .1  +59
137 .5  144 .3  +  5

Sway fotrce (Kl.l/mz )Ere
160  22 .8  -86
40  5 .0  -86
15  4 . r  - 73

-38
-73

: , ,
+25
+2

It is clear from the above results that, overa1l, the

Newman approximation leads to large errors in the

estimation of that part of the long period non-linear

wave force that excludes the force due to set-down.

The best result is obtained for a wave condition with

a spectral peak at B.9s and with a resonant period of

the vessel on its mooring of 125s. Itris is consistent

with the fact that the Newman approximation requires

both strong scattering of the prinnary waves (short To)

and sma1l gradient effects in the absence of

scattering (1ong T*). For the particular ship

considered here the requirements appear to be Tn ( 9s

and To ) 2 minutes. Such lirnitations are unacceptable
I(

for coastal applications where spectral. peak periods

often exceed 9s and resonant periods of moored vessels

typically range from about 20s for a ferry up to some

2 minutes for a large tanker.

The approximation is seen to lead to particularly

large underestimates of the long period non-linear

wave force for a long peak period of about l9s. In

this case the amount of wave scattering is snall

making the (diagonal) steady force coefficients small

while the (off-diagonal) spati.al gradient effects

oceurring in the absence of scattering are very much

larger over the whole range of resonant peri-od of

interest ie 20s to 2 minutes.

L75 109
75 20
25 22

580 725
635 650
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MORE E]UCT

EXPRESSIONS

On this basis it is clear that a more exact if more

Iengthy nethod of calculating long period non-Iinear

wave forces has to be considered. Ttre method employed

by Standing is based on the use of oscillating sources

on the submerged surfaee of the vessel. However, this

technique is not satisfactory for coastal applications

where the underkeel clearance can be small and, for

this a more direct method has been developed and

progralrned in the form of a computer model called

UNDERIGET for vessel responses at primary wave. periods

(Ref 1). UNDERKEEL can be used as the basic. nodel

upon which one can build a description of long period

non-Iinear r'rave forces. To achieve this it is

necessary to derive general expressions for these

forces in terms of the response of a vessel at

ordinary wave periods. Such general o<pressions have

been derived by Standing (Ref 9) but they differ in

some respects from expressions derived earlier by

Pinkster (Ref B). These aspects are considered

further in Sections 3 and 4 of this report.

The notation used to describe vessel motion is

consistent with that already given in References 1,2

and 3. Referring to Figure 5 for a vessel displaced

fron its mean position, it is assuned a fixed right

handed coordinate system GK'|Z, with axis GZ vertical,

Iies with its origin at the equilibrium position of

the shiprs centre of gravity. After undergoing a

surge 51 along GX, a sway 52 paralle1 to GY and a

heave 53 parallel to GZ the centre of gravity moves to

Gr and a new system of coordinates Grxrytzr can be

defined with its (moving) origin at Gr but with axes

parallel to the fixed GXYZ system. Forces and moments

acting on the vessel will be evaluated relative to the

GrXrYrZr  sys tem o f  axes .

1 8



Angular rotations of the vessel are then assumed to

occur about the following axes. A yaw 55 about axis

GtZ '  to  g ive  Gtx 'y tZ t ,  A  p i tch  55  about  ax is  G 'y '  to

give Grxy'zr.  And f inal ly a ro11 So about G'x to give

GtxyF. The axes Gtzryz can be considered to be fixed

in the moving vessel.

For a vector x with coordinates (x,y,z) in the system

of axes G,ryz movi-ng with the vessel we find the

coordinates (X,y,Z) of the same point relative to the

fixed axes GXYZ are defined by,

sinS usinS 5 cosS 6-cosS asinS 5

sinS o sinS s sinS, *cosS a cosS u

s inSacosS5

The matrix B describes rotations of the vessel and it
will be used in what follows to descrj.be perturbations

in the direction of the outward pointing normal n to
the surface of the hull caused by vessel movement.

Thus, up to the second order in the wave amplitude:

( r l  ( t \
n  =  1 1 _  +  n t "  +  n t o '  +  . . . . .-o

phere,

( 3 )

where X =

&=
B+

I
F
t

(x ,Y,z)  ,
( S r , $ z , S s ) ,

oss i  cosS o

osS p sinS 5
-sinS5

cosS as inS s cosS5-s insosinsel

cosS o sinS 5 sinS 5 -sinS t cosS o 
I

cosSacosS,  
J

(4 )

(s)
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and,  B(  
1 )

P(2 )n  ds-o

sl l )  s l t )  -s5(2)

-yxsll) 2+s( r) 2)

s fzl

^ ( 1 )
D g

^  (  1 )- D 4

0

P(o )n (2 )dS  _

sj2)*s l1)s6(1)

r l l )s , t1)-s(2)

_urc|1) 2*, ( 1) 2;

I=l
I

[  
-x,r l r [s( 1) 'z 

)

J'j"
L-'l'r

0

s j l )

^  (  1 )- J 5

^ ( r)- D 5

0

si  t l
( 6 )

3 .1 Non-linear

forces

B(2 )

( 7 )

Forces and moments acting on the vessel up to second

order in the wave amplitude will be considered in the

following sub-sections.

We assume in what follows that the force E, pressure p

and the surface elevation rl can all be ocpanded in
powers of the wave amplitude, just as in a

conventional Stokes oq>ansion of the basic wave

equations. A suffix o will be used to denote a
quantity of zero order and superfixes (l) and(2) will

denote first and second order quantities as shown

above in the expansion of the normal n.

The second order non-linear wave force aeting on the

vessel can be expressed in the forn,

F (2 )  =  _ P(1)n (1 )as  _ P( l )n  as-o

(B )  .

"rs
o

-"r
s

o

I
s

o
"f
S 1

In this eguation the integrals extend over the

submerged area of the vessel and, in particular,

either the area So defined by the vessel in its

20



equilibrium position or the additional area s1 rr€ar

the surface defined by rnovement of the vessel's

(equilibrium) waterline relative to the wave

elevat ion.

Expressions for the pressure are obtained by using

Bernoullirs equation together with a Taylor etrpansion

to relate pressure on the surface of the displaced

vessel to pressure on the surface of the vessel i.n its

equilibrium position. Thus,

P(o)  -ps (d - (z+c) ) ,

P(i )  = -pg2(1)  *  ool t ) ,

(e)

(  10)

i€)  = -pgs(z)  *  oOI ' )  + p(x( t l .v lo l1)  -  %ptvo( l ) )2
(1r)

In the above expressions the centre of gravity of the

vessel in equilibriun is assuned to lie a distance c

above the seabed and the water depth is denoted by d.

First and second order motions of the vessel I(1) ana

X(2) are def ined by equat ion (3).  The veloci ty

potential Q includes all wave motions due to incident

and scattered waves and waves created by motions of

the vessel. The partial derivative of { with respect

to time is denoted with a suffix t.

IJNDERKEEL can be used to define first order vessel

motions and the first order velocity potential as

these all occur at the wave period. However, to

describe the second order velocity potential p(2)

exactly, and ultirnately second order vessel motions,

it is necessary to solve the diffraction of waves by

the vessel to second order i-n the 'wave amplitude.

Such an approach would require a distribution gf
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"fs

o

sources over the surface of the water surrounding the

vessel as wel l  as sources on the vessel i tsel f .  A

very large number of calculations would then be needed

to solve for the source strengths needed to define

second order pressure forces on the vessel. In view

of these difficulties some approximations have been

sought.

It has been proposed by Standing (Ref 9) that, leaving

aside the second order vessel movement potential, the

second order potential associated with just the

incident waves (Oj2)) which describes set-down beneath' I

lrave groups be used in the relevant conponent of the

second order force in equation (B) ie

ol!) q a'.

This approach was developed originally by Bowers

(Ref 11) when deseribing the force due to set-down on

a large vessel moored in short period head seas.

While this approximation proved to be satisfactory for

that particular situation it is not clear that it is

adequate for the general case.

A different approach has been suggested by pinkster

(Ref 8). He suggests that set-down be treated like a

long wave with a modified wave nurnber and that

diffraction of this nodified long wave by the vessel

be taken into account in ealculating the second order

wave force. In more detail, the complete second order

potential can be olpressed the form,

0(2) = 0(2) * * jr ,  * ,Jr,  , (t2)

( r \
where Qi-' denotes the potential associated with flows
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set-up in the water by second order vessel movements,
( ? \

0;-' denotes the potential of the (second order)
diffracted wave .tta Oj2) denotes the potential of the
(second order) disturbance created in the vicinity of
the vessel both by incident and scattered waves and by
waves created by first order notions of the vessel.

l / ? \
Thus, Q'-' contains as one of its components the

set-down potential pf2) for the second order

disturbance created by just the incident ,waves. lhe

boundary condition that flow normal to the vessel's

surface must match the normal velocity can be

expressed in the form,

ooJ').3o = ,t".ao , ( 13 )

fv (0 j2)** j "  )+(x( t )  .v )v0t1)1  . !o+ vg(11 .n(1)  =  , r (1)  . t ( r )
(  14)

Equation (13) describes the boundary condition on the
potential for second order vessel motion with velocity
.r(2). rhis enables added mass and danping
coefficients to be determined for the (second order)
long period vessel movement and there is no particutar
difficutty in solving for 0l'). The difficulty arises
in solving for 0j2) .*r"t1y and here pinkster suggests
retaining just the set-down potential O{2) 

"""ociated
with the incident \raves and then solvin! for the
,iliffraction potentiuf pj2) using Equarion (14) with
terms involving first order quantities put to zero.

Both Standing's and pinksterrs approximate treatments
have been applied to the case of a horizontal cylinder
moored beam onto regular wave groups in a situation
where the non-Iinear wave force due to the second
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f

c
o

order velocity potential is known to be an important

part of the total non-linear wave force. The results

are described in Section 4 where a comparison has been

nade with experimental data. It is found that neither

approximation results in good agreement with the

oqperimental data. It is also shorrn, however, that an

allied approach in which the set-down potential ol2)r I

is assumed dominant and then diffracted by the

cylinder retaining first order body rnotions, results

in a better agreement with the eqperimental data.

This is just one particular situation, though, and

further e4perimental work with a ship rnodel in random

waves is needed to determine the true accuracy of

these approximations

Returning to the rest of the terms in the second order

wave force we find the first of the four integrals on

the right-hand side of Equation (8) gives rise to the

following expression, after substituting for the

second order pressure from Equat ion (1L).

P(2)r ,  ds = -o-o (0{" +1x( 1) .v) +11) -y,(v1( r) ) 'z )nods

-(c*  s l2)*c*  s i2)+cr :  (c-d) 's i l ) ' *s i I )  

" )  

(0,0,1)

+pgv(-s j2) , sl2) , - i l tsf l) '+s j1) ') )

where,

(  1s)

C r .

Cr u

V

B&,

Bxdx,

BDdx,

= p g - [
t

= -pg .[
L

=J
L
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In these latter expressions the vesselrs beam at

position x is denoted by B, and its draught by D. The

integrals for the coefficients are taken over the

length L of the ship and the quantity V is seen to be

the volune of water displaced by the vessel.

The second of the integrals in Equation (8) can be

olpressed in the form,

-  
" l '  

p ( l )n ( l )ds  =  -  B (1 ) .  , f  r ( l )Las  (16)
s_ s "

o o

The total first order wave force on the vessel is

given by,

/ l \  / 1 \  r A

F( i )  =  -  J  e( l )n^as -  J  p(o)n( t )ur ,
s"s

i "  -  J  p( l )n^as =  F(1)  +  B(1) .  J  r ,o roou,  (17)
b-o

o

Hence, substituting (17) in Equation (16) we obtain,

-  J  p ( r )n (1 )ds  =  R(1 ) .F (1 )  -  IB (1 )1 '? . r (0 )  (18)
so

where to zero order we have just the buoyancy force:-

F(o) = - J r(o)r,oas = (0, o, pgv)

The third integral in Equation (8) takes the form
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_ 
" r  

P(o)n(2)as = _B(2) .  . [  p(o) r , -as
s-s-o

O O

=  B (2 ) .F (o )  ( 19 ) .

Finally, the fourth integral in (B) can be erqrressed
in the form,

^  f  , ' r  { t '-  !  p ( l r nods  =  -  J  dx  J  pg (n j l )  -  e )n^  de
s1  L  o  r  ' - o

= -pg/2 
{ (njt))' ro* eo)
L

In evaluating this integral the following hydrostatie

approximation for pressure near the surface has been

used,

p(r )  =  ps  tn( l )  -  z ( t )  -  e l  ,

/ 1 \= Ps tn i  -  e l .

r r \
Here q "' is the wave elevation relative to the-  / 1 ' r
displaced (by Z" ')  equi l ibr iun water l ine of the

vessel and e is the (small) variable of integration

for the S 1 af,€El,, i€

Z = d - c + € .

Having assembled all four integrals on the right hand

side of Equation (8) we can express the non-linear

wave force in the form,
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F \ a t  =  -  y ) ,nlt ' ) '  %tupel
t

+%p !
s

o

( vo ( l ) )?  n  ds' - o

-p . l '
s

(x(1) .v)ojl) qas
o

+ s(1) . r (1)

0f2) qas

-  % c*  (c -d) ( (s l1) ) ,  *  G j l ) ) r )  (0 ,  o ,  r )

-  (c*  s l2)  *  cgs s l2) l (0,  o,  r )

-p" l '
s

o

(21)

In adding the four contributions together some

cancellation occurs between terms on the right.hand

s ides  o f  Equat ions  (15) ,  (18)  and (19) .

Ttre first four terms in Equation (21) correspond to

the four mechanisms causing non-linear rrave forces

that are shown schematically in Figure 2 (see

discussion at the beginning of Section 2). Both

Pinkster and Standing agree on the form of these

terms.

The fifth tern is the force due to the second order

velocity potential and here some approximation is

necessary due to the complexity of solving the second

order diffraction problem. These approximati_ons have

already been discussed and their accuracy is

considered further in Section 4 of this report.
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3.2 Non-linear wave

moments

The sixth term is a second order buoyancy effect found

by Standing but ignored by Pinkster. Ttre derivation

gLven in this report confirms Standingrs result.

The final term describes the usual restoring forces

due to buoyancy but to second order in heave and

p i tch .

Using results from UNDERKEEL for first order

quantities, together with a suitable approximation for

the seco4d order velocity potential force, we can use

Equation (21) to calculate the non-linear wave force

on moored vessels. This approach can be o<pected to

yield a more 4ccurate description than that possible

using the Newman approximation.

In the next sub-section we address the problem of

obtaining the second order wave moments.

A general form for the moment about the moving centre

of gravity Gt, of the pressure acting on a surface

element dS at posit ion Ir in the GtXtYtZ' system of

exes, is the fol lowing:-

dM=*PX ' xndS .

This can be e:rpressed in terms of the vector x for the

same posltion with coordinates (x,y,z) in the system

of body axes G'xyz moving with the vessel. Hence,

r (B . l )  x  I  dsu=-J
s

A1]owing

and n we

form,

for

can

expansions in all three quantities P, B

express the second order moment in the
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M(2 )  _  _ ds-"r
s

J
s

o

_I
s

o

P( l ) t (B ( t ) . x )x  no  +  r  x  g (1 ) la t

o

P 
(0) 

t  (B(2) .x)x go + (B( 1) . r )*  , r (  r )  + x x , , (2)  I  as

-  
" l '  

p ( l )  *  *
S 1

n d S-o (22)

The various quantities in this equation have already

been defined. The first of the four integrals on the

right hand side leads to the following expression

after subst i tut ing for e(2) from (1.1),

f=-pJ
q

-J
c

(ol ' )+1x(r)  .v)ol l )  -u(v|(1) 1z)x x qods

-  (coo s l2)

-  C s u  ( c - d )

,  cru s l2)

% rcltt'

*  csr  s j2) ,  o )

+  s l l )  
' )  (0 ,  l ,  o )

(23)

where ,

C r r  =  p V g . G M ,

Css =  pg  J  ex ,  dx ,
L

with,

GM = metacentric height above the centre of gravity.

The second of the

expressed in the

vesse l .

integrals in Equation (22) can be

following form for a freely floating
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-  !_  p ( r )  t (B (1 ) .x )x  n^  +  x  x  (B(1 ) .%) lds
s - -o

o

= B(1 ) .U(1 ) ,

where the firSt order moment is given by,

Q4)

Ut t '  =  - ,1  (P(1 )  r  *  !o  +  p (0 ) (R(1 ) .x )x  no  +  p (O)x  *  n ( l ) )ass
o

The third integral in (22) can be shown to vani.sh for

a freely f loat ing vessel.

The fourth integraL in Q2) takes the form

-  |  p ( l )  *  *  r ,  ds  =  -  pe/z  ! ,n l t r )z  x  x  Io  tu  e5)
! J -oLo

Suruning up the four integrals on the right hand.side
of Equation (22) rre can express the second order
moment in the form,

M(2 )  -  -  %  pe , t "  t n j t ) ) z  x  x  n  dx
L r v

+%p!  (vo( l ) )zxxnds
s- -o
o

6  .  r t )  r l )-pJ  ( I " ' . v )Q i "xxnods
s

o

+ B( r ) .M(1)

^  ( 2 \-pJ  0 i - ' xxnds
3  

' E  - o

-  % crs  (c -d)  ts f  t l '  *  r l t ) ' )  (0 ,  1 ,  o)

-  (co .  s l2) ,  c ru  s l2)  *  css  s l2) ,  o l  :6 )

30



4 SECOND ORDER

POTENTIALS

The first four terms in Equation (26) correspond to
the monent effects of the mechanisms shown
schemati-cally in Figure 2. Again, pinkster and
Standing agree on the forn of these terms.

The fifth term involving second order potentials has
to be treated approximately. fhese approxinbtions

have been described already.

The sixth term was obtained by Standing but ignored by
Pinkster.

The final term describes the usual restoring couples
due to buoyancy for second order ro11 and pitch.

Equation (26) is taken to be the non-linear wave

moment which can be evaluated using IJNDERKEEL to
describe the first order response together with a
suitable approximation for the moment associated with
the second order veloeity potential.

The difficulties attached to solving exactly for the

second order diffraction potential have been discussed

in Section 3.1. Ttrree different approximations were

also considered, one due to pinkster (Ref 8) one due

to Standing (Ref 9) and a third allied approach. Here

we apply all three approximations to a situation where

second order potential effects were identified j_n

experiments as being an important part of the total

non-linear wave force.

Experinental work on second order wave forces on wave

power devices has been carried out at HR (Ref 19).

Tests were performed in a wave flume with a model

moored across the flume and subjected to regular

groups. The model was able to surge freely ie move
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4.1 E:rperfunental

results

horizontally along the flume on its mooring at the

Irave group period. Tests were carried out with and

without a control signal to the wave-maker to

compensate for set-down beneath wave groups. This was

done to see how important set-down compensation was in

tank testing of moored wave pol/er devices. As

set-down is an inportant part of the second order

potential effect, these tests also demonstrated the

conditions for which second order potenti.al effects

from an irnportant component of the non-linealwave

force .

In what follows the experiments are described and

results produced to show when second order potential

effects become important. By comparing theoretical

results, obtained using various approximations to the

second order diffraction problem, wi"th the relevant

experimental results it is possible to show the

accuracy of the various approximations

A wave fh:rne equipged vith a wedge t5pe wave generator

was used in the experimental investigation. The

wave-maker \ras position controlled by an

electro-hydraulic system. In tests with regular wave

groups the electrical signal to the wave-maker

consists of a sum of two frequencies so that the wave.

group period equals the inverse of the difference

between the two wave frequencies.

The model length scale was 1 to 100, making the tine

scale 1 to 10 with Froude scali.ng. A11 quantities

given here and in subsequent sections are expressed in

full scale terms unless stated otherwise.

The mooring arrangement consisted of four mooring

lines made of rubber. Figure 6 shows the layout in
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plan. The ends of the lines attached to the device

were mounted just below the water leve1 and the other

ends were held in rigid supports so that all four

lines were horizontal and parallel with the sides of

the flume. In aI1 cases the device extended the full

width of the flume (1.4n). To a1low free movement of

the device horizontally along the flurne (surge) and

vertically (pitch and heave) a small gap was left at

each end of the device between it and the flume wa11s.

The rnooring stiffness chosen made the resonaht period

in surge approximately 62s. ftris ensured a

significant surge response in regular wave group tests

where the group period was consistently about 52s. A

gently slopi-ng shingle beach was built behind the

device. This beach was a good absorber of the primary

waves with reflection coefficients of less than 10%.

To minimise the effect of long wave reflections on

the surge response of the device, i-t was placed at an.

anti-nodal point for a reflection system produced by

any long waves at the group period travelling towards

the wave-maker and undergoing perfeet reflection.

Since wave slope is zero at aqr anti-nodal point such a

reflection system should then not produce a horizontal

force.

Wave height in the model \ras measured using twin wire

wave probes. Horizontal movement of the device was

measured with a Selspot system. This consisted of an

infra-red light source rnounted on the device and a

c€rmera mounted outside the flume that registered

movement of the light source as the device moved. Ttre

Selspot system allowed large surge movements to take

place. Signals from the measuring instruments were

fed to mini-computer capable of performing a spectral

analysis.

The two wave periods (Tr and Tz) used to produce

regular wave groups covered a range of condi-tions from
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relat ively short  waves (Tr = 10.0s, T2 = 8.4s) to long

period waves (Tr = 20s, T2 = 14.5s).  Wave periods

were chosen so that the wave group period remained the

same for eaeh pair, ie 52s approximately. As the

Selspot system allowed large surge movements to occur,

tests rrere carried out with wave heights of up to 22m

represented for the longer period waves (T1 = 20s,

T ,  =  1 4 . 5 s ) .

The water depth in the flume represented 60m at fu1l

sca1e.

The device consisted of a circular cylinder of

diameter 10m that was ballasted such that it flqated

with a draught of 8.7m. The four horizontal nooring

lines were attached to the sides of the cylinder at a

depth of 2.4m below the vater 1ine. The stiffness of

each }ine was 7.2 tonnes/m and this produced a

resonant period for surge of approxinately 62s.

Each oqperiment with regular wave groups was carried

out twice, once in the presence of any spurious free

long wave at !h.e. w4ye gfgup.pqriod due t-o ah:

wave-maker and then again with the free long wave

minimised by an additional movement of the wave-maker

at the wave group period to compensate for set-down.

The data were analysed with a fast Fourier transform

conputer program to give spectra of wave height and

device movement. The three peaks of interest in the

spectra occur at the wave group period and at the

prirnary wave periods. The amplitude (half the wave

height or half the total movement) of each cotnponent

was obtained from the area under each peak by using

}1 (ampti tude)2 = area

Experimental values of the disturbance at the wave

group period at various positions down the flume are
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eompared with theoretical values in TabLe 3. By

carrying out measurements at nodal points (distances

of l/',, 2/',L etc from the wave-maker) for a reflection

system produced by any free long waves travelling

towards the wave-maker and undergoing perfect

reflection, it is possible to compafe the measured

Iong wave amplitudes with theoreticat predictions for

a purely progressive wave system leaving the

wave-maker (Ref 20).. In column (a) of Table 3 the

amplitudes are compared for the case with free waves

present due to the wave-maker. In column (b) the

comparison is made with the free long wave minimised

by novement of the wave-maker at the group period. To

compensate for set-down. !{hen theoretical values

under the two columns are compared it will be ieen

that unequal values (column (a)) at various nodal

points should become equal (colurnn (b)) if the free

long wave from the wave-maker is eliminated. This is

explained by the interference pattern produced by

set-down and the free wave being removed when the free

wave is eliminated. This leaves just set-down beneath

naves with the anplitude value shown under theory in

colunn (b). Results are given for a range of priruary

wave amplitudes for each pair of primary wave periods.

In general there is qualitative agreement between

e:geriment and theory in that unequal ocperimental

values under colunrn (a) tend to become more egual and

closer to the theoretical value in colnrrr (b) when an

appropriate secondary movement of the wave-maker is

used. 
' 

In making this comparison it should be borne in

mind that the twin wire wave probes used for these

measurements are aecurate to within 0.2run (0.02m ful1

sca le )  .

The resulting non-linear surge of the cylinder at the

wave group period is plot ted in Figures 7,8 and'9 for

each pair of frequenci-es. The solid line denotes

results with set-down compensation and the dashed line
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4.2 Compari.son of

theory with

orperiment

results without compensation. As the non-linear surge

is a second order effect its amplitude should be

proportional to the product of the primary wave

anplitudes. While this appears true for the large

surge movements recorded in Figure 7 some variation

from this behaviour is apparent in Figures g and 9

where straight lines cannot be drawn through the

e4perimental results. It is thought that this is

largely due to inaccuraci.es in the measurement of the

smaller surge movements by the Selspot system.

The nain e:<perimental result is, however, the obvious

indication that second order potential effects only

become important in this particular situation when the

primary wave periods are long ie T1 = 20s, Iz = 14.5s.

For shorterrrave periods there is little difference

between results obtained with and without set-dosn

compensation. As the spurious free long waves at the

wave group period, present in the absence of set-down

compensation, are of the same order of magnitude as

set-down itself, an ocperimental result which shows

their presence to be uninportant also indicates that

set-down is unirnportant and vice versa. These results

are consistent with the discussion i_n Secti,on 2.2 of

this report where it was found that the contribution

of spatial gradient effects to the total non-linear

wave force becomes dominant in the absence oi

scattering of the primary waves ie as the primary wave

period becomes long. Set-down is yet another spatial

gradient effect and so it too can be expected to

become important for long primary wave periods.

The ocperimental work described above has identifj_ed a

situation where second order potential effects make an
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s.
^ E*6 =l-

important contribution to the non-linear wave force ie

the set of results shown in Figure 7. We can now

apply the three approximate methods of calculating

second order potential effects to this situation and

compare the results with the experimental data.

Denoting the cylinder surge by s we can write the

equation of motion in the form,

r r t F

s+Ps+wfs=f  (27)

where, F is the coefficient of damping at the wave

group period,

S, is effective (linear) stiffness of model mooring ie

29gm/cm

M is total mass of model cylinder including added

mass ie  28.15kg

F is the non-linear wave force at the h'ave group

period.

The above figure for the total mass of the cylinder,

including the added mass, was obtained by perturbing

the moored device in sti1l water and noting its

resonant period (about 6.25s in the model). The

coefficient of damping was obtained by noting the

decay rate of the resulting surge oscillations. We

can then solve Equation (27) for surge s once we know

the wave force F ie.

Mt(wr -w! ) ,  *  g " * "1%

l'l
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where w is the (radian) wave group frequency.

Given the relatively simple cylindrical shape of the

device it is possible to form a good estimate of the

non-linear surge force defined in Equation (21) by

analytical calculation. This was done initialiy using

Standingrs approximate treatment of the second order

potential wave force in order to compare with results

obtained by Brendling (Ref 21) using Standingts model.

The two theoretical results for the amplitude of surge

motion are sholrn by the (short) dashed lines in

Figure 10. It can be seen that good agreement was

obtained between data from the analytical model and

data given in Reference 2l which arose from using a

source nethod and computation with the nodel developed

by Standing (Ref 9). However, both sets of

theoretical results show large underpredictions of the

surge measured in the ocperiments (see q s5mbols in

Fig 10). It is irnportant to note that the

oqperimental data obtained with set-down cornpensation

are plotted because the effects of spurious free araves

from the vave-maker have not been considered in any of

the theoretical results shown in Figure 1.0.

The very small values of surge predicted using

Standingfs approximate treatment of the second order

potential force arise through a significant amount of

cancellation between that approxi:nate second order

potential force and the other non-linear trave forces

present in Equat ion (21).

I,lhen Pinkster I s approximate treatment of the second

order potential force is used a significant

overprediction of surge occurs (see long dashed line

in Fig 10).  In this case set-down is di f f racted as i f

it were a free long wave with a modified wave number

to match the wave number of set-down. The

approximation increases the effective set-down force
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making it 133% of the resultant force. Cancellation

of some of this large set-down force by the other

non-linear wave forces leads to the resultant. A

tendency for Pinksterts method to overestinate the

second order potential force has been noted by

Pinkster himself  (Ref B).

Final1y, we apply the allied approximation for the

second order potential force described in Section 3.1

of this report. This leads to the solid linb in

Figure 10 and much better agreement with the

ocperimental data. Using this approach we can then

also allow for forces due to spurious free long waves

present in the e:qperiments performed without set-down

compensation at the wave-maker. This results in an

increased surge as shown by the dashed line in

Figure 11 and again good agreement is obtained with

er4perimental data. This gives some confidence in the-

third method of approxfunating the second order

potential force and j.t is suggested that this

approximation be used when evaluating the non-Iinear

forces and moments defined by Equations (21) and

(26) .

It should be borne in mind, though, that the three

approximations have only been tested here against a

relatively simple experimental si.tuation using regular

wave groups. Further validation is needed using more

comprehensive random \rave rnodel experiments to check

the suggested approximation. The example described

here also demonstrates the need for set-down

compensation at the wave-maker in experimental work to

ensure that non-finear wave forces and moments are

wel l  represented.

A description has been given of non-linear wave forces

acting on moored ships. It has been shown how these

coNclusIoNs
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forces cause si.gnificant ranging of vessels on their

rnoorings at wave group periods.

Due to the large computational effort needed to

represent these forces exactly some approximations

have been sought. The non-linear forces and moments

can be divided into two basic ty?es.

One type, involving (first order) movements of the
ship at the wave period, can be expressed in terns of
products of first order quantities only. Ttre first
four terms on the right hand side of Equations (2L)

and (26) together with the sixth term are of this
tlpe. They can be evaluated once the first order
problem of wave diffraction around the vessel is
solved but in their exact form, ie Equations (21) and
(26), they will require considerable computation for a
random sea. The Newman approximation (Ref 7) has been
suggested for evaluating these terms in order to

reduce the amount of computation. Although this

approximation is rmrch used in offshore applicatj.ons it
has limitations in the coastal applications of
interest here, In particulgr 1t.has been found that
non-linear forces due to spatial gradients in all the
second order pressure terms, effects not represented

in Newmants approximation, tend to be rnore important

in coastal applications because the resonant.periods

of moored ships are generally shorter than resonant
periods of structures moored offshore. As a result
the Newman approximation has been shown to lead to
Iarge underestimates of non-linear wave forces of the
first type. In view of this result there appears to
be little alternative to use of the exact olpressions

as shown in Equations (21) and (26) for non-linear

wave forces of the first type.

The second type of non-Iinear wave force involves

solution of the dj-ffraction problem to second order in
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the wave amplitude. This would require even more

computation than that needed for the non-linear forces

of the first type, if second order potentials were to

be calculated exactly. This t1rye of effeet is

represented by the fifth term on the right hand side

of Equat ions (21) and (26).  I t  is also clear that

second order potential effects will be more important

in coastal applications than in offshore ones due to

the increase in the magnitude of set-down beneath wave

groups as traves approach the coastline: set-down being

one of the main components in the second order

potential, Thfee approximate methods of calculating

forces due to second order potentials have been

applied to experiments with a moored cylinder carried

out at HR'as part of the Wave Power research progranrne

(Ref 19): One approxjmation proposed by Standing

(Ref 9) igfrores diffraction of set-down and it was

found to lead to significant underestimates in the

resultant effect for experiments where second order

potential effects were known to be important (see

shorf dashed line in Fig 10). A different

approxirnation proposed by Pinkster (Ref B) was found

to lead to slgnificant overestimates (see long dashed

line in fig 10). A third, allied, approximation has

been suggested and found to be in better agreement

with the experiments (see solid line in Fig 10). It

is felt, however, that further validation of the

suggested approxirnation for second order potential

effects is needed trsing more comprehensive

experiments with sfip models moored in random rraves.

fn this regard it ls important that set-dorrn

compensation at the wave-maker is used to ensure the

eorrect representation of second order potential

effects in model e>qperiments.

Taken overall, the work described in this report

indicates that non-linear wave forces can be orpected

to be well described provided forces and moments are
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RECOM}TENDATIONS

evaluated using Equations (21) and (26) with the

suggested approximation for representing second order

potent ial  ef fects.

It is reeonrnended that Equations (21) and (26) be

enployed to represent non-linear wave forces on moored

ships. By using IJNDERKEEL (Ref 1) to calculate (first

order) responses of the vessel at the wave period it

will be possible to evaluate a1I the terms on the

right hand side of equations (21) and (26) provided

the suggested approximation for second order potential

effects is used. However, progranrning these

o<pressions for non-linear forces and moments will

involve more work than that needed had it been

possible to make use of the Newman approximation in

evaluating these forces. In drafting the prograrryne of

research to be carried out under the present contract

i-t was hoped that the Newman approximation would prove

adequate and, as a result, the amount of work needed

to prograrrne non-linear wave forces has been

underestimated.

In parallel with the work described in this report, an

extension of UNDERIGET to allow for a vessel moored

against a quay face, has been under investigation. It

was anticipated that a relatively minor amount of work

would be involved but this has not proved to be the

case. An important simplification, that proved

possible in developing IINDERKEET for a free ship, can

sti11 be used for a vessel moored against an open
(piled) jetty but the flows created around a vessel

moored against a quay faee have been found to require

a different set of assumptions. This work will be

described in a subsequent report. Once completed,

however, the extended IINDERKEEL can be used to derive

the first order responses of a vessel moored against

the quay face and these responses can, in turn, be
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used in Equations (21) and (26) to calculate

non-linear wave forces and moments for that case.

It can be appreciated that the extra work needed to

complete the two aspects described above means that

final validation of the computer model cannot be

carried out under the present contract as originally

hoped. However, collection of the necessary field

data on moored ship.movements should be possible under

an extension of the present contract. And it should

be possible to carry out some validation of the

computer model in frequency space (for a ship on

linear moorings) using published data. It is intended

that the latter aspect be described in a separate

report on the prograruning of non-linear wave forces

which will be produced under the existing contract.

The work described in this report has highlilghted a

need for more experimental data to check the

approximate treatment, of second order potential

effects. Due to the complexity of non-linear wave

forces it is likely to prove impossible to check this

approximation using full scale data. This is due to

the large number of competing effects in a realistic

situation. the advantage of model oqreriments is that

more control can be exercised over the particular

factors of interest and experiments can be designed to

allow those particular factors to be investigated in

detail. The experiments described in this report were

able to do this for the simple situation of a cylinder

moored in beam waves with regular wave groups and this

has helped to judge the accuracy of various

approximate methods for calculating second order

potential effects. However, the model under

development is for ships moored in random waves and

more comprehensive or.periments are needed for that

situation. It is essential in those oqperiments that

compensation for set-down beneath wave groups is used
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to ensure the correct representation of second order
potentials.

Ttrere are also a number of aspects related to time
domain representations of non-linear wave forces, that
require study. This is the step necessary before
final validation of the computer model can be carried
out against full scale data. ft involves using the
non-linear forces given by Equations (21) and (26) to
derive coefficients that can be used to construct a
time series that, in turn, can be used in SHIpMOOR
(Refs 2,3). I t  is necessary to move into the t ine
domain to allow for the fact that conventional ship
nooring systems are non-linear rnaking a frequency
space rnodel like UNDERKEEL unsuitable for
realistically moored ships when used a1one. This is
why SHIPMOOR has been developed in parallel with
UNDERKEEL so that together the two models can describe
realistic situations. The conplication with tjme
domain representations is that non-linear wave forces
have non-Gaussion statistics and it will be necessary
to ensure that the mathematical representations
reproduce the correct statistics. Ttris requires
checking both via oqreriments using random waves and
by comparing results of simulations with analytical
predictions like those derived recently for second
order rrave quantities (Ref 22)

Taking all of the above points into account it is
clear that following completion of the present

contract, further work will be necessary to enable a
satisfactory validation of the computer model of a
moored ship to be made. Ttris work mrst encompass; a
more comprehensive e:qperimental study to check the
suggested approximate treatment of second order
potential effects, and ocperimental and analytical
work to check the statistics of time domain

representations of non-linear wave forces. Only then

44



can a final validation of the computer model take

place against ful l  scale data.
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TABLES.





TABLE 1 Long period surge force coefflcients (F,*) for 95,000 tonne vessel
moored ln a quarterlng sea (ignorlng forces due to set-dorn)

\  f -  0 . 129  0 .120  0 .112  0 .104  0 .096  0 .088  0 .079  0 .070  0 .061  0 .052
fr, \

0 . 129  -85 .0

0 .  120  97 .0  -133 .5

0 .112  80 .5  137 .5  - l s5

0 .104  54 .5  114 .0  141 .0  - t 27 .5

0 .096  33 .0  83 .0  113 .5  101 .5  _  68 .5

0 .088  2L .5  58 .5  95 .5  92 .5  57 .5  _27 .0

0 .079  45 .0  39 .0  84 .0  99 .0  77 .0  43 .0  _ r8 .0

0 .070  52 ,0  69 .5  103 .5  113 .0  86 .5  s r . 5  18 .5  -  8 .0

0 .061  34 .0  53 .5  94 .5  116 .5  1 .01 . s  72 .5  40 .5  23 .5  -  2 .0

0 .052  30 . s  43 ,5  85 .0  113 .0  106 .0  82 .o  53 .5  35 .0  r2 .5 . - 1 .5

U n i t s : f . f  i n Hm - n z
F__ in KN/m2nn



TABTE 2 Long parlod sway force coefficlents (F*) for 95,000 tonne vessel noored 1n a
quartering sea (i.gnorlng forces due to set-down)

\  f  0 . 1 2 9  0 . 1 2 0  0 . 1 1 2  0 , 1 0 4  0 . 0 9 6  0 . 0 8 8  0 . 0 7 9  0 . 0 7 0  0 . 0 6 1  0 . 0 s 2\ m
fr, \

0 . 1 2 9  7 6 5

0 .120  7 r0  720

0.  t12 580 635 580

0.104 415 490 460 345

0.096 250 345 355 250 Lzo

0.088 140 255 310 255 Lzo 30

0.079 105 190 300 315 220 110 20

0.070 95 I75 230 210 145 75 25 25

0.061 25 105 190 205 155 lo0 50 30 s

0.052 25 70 r55 190 160 115 70 40 15 3

U n i t s :  f .  f  i n Hm ' n z
F__ in Kl,l/nzmn



TAtstE 3 Regular wave group condltlons for the flume ocperlrnents
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