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ABSTRACT

The importance of non-linear wave forces in causing ranging of vessels on
their moorings is explained., Various mathematical representations of these
forces have been investigated with the help of published data. Due to their
complexity the amount of computational effort needed to calculate the forces
exactly is very great and approximate methods have been sought.

It has been found that for one type of force which can be expressed as a
product of first order wave pressures and vessel movements a well known
approximation, suggested by Newman and used in offshore applications, will
lead to large underestimates in the force. This is due to spatial gradient
effects, ignored in the Newman approximation, becoming more important for
the coastal applications of interest here where resonant periods of
oscillation of moored vessels are generally shorter than the resonant
periods of structures moored offshore. Therefore, more exact expressions
for this type of force have been formulated.

A second type of non-linear wave force requires solution of the diffraction
of random waves, by the vessel, to second order in the wave amplitude. This
problem also requires a large computational effort to obtain an exact
solution and three different approximations have been investigated. By
applying the approximate treatments to a relatively simple situation studied
experimentally with regular wave groups, where second order diffraction was
shown to be a controlling factor in the resultant non-linear wave force, it
has been possible to identify the best of the three approximations.

As a result of this work, mathematical equations have been obtained which
can be expected to provide a good description of non-linear wave forces and
moments on ships, However, these expressions will require more programming
than originally planned due to the need to represent exactly non-linear
forces of the first type. The further work needed to incorporate non-linear
forces and moments into the computer models UNDERKEEL and SHIPMOOR has been
described. This work is needed to provide a more comprehensive check on the
suggested approximate treatment of the second order diffraction problem and
on time domain representations of non-linear forces and moments. Such work
will lead ultimately to a final validation of the computer model of a moored
ship against full scale data.
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1

INTRODUCTION

Engineering feasibility studies for the development of
new ports and the extension of existing ones to
accommodate the large vessels of today are
increasingly taking on a common form. Initially,
computer models are required to investigate a wide
range of parameters. Having established favoured
schemes, a random wave physical model is then used for

final optimisation. .

A suite of computer models is presently under
development at Hydraulics Research (HR) to satisfy the
requirement for a realistic first estimate of harbour
and ship response to wave action. The work described
in this report covers the formulation of a suitable
set of equations for describing non-linear wave forces
on ships. Once programmed these equations will extend
the capabilities of UNDERKEEL (Ref 1) a compptér model
of the linear response of a vessel to waves, to enable
important non-linear wave forces to be represented.
The implementation of these equations on a computer
will be described in a subsequent report. In this
report various methods of representing non-linear wave
forces are evaluated with the aid of published data in
the literature and through comparisons between
theoretical and experimentél results. This leads to a
recommended set of equations for describing non-linear

wave forces on ships.

Although the forces under discussion are smaller than
the (linear) forces at the wave period they usually
cause larger movements of moored vessels. This
process is illustrated schematically in Figure 1. A
typical wave spectrum, in this case with a peak in
spectral density S(f) at a frequency (f) of 0.1 Hert=z
or a period of 10 seconds, will produce a force with a

spectrum SF(f) like that shown in Figure 1. There is



a non-linear wave force which occurs at wave group
periods, ie at low frequencies, in addition to the
main linear force at ordinary wave periods. Once
moored, vessels of 5,000 tonnes displacement and above
have resonant periods of oscillation on their moorings
of 20 seconds to several minutes depending on the size
of the vessel and the compliance of the moorings.

This is illustrated in Figure 1 by the sharply peaked
frequency response function at a (resonant) period
longer than the wave period ie at a low frequency.

The reason for this shape of the resonant response is
that being long period, the hydrodynamic damping is
low and this tends to give a very narrow response
function centered on the resonant frequency.
Multiplying the frequency response function by the
force spectrum will give rise to a response spectrum
like that in Figure 1. It can be seen that although
the low frequency force is smaller than the wave
frequency force, it produces a larger response and the
loads in the moorings can be many times the non-linear
wave force. This means moored vessels will tend to
range (move horizontally) on their moorings at wave
group periods (low frequencies) with the response at
wave periods occurring mainly in the vertical motions
of heave, pitch and roll. It can be seen, therefore,
that the accurate representation of non-linear wave
forces is vital if realistic estimates of moored ship
movements are to be obtained and any subsequent berth

"downtime" defined.

The approach described above can be developed further
to enable a time history of the non-linear wave forces
to be defined and this is the ultimate aim of the
work. Then non-linear wave forces can be represented
in the computer model SHIPMOOR (Refs 2,3) along with
the linear forces at wave periods already represented.
Linear forces are calculated using the present version

of UNDERKEEL to define the relevant hydrodynamic



coefficients for a given ship. These coefficients
allow the time histories of the linear forces to be
constructed and then used in SHIPMOOR which integrates
the ship's equations of motion in the time domain. It
is necessary to solve these equations in the time
domain to allow for non-linearities present in
conventional mooring systems. The most significant
non-linearity is caused by fenders being stiffer than
mooring lines which in turn leads to subharmonic sway
motions of a vessel on and off the fenders at a period
which is a multiple of the wave period (Refs 2,3) an
effect first described by Lean (Ref 4). Such
subharmonic motions could never be represented using
just a frequency domain computer model like UNDERKEEL.
Once the combined UNDERKEEL/SHIPMOOR model is fully
developed, with the capability of representing both
linear and non-linear wave forces, it will provide a
realistic description of the response of moored ships
to waves with mainly wave period vertical motions and
long period horizontal motions on the moorings due to
a mixture of subharmonic response (caused by
non-linearities in the moorings) and wave grouping
response (caused by non-linear wave forces). Such
complex moored ship behaviour has been observed in
many random wave physical models of harbours carried |
out at HR over the years and it is only by including
the basic physics within the mathematical formulation
that realistic estimates of berth tenability can be

obtained from computer models.

It is of interest to compare a "dynamic" description
of a moored vessel in waves, like that outlined above,
with the approach often used in the offshore industry
for the design of moorings. A "deterministic"
approach has been much used which involves defining a
design wave (typically a maximum wave occurring during
an extreme storm event) to estimate the maximum

mooring load just at the wave period and adding this



to the mean loads produced by steady wind, current and
wave forces. In taking this approach all long period
dynamic effects due to subharmonic responses and wave
group responses are ignored and the probabilistic
nature of real responses is side-stepped. Hence the
description "deterministic" or, as the approach is
sometimes called, "quasi-static". A comparison was
made, for a barge shaped vessel moored in deep water,
of the mooring loads calculated using a deterministic,
or quasi-static method, and loads calculated using a
fully dynamic model (Ref 5). In the case of the
dynamic model a source method (Ref 6) was used to
calculate the response at wave periods and the Newman
approximation (Ref 7) was used to represent the
non-linear wave forces. It was found that due to long
period responses the maximum modfing loads resulting
from the dynamic model were 25 to 35% higher than
those predicted by the quasi-static method. It is
also interesting to note that the parameters chosen in
Reference 5 for this comparison, a relatively short
period sea of 8s zero crossing period and very long
resonant periods of some 250 seconds, are the most
favourable for the Newman approximation. It will be
demonstrated in the next Section of this report that
for seas with longer periods, and for shorter resonant
periods of moored vessels (which are more appropriate
for coastal applications) the Newman approximation can
result in large underestimates of the slowly varying
force. This indicates that even for long resonant
periods the quasi-static approach will lead to much
larger underestimates than 25% in maximum mooring
loads for extreme seas, where wave periods are longer.
The fact that mooring failures have not been
widespread in the offshore industry may well be due to
the large safety factors applied in mooring designs.
With the drop in the price of oil, however, there is
now pressure to trim most costs including that of the

moorings and so there is a clear requirement for more



2

APPROXIMATE
METHODS

realistic models which take full account of the long
period dynamic behaviour. In addition to realistic
physical modelling more accurate methods of
calculating non-linear wave forces are available
(Refs 8,9) and these will be considered further in

subsequent sections of this report.

Perhaps it is worth making the point that the
necessary funding to enable large safety factofs to be
applied in mooring design for port applications has
never been available. This means accurate modelling
techniques are also needed in harbour design both to
describe wave action in harbours and the resulting
movements and mooring loads for the vessels using
harbours. The "dynamic" modelling technique outlined
above, in which both non-linear moorings and
non-linear wave forces are taken into account, will
provide realistic estimates of berth tenability
provided the total spectrum of wave energy, including
the disturbance at wave group periods, is defined at
berths within the harbour. A computer model capable
of providing a description of both the ordinary waves
and wave group disturbances is under development in a
separate research contract entitled "Further
development of the Boussinesq model of waves in
harbours". Used together ﬁhese realistic computer
models of vessel and harbour response will form a

powerful design tool in feasibility studies.

To understand approximate methods of calculating
non-linear wave forces it is necessary to appreciate
the mechanisms causing these forces. The four main
components for a vessel in regular waves (single
period waves of uniform height) were first identified
by Pinkster (Ref 8). They are illustrated

schematically in Figure 2. Once these effects are



understood it will be easier to generalise to the case
of irregular or random waves. As drag forces on ships
are negligible in most circumstances relative to

inertial forces, they are ignored in what follows.

The surface elevation term in Figure 2 is the
integral of the wave pressure over the area between
the surface elevation and the displaced equilibrium
water line on the vessel. Because the integral is
taken over an area that is of first order in the wave
amplitude, it leads to a non-lienar term that is

related to the square of wave amplitude.

The second term is the integral, over the mean
submerged area, of the quadratic velocity term in the
equation for the water pressure (a Bernoulli effect).
Being quadratic this term is proportional to the

square of wave amplitude.

To understand the third term it is necessary to
appreciate that the pressure acting on the submerged
surface of the vessel, after movement by the waves,
gives rise to a second order force. This effect is
described by (Taylor) expanding pressure on the
displaced body surface about the equilibrium position
of the vessel keeping terms to second order and then
integrating over the mean submerged area of the

vessel.

The fourth term is caused by rotation of the vessel ie
roll, pitch and yaw. Wave forces on the vessel act
normal to the body surface and as the body rotates in
the waves, resolutes of the first order wave force
will develop in horizontal and vertical directions.
These resolved forces will be second order in the
sense that they are given by the product of first

order wave forces, including hydrostatic restoring



forces, with first order angular rotations of the

vessel.

In regular waves all of the above effects lead to a
steady force, sometimes called a steady drift force,
only if the vessel scatters the waves. This occurs
because there is a steady flux of momentum in a
regular wave which is proportional to the square of
wave amplitude. Scattering of the waves by the vessel
will induce a steady second order force due to the
change produced in the momentum flux. If scattering
does not occur, ie the vessel moves with the waves,
then the momentum flux carried by the waves remains

intact and no steady drift force develops (Ref 10).

We can now generalise these results to the case of
more realistic wave motion. The simplest
representation of irregular waves consists of the
superposition of two waves with frequencies f, and f,,
say. These waves produce a beating effect as fhey
pass into and out of phase with one another to produce
regular wave groups. The resultant wave amplitude or
envelope fluctuates with a period given by the inverse
of the difference frequency Ifz-f1| (Fig 3). It can
be seen that the momentum flux carried by such waves,
which is proportional to the square of wave amplitude,
will also fluctuate at the difference frequency and
scattering of the waves by the vessel will then
produce both a mean and a slowly varying force at the.
difference frequency via the mechanisms outlined
above. This is illustrated schematically in Figure 3
where the resultant force is assumed to lag the wave

envelope with a phase difference of a;,.

In the limit of no wave scattering we have seen that
the mean drift force tends to zero but this does not
happen to the slowly varying component of the drift

force. There will be a spatial gradient in the second



order pressure effects acting along the surface of the
vessel, in the direction of the waves, whether or not
the waves themselves are scattered by the vessel. For
example, such a gradient exists in the incident waves
because the wave envelope has a wavelength given by
2n/|k,-k1| where the individual wavelengths are 2u/k,
and 2n/k,. This means all of the main mechanisms
leading to the steady drift force in regular waves, as
illustrated in Figure 2, produce a slowly varying
force in irregular waves for two reasons. One is
associated with scattering of the waves by the vessel
and the second is because of the existence of spatial

gradients in the slowly varying drift force.

The spatial gradient effect is the (second order)
>counterpart of the (first order) Froude-Kryloff wave
force which is defined by integrating the pressure in
the incident wave field over the submerged surface of
the vessel. For a vessel in a head sea, wave
scattering effects are small and the Froude-Kryloff
force forms a good approximation to the total wave
force (Ref 1). 1In similar fashion, the spatial ‘
gradient effects in the slowly varying drift force
will form a good approximation to the total drift
force when there is little wave scattering. This
approximation was used by Bowers (Ref 11) to explain
long period ranging of container ships in a bhysical
model of a proposed seaport (Ref 12). When moored in-
a proposed berth near the seaport entrance a large
container vessel, some 280m in length at full scale,
was found to surge on its moorings with a periodicity
of a minute or so, and with movements approaching the
wave height, in random wave head seas with periods of
only some 5 seconds. In explaining this behaviour it
was demonstrated in Reference 11 that there is an
additional mechanism leading to a slowly varying drift
force. This is a long period disturbance which

travels with groups of waves and acts like a long wave



2.1‘ Newman's

approximation

in producing a force on a vessel. This disturbance is
called set-down beneath wave groups because Bernoulli
pressures in groups of large waves cause a reduction
in water pressure which leads to a depression in the
mean water level beneath the large waves (Ref 13).
There is a compensating rise in mean level between
groups of large waves. This surface effect induces a
long period wave-like flow beneath the surface which
acts on the submerged part of a ship to produce a
slowly varying drift force. Set-down itself is
produced by spatial gradients in the incident waves
and so the force due to set-down is allied to the
gradient effects already described in the secoﬁd order

drift force.

The four mechanisms in Figure 2 for producing both
steady and slowly varying drift forces, together with
the slowly varying force due to set-down, help to
explain the non-linear wave forces that excite the

long period resonances of moored ships.

In the light of the discussion of the mechanisms
causing long period non-linear wave forces it can be
seen that pairs of wave components with frequencies
fm’ fn will cause a number of somewhat complex forces
at the difference frequency Ifm—fn|. In an irregular
or random sea there will be a large number of wave
components and an even larger number of possible pairs
of components: for N wave components there will be N2
possible pairs. This shows that even with
interpolation of a more limited number of non-linear
components, representation of all the non-linear wave

effects is a large task.

The approximation suggested by Newman (Ref 7) is to

use simply the steady part of the non-linear force, as



given by m = n, to represent the total force. This
involves calculating effectively N non-linear wave
force components instead of N? components and, in
addition, using a far field calculation for obtaining
the horizontal components of the steady non-linear
wave force. This far field calculation is
considerably easier to carry out than the integrations
of second:order effects, over the vessel's surface,
that are required to obtain the complete non-linear
wave force. The basis of the Newman approximation is.
that the resonant periods (TR) of interest for
horizontal motions of ships on their moorings are long
enough for the coefficients of the wave forces at the
relevant difference frequencies to be approximated by
the steady force coefficients,

ie T - |fm—fn|so.

This in turn means that only those non-linear forces
arising from wave scattering by the vessel are
represented. In particular the long period spatial
gradient effects present in the absence of scattering,

which include the force due to set-down, are ignored.

The Newman approximation has been much used in
offshore applications as it enables a "dynamic" model
to be developed for long period resonances of
structures on their moorings without having to carry
out complex calculations. The resonant periods of
interest are sometimes very-long. For example,
‘fishtailing' of a tanker on a single point mooring
typically occurs at periods of 10 minutes or- more
although tethered buoyant platforms can have
resonances in surge, sway and yaw at one to two
minutes in water depths of 200m to 400m.
Nevertheless, it is clear that in the limit of a long.

enough resonant period, the spatial gradient effects

10



present in the absence of scattering will become small
because the relevant difference frequencies are -small
and spatial gradients associated with those difference
frequencies will also tend to be small. Set-down is
also small in deep water which tends to reduce its
contribution to the long period non-linear wave force.
For these reasons it has been claimed by a number of
authors that the Newman approximation can be expected
to lead to a reasonable representation of non-linear
wave forces for offshore applications. This point has
been made in Reference 14 where comparisons aré
presented between Newman's approximation and other
more exact calculations of the long period non-linear
wave force on cylinders of various cross section in
beam seas in deep water. But, yet again the example
given is for a short period sea of zero crossing
period 5.5 seconds. This will favour the Newman
approximation because wave scattering is strong for
short period seas. Extreme seas typically have zero
crossing periods longer than 10 seconds and even
though scattering of waves is much reduced the
resulting forces are higher because the waves
themselves are larger. There appears to be less
information in the literature on the accuracy of the
Newman approximation for extreme sea states although
in one application to a semisubmersible platform it
was found that the approximation seriously
underestimated the responses even with a resonant

period of about 3 minutes (Ref 15).

For the coastal applications of interest here the
reduced water depth has two main consequences. One is
that resonant periods of interest are generally
shorter because the length of mooring lines is that
much less and this results in stiffer characteristics.
The second consequence of shallower water is that
set-down is amplified. Indeed, where the primary

waves themselves are deemed shallow water waves, the

11



2.2 Check on

accuracy

non-linear wave force due to set-down becomes the
largest part of the spatial gradient force present

in the absence of scattering. Both these consequences
of a reduced water depth will tend to reduce the
accuracy of the Newman approximation. It is
necessary, therefore, to study the accuracy of the
approximation in the light of the requirements for

coastal applications.

The force due to set-down can dominate the spatial
gradient effects in coastal applications but the
Newman approximation, taken on its own, ignores all
such effects. It will be necessary, therefore, to
allow for a separate set-down force and use the Newman
approximation to represent all the other forces if
more lengthy calculations are to be avoided. To judge
the accuracy of this process we use data in the |
literature in Section 2.2 to check the ability of the
Newman approximation to represent all the non-linear
wave forces apart from that due to set-down. The
accuracy of approximate methods of representing the
set-down force, or as it is sometimes called the force
associated with the second order potential, wi}l be

considered subsequently (see Section 4).

Here we use data presented by Standing (Ref 16) for
the case of a vessel moored in quartering seas

(Fig 4). 1In this work long period non-linear wave
forces were calculated by two methods. One involved
using the Newman approximation and the other was a
more exact calculation of the required forces.
Responses of the moored vessel were then estimated for
comparison with experimental data. The model used for

the experimental work had the following dimensions.

12



Length 4,7m

Beam 0.76m
Draught 0.29
Water depth 7.62m

This model represented a drill-ship just under 100m
long at a scale of about 1 to 20. However, the
calculations of non-linear wave forces were only
presented for wave periods of 12 seconds or less at
full scale which is not representative of the periods
of extreme sea states. In order to use the available
data to judge the accuracy of the Newman approximation
over a greater range of wave periods we can assume a
scale of 1 to 50 instead of 1 to 20. Then, the
longest wave period considered becomes 19 secoﬁds at

full scale and the vessel dimensions become:

Length 235m
Beam 38m
Draught 14,5m

These dimensions are representative of a 85,000 tonne
vessel. For smaller ships there will be less
scattering of the waves, making the Newman
approximation less accurate. The opposite will hold

for larger vessels.

In a random sea the incident wave elevation can be

defined as the sum of N wave components:-

N
n = mgl a cos(wmt + em), (1)

where the amplitudes of the wave components a are

given by the wave spectrum S(f)

aé =2 S(fm)df,

13



the radian wave frequency is defined by

w, = 2nfm,

and € is a random phase. The general expression for

the long period non-linear wave force is then given

by:-
N N
F(t) = mgl n§1 aa {P(wm,wn)cos[(wm—wn)t + em—en]
+ Q(wm,wn)sin[(wm—wn)t te e 1} (2)

The approximation proposed by Newman is the

following:-

w tw wm+wn
P(wm,wn) = P( 2 ’ 2 /s
Q(wm.wn) =0

The steady component of F(t) is defined by the sum of
terms in (2) of the”fprm_a; P(mm,wm) and so we see the
Newman approximation involves using the steady force .

Wt oty
coefficient P( 5 5 %) as the coefficient of the

long period force at the difference frequency

(wm—wn).

To calculate non-linear wave forces it is necessary to
solve first for the response of the vessel at ordinary
wave periods. This is achieved by Standing through
the use of oscillating sources placed on surface
elements that cover the hull. The source strengths
are chosen to satisfy the boundary condition on flow

normal to hull surface (Ref 17).

14



Having obtained these source strengths it is then
possible to calculate directly the mean components of
the surge and sway non-linear wave forces, as well as
the mean component of the non-linear yaw moment,
through the use of expressions derived by Faltinsen
and Michelsen (Ref 6). These expressions are based on
the change in wave momentum caused by scattering of
the waves by the vessel and they make use of
relationships obtained originally by Newman (Ref 18).
The expressions are relatively easy to evaluate
because they can use a "far field" assumption. This
means the mean components of the horizontal non-linear
wave force can be obtained without too much
calculation. Through this approach Standing was able
to calculate the coefficients of the mean forces used
to represent the long period non-linear forces in the
approximation suggested by Newman (Ref 7). This was

done for the vessel moored in quartering seas.

In addition to estimating the long period non-linear
wave forces via the Newman approximation, Standing
also carried out more exact "near field" calculations
of the forces. This involved integrating second order
expressions, for the effects described in Figure 2,
over the hull of the vessel after first using the
source method to define thé vessel's responses at
ordinary wave periods. After these lengthy
calculations it was possible to define a matrix of
coefficients for the long period components of both
the surge and sway forces. These matrix elements are

given by:-

= 2 2
Fan = P * U

where P and Q are the coefficients defined in
mn

Equation (2), ie

15



o
I

P(wm, wn) ,

Q(wm, mn).

U

The matrix an is symmetric and calculations were
carried out for the vessel moored in quartering seas
using 10 basic wave frequencies. This meant that
coefficients for 55 pairs of frequencies were required
including the 10 values on the diagonal defined by

m = n. The results .appear in Tables 1 and 2 for the
long period surge and sway forces, respectivély. It
was possible to compare the more exact "near field"
calculations of the diagonal coefficients, which apply
to the steady non-linear wave forces, with the simpler
"far field" calculations of those same coefficients.
Good agreement was found and this formed a check on

both sets of calculations.

Having obtained exact expressions for the long period’
forces on the moored vessel we are in a position to
check the accuracy of the more approximate method
proposed by Newman. This can be done for a range of
wave conditions and a range of resonant periods (for
the vessel on its mooring) by the follqwihg method.
We choose the period of the peak of the spectrum for

the wave condition to equal %? and choose the resonant
" "n

F Ef . By comparing the exact
m n

period (TR) to equal

coefficient an with the coefficient l?l on the
fm+fn fm+fn
diagonal at frequencies 5 5 e obtain the

following from Tables 1 and 2.

16



Periods (s)

T, (£,
19.2(.052)

14.3(.070)

8.9(.112)

Tpif,)

23(.096)
56(.070)
111(,061)

20(.120)
56(.088)
111(.079)

59(.129)
125(.120)

Surge force (KN/m?2) Sway force (KN/m?)
Fun IFl % error Fon lFI % error
106 12.4 -88 160 22.8 -86
35 2.0 ~94 40 5.0 -86
12.5 1.8 -86 15 4.1 -73
69.5 63.3 -9 175 109 -38
51.5 18 -65 75 20 -73
18.5 13.6 =27 25 22 -12
80.5 128.1 +59 580 725 - 425

137.5 1443 - + 5 635 650 + 2

It is clear from the above results that, overall, the
Newman approximation leads to large errors in the
estimation of that part of the long period non-linear
wave force that excludes the force due to set-down.
The best result is obtained for a wave condition with
a spectral peak at 8.9s and with a resonant period of
the vessel on its mooring of 125s. This is consistent
with the fact that the Newman approximation requires
both strong scattering of the primary waves (short Tp)
and small gradient effects in the absence of
scattering (long TR). For the particular ship
considered here the requirements appear to be T_ < 9s
and TR > 2 minutes. Such limitations are unacceptable
for coastal applications where spectral peak periods
often exceed 9s and resonant periods of moored vessels
typically range from about 20s for a ferry up to some

2 minutes for a large tanker.

The approximation is seen to lead to particuiarly
large underestimates of the long period non-linear
wave force for a long peak period of about 19s. 1In
this case the amount of wave scattering is small
making the (diagonal) steady force coefficients small
while the (off-diagonal) spatial gradient effects
occurring in the absence of scattering are very much
larger over the whole range of resonant period of

interest ie 20s to 2 minutes.

17



3

MORE EXACT
EXPRESSIONS

On this basis it is clear that a more exact if more
lengthy method of calculating long period non-linear
wave forces has to be considered. The method employed
by Standing is based on the use of oscillating sources
on the submerged surface of the vessel. However, this

technique is not satisfactory for coastal applications

. where the underkeel clearance can be small and, for

this a more direct method has been developed and
programmed in the form of a computer model called
UNDERKEEL for vessel responses at primary wave periods
(Ref 1). UNDERKEEL can be used as the basic. model
upon which one can build a description of long period
non-linear wave forces. To achieve this it is
necessary to derive general expressions for these
forces in terms of the response of a vessel at
ordinary wave periods. Such general expressions have
been derived by Standing (Ref 9) but they différ in
some respects from expressions derived earlier by
Pinkster (Ref 8). These aspects are considered

further in Sections 3 and 4 of this report.

The notation used to describe vessel motion is
consistent with that already given in References 1,2
and 3, Referring to Figuré 5 for a vessel displaced .
from its mean position, it is assumed a fixed right
handed coordinate system GXYZ, with axis GZ vertical,
lies with its origin at the equilibrium position of
the ship's centre of gravity. After undergoing a
surge S; along GX, a sway S, parallel to GY and a
heave S; parallel to GZ the centre of gravity moves to
G' and a new system of coordinates G'X'Y'Z' can be
defined with its (moving) origin at G' but with axes
parallel to the fixed GXYZ system. Forces and moments
acting on the vessel will be evaluated relative to the

G'X'Y'Z' system of axes.
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where

Angular rotations of the vessel are then assumed to
occur about the following axes. A yaw Se¢ about axis
G'Z' to give G'x'y'Z'. A pitch Sg about axis G'y' to
give G'xy'z'. And finally a roll S, about G'x to give
G'xyz. The axes G'xyz can be considered to be fixed

in the moving vessel.

For a veééor X with coordinates (x,y,z) in the system
of axes G'xyz moving with the vessel we find the
coordinates (X,Y,Z) of the same point relative to the

fixed axes GXYZ are defined by,
+ R.x (3)

X= ,Y,2),

)_(G:" (SlsS.ZvSS)o

R =cosS;cosS¢ sinS,sinSz;cosSg-cosS,sinS, cosS,sinSgcosSg—sinS,sinSg
0sS58inSs sinS,sinS;sinS+cosS,cosSg cosS5,sinSssinSg-sinS,cosS,

-sinSs sinS,cosSg cosS,cosSs

The matrix R describes rotations of the vessel and it
will be used in what follows to describe perturbations
in the direction of the outward pointing normal n to
the surface of the hull caused by vessel movement.

Thus, up to the second order in the wave amplitude:

n=n + + T oeeens

275, a n

vwhere,
n(l) = R(l).n , ¢ (4)
n 8 2o
n(z) = R(z).n R (5)
n L ,
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3.1 Non-linear wave

forces

o

(1) 5

0 Y
and, 8P = | sV 0 ~s{D 6)
N COIN PR
' e DY) gD (@) (2) () ()
2) _ S§2) D212y (D) _(2)
2 | 5 %(3(1)2+351)2)
(7)

Forces and moments acting on the vessel up to second
order in the wave amplitude will be considered in the

following sub-sections.

We assume in what follows that the force F, pressure P
and the surface elevation n can all be expanded in
powers of the wave amplitude, just as in a
conventional Stokes expansion of the basic wave
equations., A suffix o will be used to denote a
quantity of zero order and superfixes (1) and(2) will
denote first and second order quantities as shown

above in the expansion of the normal n.

The second order non-linear wave force acting on the _

vessel can be expressed in the form,

E(Z)= - P(Z)Eo ds - | P(l)g(l)ds - f P(O)g(z)ds - P(l)EodS

S S
o o o]

(8).
In this equation the integrals extend over the

submerged area of the vessel and, in particular,

either the area So defined by the vessel in its
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equilibrium position or the additional area s; near
the surface defined by movement of the vessel's
(equilibrium) waterline relative to the wave

elevation.

Expressions for the pressure are obtained by using
Bernoulli's equation together with a Taylor exﬁansion
to relate pressure on the surface of the displaced
vessel to pressure on the surface of the vessel in its

equilibrium position. Thus,

(0)

P = pg(d-(Z + ¢)), 9)

p{H) - —ng(l) +’p¢£l), (10)

p(2) _ —ng(2) + p¢é2) + P(K(l)-V)¢él) _ %p(V¢(l))2
(11)

In the above expressions the centre of gravity of the
vessel in equilibrium is assumed to lie a distance c
above the seabed and the water depth is denoted by d.
First and second order motions of the vessel X(l) and
X(Z) are defined by equation (3). The velocity
potential ¢ includes all wave motions due to incident
and scattered waves and waves created by motions of
the vessel. The partial defivative of ¢ with respect

to time is denoted with a suffix t.

UNDERKEEL can be used to define first order vessel
motions and the first order velocity potential as
these all occur at the wave period. However, to
describe the second order velocity potential ¢(2)
exactly, and ultimately second order vessel motions,
it is necessary to solve the diffraction of waves by
the vessel to second order in the wave amplitude.

Such an approach would require a distribution of
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sources over the surface of the water surrounding the
vessel as well as sources on the vessel itself. A
very large number of calculations would then be needed
to solve for the source strengths needed to define
second order pressure forces on the vessel. In view
of these difficulties some approximations have been

sought.

It has been proposed by Standing (Ref 9) that, leaving
aside the second order vessel movement potential, the

second order potential associated with just the

(
I

wave groups be used in the relevant component of the

incident waves (¢ 2)) vhich describes set-down beneath

second order force in equation (8) ie
_ (2)
o

This approach was developed originally by Bowers

(Ref 11) when describing the force due to set-down on
a large vessel moored in short period head seas. ‘
While this approximation proved to be satisfactéry for
that particular situation it is not clear that it is

adequate for the general case.

A different approach has been suggested by Pinkster
(Ref 8). He suggests that set-down be treated like a
long wave with a modified wave number and that
diffraction of this modified long wave by the vessel
be taken into account in calculating the second order
wave force. In more detail, the complete second order
potential can be expressed the form,

(2) 52) + ¢((12) + qbt(>2) , (12)

¢ =9

(2)

where ¢b denotes the potential associated with flows
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set-up in the water by second order vessel movements,

¢§2) denotes the potential of the (second order)

(2)
o
(second order) disturbance created in the vicinity of

diffracted wave and ¢ denotes the potential of the

the vessel both by incident and scattered waves and by

waves created by first order motions of the vessel.

Thus, ¢52) contains as one of its components the
(2)
I

disturbance created by just the incident waves. The _

set-down potential ¢ for the second order

boundary condition that flow normal to the vessel's
surface must match the normal velocity can be

expressed in the form,

(2) (2)

Vép~"emy = v ".n_, (13) .
[V(¢£2)+¢é2))+(§(l).V)V¢(l)].go+ vl n() o o) L (D)
(14)

Equation (13) describes the boundary condition on the

potential for second order vessel motion with velocity

2(2)' This enables added mass and damping

coefficients to be determined for the (second order)

long period vessel movement and there is no particular

difficulty in solving for ¢é2). The difficulty arises

in solving for ¢é exactly and here Pinkster suggests
(2)
I

with the incident waves and then solving for the

diffraction potential ¢§2) using Equation (14) with

retaining just the set-down potential ¢ associated

terms involving first order quantities put to zero.

Both Standing's and Pinkster's approximate treatments
have been applied to the case of a horizontal cylinder
moored beam onto regular wave groups in a situation

where the non-linear wave force due to the second
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order velocity potential is known to be an important
part of the total non-linear wave force. The results
are described in Section 4 where a comparison has been
made with experimental data. It is found that neither
approximation results in good agreement with the

experimental data. It is also shown, however, that an
(2)

allied approach in which the set-down potential ¢I

is assumed dominant and then diffracted by the
cylinder retaining first order body motions, results -
in a better agreement with the experimental data.
This is just one particular situation, though, and
further experimental work with a ship model in random
waves is needed to determine the true accuracy of

these approximations.

Returning to the rest of the terms in the second order
wave force we find the first of the four integrals on
the right-hand side of Equation (8) gives rise to the
following expression, after substituting for the
second order pressure from Equation (11).
—JS‘ P(z)_r_xods = -p g (¢22)+(§
o o

B v %we ) *)n as

S(1)3+S(l)2
(2) (2) 4 5 -
=(Cys S37"+C35 S5~ "+Cy;3(c-d)( 5 3(0,0,1)
rogv(-s$?), 502 Ly {175 (D)%) (15)

where,

Cis = pg f Bdx,

L
Css = —pg f Bxdx,
L
vV = [ BDdx,
L
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In these latter expressions the vessel's beam at
position x is denoted by B, and its draught by D. The
integrals for the coefficients are taken over the
length L of the ship and the quantity V is seen to be

the volume of water displaced by the vessel.

The second of the integrals in Equation (8) can be

expressed in the form,

- f pMpWag = - g ¢ pWy 45 (16)
n J n

S
o] ¢]

The total first order wave force on the vessel is

given by,
S ° S
[0} (o]
ie - [ P(l)gods = g(l) + 1_3(1). 1) P(O)_r_l_ods (17)
S
(o]

Hence, substituting (17) in Equation (16) we obtain,

Wy Wgg L g F (1) L p(1g2 (0 (18)

S
o]

where to zero order we have just the buoyancy force:-
B = - 12065 - (0, 0, pgv)

The third integral in Equation (8) takes the form
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Y R O T C B (I
S - S °
0] o}

- 3(2).F(0) (19)

Finally, the fourth integral in (8) can be expressed

in the form,

r]r
- £1 P(l)gods = - { dx { pg(nﬁl) - e)n_ de
= -pg/2 [ (l’ll(.l))2 n_dx (20)
L

In evaluating this integral the following hydrostatic

approximation for pressure near the surface has been

used,
P(l) = pg [ﬂ(l) _ Z(1) - €],
= pPg {nil) - €],
Here n(l) is the wave elevation relative to the

r
displaced (by Z(l)) equilibrium waterline of the

vessel and € is the (small) variable of integration

for the s, area, ie
Z=d-c+e,
Having assembled all four integrals on the right hand

side of Equation (8) we can express the non-linear

wave force in the form,
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+%p [ Py n_ds
S

o
(1L (1)
-p g (X*°7.) ¢.7 n_ds
(o]
+ gD gD

% Cas(e-d) (582 + 58)2) (0, 0, D

(Css 520 + ¢y 500, 0, 1) (21)

In adding the fdur contributions together some
cancellation occurs between terms on the right. hand
sides of Equations (15), (18) and (19).

The first four terms in Equation (21) correspond to
the four mechanisms causing non-linear wave forces
that are shown schematically in Figﬁre 2 (see
discussion at the beginning of Section 2). Both
Pinkster and Standing agree on the form of these

terms.

The fifth term is the force due to the second order
velocity potential and here some approximation is
necessary due to the complexity of solving the second
order diffraction problem. These approximations have
already been discussed and their accuracy is

considered further in Section 4 of this report.
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3.2 Non-linear wave

moments

The sixth term is a second order buoyancy effect found
by Standing but ignored by Pinkster. The derivation

given in this report confirms Standing's result.

The final term describes the usual restoring forces
due to buoyancy but to second order in heave and

pitch.

Using results from UNDERKEEL for first order
quantities, together with a suitable approximation for
the second order velocity potential force, we can use
Equation (21) to calculate the non-linear wave force
on moored vessels. This approach can be expected to
yield a more accurate description than that possible

using the Newman approximation.

In the next sub-section we address the problem of

obtaining the second order wave moments.

A general form for the moment about the moving centre
of gravity G', of the pressure acting on a surface
element dS at position X' in the G'X'Y'Z' system of

axes, is the following:-

dM = - PX' xn dS.

This can be expressed in terms of the vector x for the
same position with coordinates (x,y,z) in the system

of body axes G'xyz moving with the vessel. Hence,

M=-[P(R.x) xnds
S

Allowing for expansions in all three quantities P, R
and n we can express the second order moment in the

form,
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- P(Z)

W o @y, nas - pPe®W.ox n +xxnlas
S

S
o o

- » xxn as (22)

The various quantities in this equation have already
been defined. The first of the four integrals on the
right hand side leads to the following expression

after substituting for P(z) from (11),

xn ds = p [ 02+a v %we™M)nx x n_as
S
o]

(2) 2 ,

2
- (Cuy S4°7, C35 S3 Css S§ ), 0)

2 2
- Cis (@) % 5887 + 5700, 1, 0)
(23)

where,
Cuy = pVg.GHN,
CSS = P8 f Bx? dX,

L
with,
GM = metacentric height above the centre of gravity.

The second of the integrals in Equation (22) can be
expressed in the following form for a freely floating

vessel,
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-f p(L) [(B(l).g)x n,+xx (B(l).go)]ds

S
o

(1) (1)

M, (24)

=R

where the first order moment is given by,

(0

S

(o]

The third integral in (22) can be shown to vanish for

a freely floating vessel.

The fourth integral in (22) takes the form

(1)

-J PP xxn ds=-pgs2 [ (n(l)
SO L

r )2 x x n, dx (25)

-0

Summing up the four integrals on the right hand side
of Equation (22) we can express the second order
moment in the form,

(2)

¥ =-%pg{(n§1))’§XBodx

(1))3 x.x n ds
= )

+hel (v
S

o]

(1 X x n dS
t - -0

I S R,
S

- % Cys (- sV + 5D (0, 1, 0)

(2)

(2) () | o gl

(Clolo Slo H C35 SS

, 0) (26)
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4

SECOND ORDER
POTENTIALS

The first four terms in Equation (26) correspond to
the moment effects of the mechanisms shown
schematically in Figure 2. Again, Pinkster and

Standing agree on the form of these terms.

The fifth term involving second order potentials has
to be treated approximately. These approximations

have been described already.

The sixth term was obtained by Standing but ignored by
Pinkster.

The final term describes the usual restoring couples

due to buoyancy for second order roll and pitch.

Equation (26) is taken to be the non-linear wave
moment which can be evaluated using UNDERKEEL to
describe the first order response together with a
suitable approximation for the moment associated with

the second order velocity potential.

The difficulties attached to solving exactly for the
second order diffraction potential have been discussed
in Section 3.1. Three different approximations were
also considered, one due to Pinkster (Ref 8) one due
to Standing (Ref 9) and a third allied approach. Here
we apply all three approximations to a situation where
second order potential effects were identified in
experiments as being an important part of the total

non-linear wave force.

Experimental work on second order wave forces on wave
povwer devices has been carried out at HR (Ref 19).
Tests were performed in a wave flume with a model
moored across the flume and subjected to regﬁlar

groups. The model was able to surge freely ie move
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4.1 Experimental

results

horizontally along the flume on its mooring at the
wave group period. Tests were carried out with and
without a control signal to the wave-maker to
compensate for set-down beneath wave groups. This was
done to see how important set-down compensation was in
tank testing of moored wave power devices. As
set-down is an important part of the second order
potential effect, these tests also demonstrated the
conditions for which second order potential effects
from an important component of the non-linear wave

force.

In wvhat follows the experiments are described and
results produced to show when second order potential
effects become important. By comparing theoretical
results, obtained using various approximations to the
second order diffraction problem, with the relevant
experimental results it is possible to show the

accuracy of the various approximations.

A wave flume equipped with a wedge type wave generator
was used in the experimental investigation. The
wave-maker was position controlled by an
electro-hydraulic system. In tests with regular wave
groups the electrical signal to the wave-maker
consists of a sum of two frequencies so that the wave-
group period equals the inverse of the difference

between the two wave frequencies.

The model length scale was 1 to 100, making the time
scale 1 to 10 with Froude scaling. All quantities
given here and in subsequent sections are expressed in

full scale terms unless stated otherwise.

The mooring arrangement consisted of four mooring

lines made of rubber. Figure 6 shows the layout in
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plan. The ends of the lines attached to the device
were mounted just below the water level and the other
ends were held in rigid supports so that all four
lines were horizontal and parallel with the sides of
the flume. In all cases the device extended the full
width of the flume (1.2m). To allow free movement of
the device horizontally along the flume (surge) and
vertically (pitch and heave) a small gap was left at
each end of the device between it and the flume walls.
The mooring stiffness chosen made the resonant period
in surge approximately 62s. This ensured a
significant surge response in regular wave group tests
where the group period was consistently about 52s. A
gently sloping shingle beach was built behind the
device. This beach was a good absorber of the primary
waves with reflection coefficients of less than 10%.
To minimise the effect of long wave reflections on

the surge response of the device, it was placed at an.
anti-nodal point for a reflection system produced by
any long waves at the group period travelling towards
the wave-maker and undergoing perfect reflection.
Since wave slope is zero at an anti-nodal point such a
reflection system should then not produce a horizontal

force.

Wave height in the model wés measured using twin wire
wave probes., Horizontal movement of the device was
measured with a Selspot system. This consisted of an
infra-red light source mounted on the device and a
camera mounted outside the flume that registered
movement of the light source as the device moved. The
Selspot system allowed large surge movements to take
place. Signals from the measuring instruments were
fed to mini-computer capable of performing a spectral

analysis.

The two wave periods (T; and T,) used to produce

regular wave groups covered a range of conditions from
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10.0s, T, = 8.4s) to long

period waves (T, = 20s, T, = 14.5s). Wave periods

relatively short waves (T,

were chosen so that the wave group period remained the
same for each pair, ie 52s approximately. As the
Selspot system allowed large surge movements to occur,
tests were carried out with wave heights of up to 22m
represented for the longer period waves (T; = 20s,

T, = 14.5s8).

The water depth in the flume represented 60m at full

scale,

The device consisted of a circular cylinder of
diameter 10m that was ballasted such that it floated
with a draught of 8.7m. The four horizontal mooring
lines were attached to the sides of the cylinder at a
depth of 2.4m below the water line. The stiffness of
each line was 7.2 tonnes/m and this produced a

resonant period for surge of approximately 62s.

Each experiment with regular wave groups was carried
out twice, once in the presence of any spurious free
long wave at the wave group period due to the
wave-maker and then again with the free long'wave
minimised by an additional movement of the wave-maker
at the wave group period to compensate for set-down.
The data were analysed with a fast Fourier transform -
computer program to give spectra of wave height and
device movement. The three peaks of interest in the
spectra occur at the wave group period and at the
primary wave periods. The amplitude (half the wave
height or half the total movement) of each component °

was obtained from the area under each peak by using
% (amplitude)? = area
Experimental values of the disturbance at the wave

group period at various positions down the flume are
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compared with theoretical values in Table 3. By
carrying out measurements at nodal points (distances
of 1%, 2%L etc from the wave-maker) for a reflection
system produced by any free long waves travelling
towards the wave-maker and undergoing perfect
reflection, it is possible to compare the measured
long wave amplitudes with theorétical predictions for
a purely progressive wave system leaving the
wave-maker (Ref 20). 1In column (a) of Table 3 the
amplitudes are compared for the case with free waves
present due to the wave-maker. In column (b) the
comparison is made with the free long wave minimised
by movement of the wave-maker at the group period. To
compensate for set-down. When theoretical values
under the two columns are compared it will be seen
that unequal values (column (a)) at various nodal
points should become equal (column (b)) if the free
long wave from the wave-maker is eliminated. This is
explained by the interference pattern produced by
set-down and the free wave being removed when the free
wave is eliminated. This leaves just set-down beneath
waves with the amplitude value shown under theory in
.column_ (b). Results are given for a range of primary
wave amplitudes for each pair of primary wave periods.
In general there is qualitative agreement between
experiment and theory in tﬁat unequal experimental
values under column (a) tend to become more equal and
closer to the theoretical value in column (b) when an
appropriate secondary movement of the wave-maker is
used. In making this comparison it should be borne in
mind that the twin wire wave probes used for these
measurements are accurate to within 0.2mm (0.02m full

scale).

- The resulting non-linear surge of the cylinder at the
wave group period is plotted in Figures 7,8 and 9 for
each pair of frequencies. The solid line denotes

results with set-down compensation and the dashed line
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4.2 Comparison of
theory with

experiment

results without compensation. As the non-linear surge
is a second order effect its amplitude should be
proportional to the product of the primary wave
amplitudes. While this appears true for the large
surge movements recorded in Figure 7 some variation
from this behaviour is apparent in Figures 8 and 9
where straight lines cannot be drawn through the
experimental results. It is thought that this is
largely due to inaccuracies in the measurement of the

smaller surge movements by the Selspot system.

The main experimental result is, however, the obvious
indication that second order potential effects only
become important in this particular situation when the
primary wave periods are long ie T, = 20s, T, = 14.5s.
For shorter wave periods there is little difference
between results obtained with and without set~-down
compensation. As the spurious free long waves at the
wave group period, present in the absence of set-down
compensation, are of the same order of magnitude as
set-down itself, an experimental result which shows
their presence to be unimportant also indicates that
set-down is unimportant and vice versa., These results
are consistent with the discussion in Section 2.2 of
this report where it was found that the contribution
of spatial gradient effects to the total non-linear
wave force becomes dominant in the absence of
scattering of the primary waves ie as the primary wave
period becomes long. Set-down is yet another spatial
gradient effect and so it too can be expected to

become important for long primary wave periods.

The experimental work described above has identified a

situation where second order potential effects make an
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important contribution to the non-linear wave force ie
the set of results shown in Figure 7. We can now
apply the three approximate methods of calculating
second order potential effects to this situation and

compare the results with the experimental data.

Denoting the cylinder surge by s we can write the
equation of motion in the form,

s+Bs+wés=§ ’ | (27)_

where, B is the coefficient of damping at the wave

group period,

S
t
2 =
Wo M

St is effective (linear) stiffness of model mooring ie
29gm/cm

M is total mass of model cylinder including added
mass ie 28.15kg

F is the non-linear wave force at the wave group

period.

The above figure for the total mass of the cylinder,
including the added mass, was obtained by perturbing
the moored device in still water and noting its
resonant period (about 6.25s in the model). The
coefficient of damping was obtained by noting the
decay rate of the resulting surge oscillations. We
can then solve Equation (27) for surge s once we know

the wave force F ie,

s = lFI A (28)

M[(wz—wé)2 + Bzwzl%
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where w is the (radian) wave group frequency.

Given the relatively simple cylindrical shape of the
device it is possible to form a good estimate of the
non-linear surge force defined in Equation (21) by
analytical calculation. This was done initialiy using
Standing's approximate treatment of the second order
potential wave force in order to compare with results
obtained by Brendling (Ref 21) using Standing's model.
The two theoretical results for the amplitude of surge
motion are shown by the (short) dashed lines in

Figure 10, It can be seen that good agreement was
obtained between data from the analytical model and
data given in Reference 21 which arose from using a
source method and computation with the model developed
by Standing (Ref 9). However, both sets of
theoretical results show large underpredictions of the
surge measured in the experiments (see ® symbols in
Fig 10). It is important to note that the
experimental data obtained with set-down compensation
are plotted because the effects of spurious free waves
from the wave-maker have not been considered in any of

the theoretical results shown in Figure 10.

The very small values of surge predicted using
Standing's approximate treétment of the second order
potential force arise through a significant amount of
cancellation between that approximate second order
potential force and the other non-linear wave forces

present in Equation (21).

When Pinkster's approximate treatment of the second
order potential force is used a significant
overprediction of surge occurs (see long dashed line
in Fig 10). 1In this case set-down is diffracted as if
it were a free long wave with a modified wave number
to match the wave number of set-down. The

approximation increases the effective set-down force
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5

CONCLUSIONS

making it 133% of the resultant force. Cancellation
of some of this large set-down force by the other
non-linear wave forces leads to the resultant. A
tendency for Pinkster's method to overestimate the
second order potential force has been noted by
Pinkster himself (Ref 8).

Finally, we apply the allied approximation for the
second order potential force described in Section 3.1
of this report. This leads to the solid line in
Figure 10 and much better agreement with the
experimental data. Using this approach we can then
also allow for forces due to spurious free long waves.
present in the experiments performed without set-down
compensation at the wave-maker. This results in an
increased surge as shown by the dashed line in

Figure 11 and again good agreement is obtained with
experimental data. This gives some confidence in the-
third method of approximating the second order
potential force and it is suggested that this
approximation be used when evaluating the non-linear
forces and moments defined by Equations (21) and

(26).

It should be borne in mind, though, that the three
approximations have only been tested here against a
relatively simple experimental situation using regular
wave groups. Further validation is needed using more
comprehensive random wave model experiments to check
the suggested approximation. The example described
here also demonstrates the need for set-down
compensation at the wave-maker in experimental work to
ensure that non-linear wave forces and moments are

well represented.

A description has been given of non-linear wave forces

acting on moored ships. It has been shown how these
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forces cause significant ranging of vessels on their

moorings at wave group periods.

Due to the large computational effort needed to
represent these forces exactly some approximations
have been sought. The non-linear forces and moments

can be divided into two basic types.

One type, involving (first order) movements of the
ship at the wave period, can be expressed in terms of
products of first order quantities only. The first
four terms on the right hand side of Equations (21)
and (26) together with the sixth term are of this
type. They can be evaluated once the first order
problem of wave diffraction around the vessel is
solved but in their exact form, ie Equations (21) and
(26), they will require considerable computation for a
random sea. The Newman approximation (Ref 7) has been
suggested for evaluating these terms in order to
reduce the amount of computation. Although this
approximation is much used in offshore applications it
has limitations in the coastal applications of
interest here, In particular it has been found that
non-linear forces due to spatial gradients in all the
second order pressure terms, effects not represented
in Newman's approximation, tend to be more important
in coastal applications because the resonant- periods
of moored ships are generally shorter than resonant
periods of structures moored offshore. As a result
the Newman approximation has been shown to lead to
large underestimates of non-linear wave forces of the
first type. In view of this result there appears to
be little alternative to use of the exact expressions
as shown in Equations (21) and (26) for non-linear

wave forces of the first type.

The second type of non-linear wave force involves

solution of the diffraction problem to second order in

40



the wave amplitude. This would require even more
computation than that needed for the non-linear forces
of the first type, if second order potentials were to
be calculated exactly. This type of effect is
represented by the fifth term on the right hand side
of Equations (21) and (26). It is also clear that
second order potential effects will be more important
in coastal applications than in offshore ones due to
the increase in the magnitude of set-down beneath wave
groups as waves approach the coastline: set—-down being
one of the main components in the second order
potential, Three approximate methods of calculating
forces due to second order potentials have been
apblied to experiments with a moored cylinder carried
out at HR as part of the Wave Power research programme
(Ref 19): One approximation proposed by Standing

(Ref 9) ighores diffraction of set-down and it was
found to lead to significant underestimates in the
resultant effect for experiments where second order
potential effects were known to be important (see
short dashed line in Fig 10). A different
approximation proposed by Pinkster (Ref 8) was found
to lead to significant overestimates (see long dashed
line in Fig 10). A third, allied, approximation has
been suggested and found to be in better agreement
with the experiments (see solid line in Fig 10). It
is felt, however, that further validation of the
suggested approximation for second order potential
effects is needed using more comprehensive

experimenés with ship models moored in random waves.
In this regard it is important that set-down
compensation at the wave-maker is used to ensure the
correct representation of second order potential

effects in model experiments.
Taken overall, the work described in this report

indicates that non-linear wave forces can be expected

to be well described provided forces and moments are
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RECOMMENDATIONS

evaluated using Equations (21) and (26) with the
suggested approximation for representing second order

potential effects,

It is recommended that Equations (21) and (26) be
employed to represent non-linear wave forces on moored
ships. By using UNDERKEEL (Ref 1) to calculate (first
order) responses of the vessel at the wave period it
will be possible to evaluate all the terms on the
right hand side of equations (21) and (26) provided
the suggested approximation for second order potential
effects is used. However, programming these
expressions for non-linear forces and moments will
involve more work than that needed had it been
possible to make use of the Newman approximation in
evaluating these forces. In drafting the programme of
research to be carried out under the present contract
it was hoped that the Newman approximation would prove
adequate and, as a result, the amount of work needed
to programme non-linear wave forces has been

underestimated,

In parallel with the work described in this reﬁort, an
extension of UNDERKEEL to allow for a vessel moored
against a quay face, has béen under investigation. It
was anticipated that a relatively minor amount of work
would be involved but this has not proved to be the
case. An important simplification, that proved
possible in developing UNDERKEEL for a free ship, can
still be used for a vessel moored against an open
(piled) jetty but the flows created around a vessel ‘
moored against a quay face have been found to require
a different set of assumptions. This work will be
described in a subsequent report. Once completed,
however, the extended UNDERKEEL can be used to derive
the first order responses of a vessel moored against

the quay face and these responses can, in turn, be
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used in Equations (21) and (26) to calculate

non-linear wave forces and moments for that case.

It can be appreciated that the extra work needed to
complete the two aspects described above means that
final validation of the computer model cannot be
carried out under the present contract as originally
hoped. However, collection of the necessary field
data on moored ship.movements should be possiblé under
an extension of the present contract. And it should
be possible to carry out some validation of the
computer model in frequency space (for a ship on
linear moorings) using published data. It is intended
that the latter aspect be described in a separate
report on the programming of non-linear wave forces

which will be produced under the existing contract.

The work described in this report has highlighted a
need for more experimental data to check the
approximate treatment of second order potential
effects. Due to the complexity of non-linear wave
forces it is likely to prove impossible to check this
approximation using full scale data. This is due to
the large number of competing effects in a realistic
situation. The advantage of model experiments is that
more control can be exercised over the particular
factors of interest and experiments can be designed to
allow those particular factors to be investigated in
detail. The experiments described in this report were
able to do this for the simple situation of a cylinder
moored in beam waves with regular wave groups and this
has helped to judge the accuracy of various
approximate methods for calculating second order
potential effects. However, the model under
development is for ships moored in random waves and
more comprehensive experiments are needed for that
situation. It is essential in those experiments that

compensation for set—down beneath wave groups is used
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to ensure the correct representation of second order

potentials,

There are also a number of aspects related to time
domain representations of non-linear wave forces, that
require study. This is the step necessary before
final validation of the computer model can be carried
out against full scale data. It involves using the
non-linear forces given by Equations (21) and (26) to
derive coefficients that can be used to construct a
time series that, in turn, can be used in SHIPMOOR
(Refs 2,3)., It is necessary to move into the time
domain to allow for the fact that conventional ship
mooring systems are non-linear making a frequency
space model like UNDERKEEL unsuitable for
realistically moored ships when used alone. This is
why SHIPMOOR has been developed in parallel with
UNDERKEEL so that together the two models can describe
realistic situations. The complication with time
domain representations is that non-linear wave forces
have non-Gaussion statistics and it will be necessary
to ensure that the mathematical representations
reproduce the correct statistics. This requires
checking both via experiments using random waves and
by comparing results of simulations with analytical
predictions like those derived recently for second

order wave quantities (Ref 22).

Taking all of the above points into account it is
clear that following completion of the present
contract, further work will be necessary to enable a
satisfactory validation of the computer model of a
moored ship to be made. This work must encompass; a
more comprehensive experimental study to check the
suggested approximate treatment of second order
potential effects, and experimental and analytical
work to check the statistics of time domain

representations of non-linear wave forces. Only then
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can a final validation of the computer model take

place against full scale data.
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TABLES.






TABLE 1 Long period surge force coefficients (an) for 85,000 tonne vessel
moored in a quartering sea (ignoring forces due to set-down)

\\\\\im 0.129 0.120 0.112 0.104 0.096 0.088 0.079 0.070 0.061 0.052
f
n

0.129 -85.0

0.120 97.0 -133.5

0.112 80.5 137.5 -155

0.104 54.5 114.0  141.0 =-127.5

0.096 33.0 83.0 113.5 101.5 - 68.5

0.088 21.5 58.5 95.5 92.5 57.5 -27.0

0.079 45.0 39.0 84.0 99.0 77.0 43.0 -18.0

0.070 52.0 69.5 103.5 113.0 86.5 51.5 18.5 - 8.0

0.061 34.0 53.5 94.5 116.5 101.5 72.5 40.5 23.5 - 2.0

0.052 30.5 43.5 85.0 113.0 106.0 82.0 53.5 35.0 12.5 + -1.5

Units ¢ £, £ din H
m’ “n Z
F in KN/m?
mn



TABLE 2 Long period sway force coefficients (an) for 85,000 tonne vessel moored yin a
quartering sea (ignoring forces due to set-down)

\\\\f 0.129 0.120 0.112 0,104 0.096 0.088 0.079 0.070 0.061 0.052
f
n

0.129 765

0.120 710 720 |

0.112 580 635 580

0.104 415 49Q 460 345

0.096 250 345 355 250 120

0.088 140 255 310 255 120 30

0.079 iOS 190 300 315 220 110 20

0.070 95 175 | 230 210 145 75 25 25

0.061 25 105 190 205 155 100 50 30 5

0.052 25 70 155 150 160 115 70 40 15 3

Units ¢« £, £ in H
m’ n z
F in KN/m?



TABLE 3  Regular wave group conditions for the flume experiments

Distance of wave Amplitude (m) of disturbance
probe from at the wave group period
wave-maker in
’rimary wave periods T(s) terms of wavelength " (a)Without set-down (b)With set-down
and amplitudes a(m) (L) of free long wave compensation compensation

Theory Experiment Theory Experiment

T, = 20 a, = 0.69 1%L ~0.01 0.01 0.02 0.02
T, = 14.5 a, = 0.75 %L 0.02 0.02 0.02 0.02
" a, = 1.39 1%L 0.04 0.04 0.06 0.05

a; = 1.42 %L 0.06 0.06 0.06 0.05

" a, = 3.02 EA 0.17 0.14 0.27 0.20

a, = 2.89 %L 0.26 0.24 0.27 0.22

" a; = 5.61 %L 0.62 0.24 0.98 0.98

a; = 5.67 2%L 0.95 1.09 0.98 0.76

T, = 12.4  a, = 0.74 1%L 0.02  0.02 0,01 0.02.
T, = 10.0 a, = 1.05 2L 0.02  0.01 0.01 0.01
" a; = 1.61 1%L 0.06 0.06 0.04 0.04

a; = 1.86 %L 0.07 0.06 0.04 0.04

" a, = 2.33 1%L 0.12 0.11 0.09 0.08

a, = 2.67 2L 0.13 . 0.08 0.09 0.06

T, = 10.0 a, = 1.07 1%L 0.005 0.01 0.014 - 0.02
T, = 8.4 a, = 1.0l %L 0.007 0.01 0.014 0.02
" a, = 2.37 1L 0.013 0.02 0.03 0.03

a, = 0.99 %L 0.016 0.03 0.03 0.04

" a, = 1.81 1%L 0.012 0.02 0.04 0.02

a, = 1.55 2%L 0.018 0.03 0.04 0.05

" a; = 4.21 1%L 0.02 0.04 0.06 0.06

a, = 1.06 24L 0.03 0.08 0.06 0.09
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Schematic diagram of resonant excitation of a ship on its moorings
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Experimenfél and theoretical non-linear surge (Tq = 20s,T, = 14.5s)
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