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ABSTRACT

A new type of computational wave transformation model is described in this
report. The model incorporates the processes of wave refraction and
diffraction, and uses a time-independent finite-difference marching
technique. The model is computationally more efficient than most
alternative techniques which combine refraction and diffraction in a general
manner. Tests are carried out on a circular shoal depth profile, a
situation for which strong diffraction effects occur.
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1

INTRODUCTION

This report is concerned with a new type of
computational wave transformation model incorporating
the combined effects of refraction and diffraction of
waves using a time-independent finite-difference
marching technique. This method has several potential
advantages over alternative techniques. The inclusion
of diffraction should give improved predictions of
wave parameters compared with pure refraction methods
in areas of irregular bathymetry where diffraction
effects are strong. The method is also
computationally quicker than most alternative
refraction-diffraction methods, with the pgssibility
of further increasing computational speed by the
ability to use coarser grid sizes. Random wave
spectra, current refraction effects, and dissipation
by bottom friction and breaking can be included, but
the tests described in this report are concerned with
the basic wave processes of depth refraction and
diffraction for monochromatic waves. The model is
designed for wave propagation in the open sea, rather
than where structures are present. Wave directions
are limited to a certain range either side of the
forward grid direction, although the tests presented
here indicate that the model can be used for wave
directions at more than 40° from this forward grid

direction.

The report is structured as follows. Chapter 2
contains the theory on which the model is based, and
Chapter 3 describes the finite-difference scheme and
numerical techniques. In Chapter 4 the model is
applied to the problem of wave propagation over a
circular shoal. Classical ray theory predicts a
cusped caustic for this problem and therefore, in
nature, strong diffraction effects are present. The

circular shoal problem thus represents quite a severe
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THEORY

test case for the model. Finally, the main conclusion

from the study are summarised in Chapter 5.

The model is based on a theoretical approach
originally put forward by Battjes (1968). This
approach, however, suffered from a lack of interest
for many years, probably because it was felt that it
had been superceded by the Mild-Slope Equation (Eq 1)
which was formulated shortly afterwards (Berkhoff 1973
and 1976). Although models based on the Mild-Slope
Equation have been successfully applied to long waves
and relatively small enclosed sea areas, they have
been found in many cases to be too computationally
inefficient for short waves and large open-sea areas,
In order to develop a model for these latter types of
problem, Yoo and O'Connor (1986 and 1988) have
returned to and extended Battjes' approach. The model
described in this report uses the same theoretical
basis as Yoo and O'Connor but adopts a different
numerical modelling approach. Yoo and O'Connor used a
time-dependent formulation which can require a
considerable number of time steps to reach a steady
state. The present model is time-independent and

gives the steady state solution directly.

The governing equations used by the model can be
derived from the time-independent form of the

Mild-Slope Equation,

w? ¢
V. (ccg vn) + ——E—g n=20 (1)

in which n is the complex water surface elevation, c
is the wave celerity, cg is the wave group velocity, w
is the angular wave frequency, and V is the
two—dimensional horizontal gradient operator. n can

in general be written as



N = AetS 2)

where A is the wave amplitude and S is the wave phase.

Substituting Eq 2 into Eq 1 results in the following

two equations: "
- Vlec )
= VA g” VA
(Vvs)z = k2 + 2t praniy (3)
g
V. (A2 fg) =0 (4

k is the wave separation factor and is determined from
known values of water depth (h) and angular wave
frequency (w) by the linear dispersion relation

w? = gk tanh (kh) (5)

¢ and cg are given by the expressions,

0
[}

w
T (6)

2kh ) N

_c ___2kh |
¢ =7 U+ sz

g
The last two terms on the right-hand side of Eq 3
represent diffraction effects. The omission of these
terms gives the refraction approximation used in ray
tracing models. Under this approximation k is
equivalent to the wavenumber, K = VS. The present
model retains the VZA/A term which is usually much
larger than the final term in Eq 3. The system of

equations solved by the model can therefore be written

as
VxK=0 (8)
K2 = kz + %VZH (9)



V. (H? Eg) =0 (10)

in which K(=VS) is the wavenumber, H(=2A) is the wave
height, and underlines denote vector quantities, Eq 8

expresses the identity V x (VS) =

These equations can be represented in Cartesian

coordinates x, y:

8P _ 3Q :
5y = ax (11)
(>
P? +Q’—k2+é(aH + 28 (12)
ax?  dy?
2 (mawp) + & (wmg) = 0 (13)
9x oy
in which P is the x-component of K, Q is the
y-component of K and M is given by
g
M= R (14)

The wave direction a is defined in Figure 1.

It is usual that the wave height curvature in the main
propagation direction (y direction) is much less than
in the lateral direction (x direction), and therefore
32H/3y? is neglected in Eq 12, although this
approximation becomes less valid for small values of
a. Furthermore, in order to use Eq 12 as a prediction
equation for Q, it is differentiated with respect to

y. Performing this differentiation, and using Eq 11,

gives
8Q_ 1 8Q £ L3
=GP 0, 33 ¢ ‘25 (15)



Egs 11, 13 and 15 are the three equations to be solved
in the model for the three unknowns P, Q and H.

3 FINITE-DIFFERENCE

SCHEME

o

The sea area under study is represented by a grid
composed of rectangular or square elements. The
positive y direction is chosen to be in the main
propagation direction of the waves (roughly
perpendicular to the coastline). Most variables such
as h, H, k, K and a are defined at the centre of each
rectangular element, but P is defined at the centre of
the left-hand boundary, and Q at the centre of the
bottom boundary (see Fig 2). Rows (grid lines in the
X-direction) are labelled by the subscript i, and
columns (grid lines in the y-direction) by j. A dummy
column of P values beyond the right-most column is
required to maintain a laterally symmetrical system.
It has been found that this staggered grid system
gives the most accurate finite-difference

representation of the governing equations.

The method of solution uses a row-by-row marching
technique with a predictor and corrector calculation
at each row. The input values of H, w and a are
specified at each grid element on the offshore row.
The finite-difference representation of the governing
equations is then used to make a calculation of these
parameters on the second row. This is the predictor
step. Using these values, a more accurate estimate of
the y-derivatives can be made, and the calculation of
parameters on row two is repeated with these
'corrected' y-derivatives. This corrector step can,
in principle, be repeated an indefinite number of
times, but in most cases one calculation is found to
be sufficient. The whole predictor-corrector process

is then repeated for row three, and the process



continues until the last row, furthest inshore, is

reached. The method employed is explicit throughout.

Q Prediction Equation

It is required to predict quantities on the jth row
given known values along the j-1th row. The first
quantity to be predicted is Q, using a finite
difference form of Eq 15. The overall

finite-difference scheme for this equation is

a2k p2Q, 13 1
Qi3 =8y [kgy - P+ 28y(HaxI:)]/Q

i,5-17 %, 5-1

(16)

The first term in the square brackets is known from
differentiation of Eq 5. An average value of P in the

second term is calculated by

P = (P,

i+l,i-1 + Pi ._l)/2 (predictor step) (17)

»]

= (P,

i, + Pi+1,j + Pi,j—l + Pi+1,j—l)/4 (corrector step)

(18)

3Q/3x is determined by a weighted angle derivative
method. A weighting factor, f, is defined according
to

f=0 for a £ a4 (19)
a — g

f=—— for a3 < a < a, (20)
az — dy

f=1 for a 2 a, 21

in which a; and a, are the angles from the (i,j-1)

grid point to the (i+l,j) and (i-1,j) grid points



respectively (see Fig 1). The following formulae are

then used for 3Q/93x,

3Q _ _ _ -
aX {(1 f) (Qi,j"l Qi_l’j-—l) + f(Qi+l,j“l Qi,j_l)]/Ax

(predictor step) (22)
Q. - - _
ax - LTBQy 597 Q5 g 50t Qia 57 Q4,7

¥ f(Qi+1,j—1 - Qi,j-l + Qi,j - Qi—l,j)]/(ZAX)

(corrector step) (23)

The third term in the square brackets in Eq 16 is

represented according to:

3 ,132H _ _
ay \H ax}:) [ yyy,5-07 2y 50 By 50785 541
- - X 2
(H].»Jrl’j_2 2Hi,j_2 + Hi_l,j_z)/Hi,j_zl/Ay(Ax)
(predictor step) (24)
3 ,1 8H _ _
5 G B [y, o= 20y + By ) J/H,
9x?
- -— 2
(Hi+1,j—l 2Hi,j—l + Hi—l,j-l)/Hi,j~1]/Ay(AX)
(corrector step) ‘ (25)
P Prediction Equation
A finite difference representation of the
irrotationality equation, Eq 11, is used.
Pi,j = (Qi,j - Qi—l,j) Ay/hx + Pi,j—l (26)

(predictor and corrector steps)

In this equation, the value of Q at the current row
is used. Therefore the P calculation comes after the

Q calculation.



H Prediction Equation

A weighted angle derivative representation of Eq 13 is
used. A weighting factor f is defined in the same
manner as for the Q prediction method (Eqs 19-21) and

the following definitions are made,

H2MP (27)

o
N

‘H2MQ (28)

¥e]
[

The overall finite-difference scheme for Eq 13 is

A
4 ;= - PRt

i,j-1

The value of p is calculated by

P= (=B sy ~ Py 5.1 F EPiyy 51 T Py, 5-0)

(predictor step) (30)
P LTy 51 7 Pig o1 F Pavny T P,y

* E(Pi4y,5-1  Pi,j-1 TPy, T Pi-

(corrector step)

1’j)]/z (31)

Once q; j has been determined from Eqs 29-31, the wave

height is given by

q. . .
H, . = qg——321——9% ' (32)
»J 1,3 4,3

Stability

The model has been run on a circular shoal bathymetry
which provides quite a severe test case. It was found
that the finite-difference scheme gave numerically

unstable results, and as a consequence much of the



work in developing the model has been devoted to
devising modifications to ensure stability. The
governing equations do not readily lend themselves to
an analytical investigation of stability, and
therefore a number of ad hoc approaches have been
tried. The most successful of these has involved
forming averages of various quantities with
neighbouring values along each row, according to the

formula,

b ;i < (Abo

n, + 2(2~>\)bo . + Ab )/4 (33)

,i-1 ,1 0,i+l

in which b denotes any predicted wave.variable, and
the subscripts o and n denote old (before averaging)
and new (after averaging) values respectively. A is
an input parameter, between 0 and 2, which denotes the
'strength' of the averaging process. The strength of
averaging can be expressed by the value of N in the

ratio,
A 2(2-A) s A=1:N:1 (34)

A is given in terms of N by

The averaging process can be repeated a number of

times.

The use of this averaging process introduces some
numerical dispersion in the model which has the effect
of decreasing maxima and increasing minima of wave
height. The most accurate results are found to be
obtained when just sufficient averaging is used to

ensure stability.
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RESULTS

The testing of the model has been carried out using a
circular shoal depth profile. This is a classical
test case in which the shoal acts as a lens, focussing
the wave rays into a cusped caustic (see Fig 3). 1In
the region of the cusp the ray method breaks down and
strong diffraction effects occur. Other researchers
have studied this problem to assess the performance of
alternative refraction-diffraction models. These
include Ito and Tanimoto (1973) who used a type of
time-dependent Mild-Slope Equation, Radder (1979) who
used a time-independent parabolic method, and Yoo and
O'Connor (1986 and 1988) who used a time-dependent

form of the equations in this report.

The dimensions of the grid and circular shoal are
identical to those used by Radder (1979), being 20m
and 30m in the x-direction and y-direction
respectively, while the depth profile over the shoal
was defined by:

(h0 - hm)r2

h=hm Ry E— (36)

in which h

depth at a general point over the

shoal,

r = the distance from this general point to
the centre of the shoal,

hO = the constant depth of the rest of the
grid area (in this case 0.9375m),

hm = is the minimum depth at the centre of
the shoal (0.3125m),

and R = the radius of the shoal (5m).

The shoal has a circular cross-section in a horizontal
plane, and a parabolic cross-section in a vertical

plane, and is centred at x=10m, y=10m (see Fig 4).
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Throughout the tests, the same offshore wave height
and period (2.5m, 1.265s) were used as input to the
model, with only the incident wave direction, a, being
varied. As described in Section 2, a is defined as
the angle between the positive x-axis and the
direction that the wave is travelling towards, so that
normal incidence is given by a = 90° (see Fig 1). A
large number of different incident angles were used,
but in this report, results are presented only for

a equalling 90°, 70° and 50°, these being
representative of a wide range of all possible
incident angles. Indeed, 50° was considered to be a
very stringent test of the model's abilities, since in
most physical situations, one would expect the peak

energy direction to be close to the normal.

Initial tests with a square grid spacing displayed
instabilities. 1In order to solve this problem,
without using a prohibitively small grid spacing, the
spacings in the y-direction were halved with respect
to those in the x-direction. A variety of different
spacings were then used, corresponding to an 8th, a
16th and a 32nd of a wavelength in the x-direction,
and, of course, half this in the y-direction. These
are referred to in this report as the 'coarse’',

'medium’ and 'fine' grids respectively.

Furthermore, the parameter A, the so-called 'strength
of averaging', was varied for each grid spacing. The
values used were 1, % or %. Halving A essentially
halves the effective grid size, since it is the
equivalent of averaging a value with the values of two
'pseudo’'-points on either side, these being calculated
by interpolation between the value of the original
point and those at its neighbours. However, the lower
the value of this parameter, the more the tendency for

instability.
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It was also possible to vary the number of averagings
performed in order to ensure stability. Of course,
the general effect of averaging will be to increase
stability at the cost of accuracy, since averaging
will tend to bring peaks down and troughs up towards a
mean level. Thus a balance had to be struck between
these two necessary goals. Unsurprisingly, the larger
the grid size, the higher was the number of averagings
required to maintain stability. In some extreme
cases, it was not even possible to Attain the required
balance between stability and accuracy without

reducing the grid size.

Finally, it was possible as well to vary the number of
times the corrector step in the marching scheme was
performed (see Section 3). However, after various
different trials, it was found that while one
corrector step was necessary to attain the required
level of accuracy and stability, little was achieved
by having more than one. Thus, all the results
presented in this report are from runs where the

number of corrector steps is one.

Previous works on the same shoal with similar input
conditions (see Refs 4 and 8) indicate that, with an
incident wave height of 1lm, there should be a slight
decrease in wave height around the shoal, and then a
steady increase, slowly at first and then more rapidly
passing up the shoal, to about 1.3m over the centre,
and reaching a maximum of about 2m over the opposite
end of the shoal. Beyond the shoal, the wave height
decreases gradually with smaller, subsidiary maxima
and minima forming on either side. There is a line of
symmetry through the centre of the shoal at the angle

of incident wave direction.

The range of amplitudes obtained from various runs of

the model is shown in Table 1. However, the clearest

12



way of seeing the output from the model in detail is
in the form of a wave amplitude contour plot. A
variety of these is shown in Figures 5-10. Also,
three isometric plots of wave amplitude are shown in
Figures 11-13. These clearly show the shape of the
output as described in the above paragraph. As can be
seen, qualitatively, the results are exactly as
expected. However, to attain high accuracy requires
slightly more subtlety. For each set of input
conditions, it was found that the best results were -
obtained when just enough averaging was used, with the
highest possible value of A, to ensure stability. In
practice, this meant halving A every time the grid
size doubled and sometimes using more averaging. For
example, Figure 5 shows the wave amplitude contour
plot for normal incidence with A equal to 1.0 in the
fine grid. One averaging was used. Figure 6 shows
the plot for the same offshore conditions run over the
medium grid with A halved to 0.5. The plots are
almost identical. However, the similar run on the
coarse grid with A again reduced turned out to be

unstable with only one averaging.

The effect of increasing the number of averagings can
be seen by examining Figures 7 and 8. These are both
output from runs over the fine grid with A equal to
1.0 and an incident angle of 70°. However, the run
shown in Figure 1 has only one averaging, while that
shown in Figure 2 has 2. In the former figure, the
contours are, in general, closer together indicating a
rapid change in wave amplitude, the maximum is higher
and the minimum lower, while in the latter, the

changes in amplitude are slower and smoother.

It was also found that the larger the grid size, and
the greater the deviation of incident wave direction
from normal incidence, the greater the tendency for

instability and thus, the more averaging that had to

13



5

CONCLUSTIONS

be performed in such cases to maintain stability.
This trend can be seen clearly by looking at the
positions of blocks of runs where instabilities were
evident in Table 1. For example, Figure 9 shows the
wave amplitude contour plot for the run over the fine
grid with A equal to one, a 50° incident wave and two
averagings. As can clearly be seen, some instability
is evident on the down-slope of the shoal. Figure 10
shows the contour plot for the same run but with three
averagings. In this run, stability has just been
restored, but without loss of accuracy - the plot

looks like Figure 5 turned through 40°.

Ideally, it would have been desirable to derive,
hueristically at least, some relationship between the
input conditions, the depth grid and the averaging
parameters in order to dictate necessary conditions
for stability. However, with such a large number of
variables, it was not possible, in practice, to derive
such a relationship, or even to ascertain if one did
actually exist. But this is not a serious limitation
since, with the model running as rapidly as it does,
finding the correct averaging parameters by trial and
error is not a big problem. Furthermore, the user
quickly acquires a feel for how the model will perform

after a very few test runs.

In this report, we have presented, with results, a new
type of computational wave transformation model which
incorporates the combined effects of refraction,
diffraction and shoaling of waves using a
time-independent, finite-difference marching
technique. The advantages of this model over previous
finite-difference models are increased computational
speed and the possibility of employing a coarser grid,
thus cutting down the required computer space and

time, while still maintaining a high degree of

14



accuracy. Furthermore, the model has several
advantages over traditional ray-tracing models too,
since these necessarily ignore diffraction effects.
The price to pay for these improvements has been the
necessity to introduce two averaging parameters which
must be chosen carefully, depending on depth, input
conditions and grid size, in order to achieve both
stability and accuracy. However, since the model runs
in such a short time, it is usually a simple matter to
obtain satisfactory values for these parameters by
trail and error without too much effort. It is to be
hoped that, after further use of the model in real
situations, a more definite method of. optimising the
averaging parameters may be found. Despite this, the
model has been found to be both accurate and efficient
and should be of value in determining wave conditions
at places where shoaling, refraction and diffraction

of waves is significant.
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TABLE






TABLE 1

Angle of

incidence

50°

70°

50°

NOTE: F

Fine grid,

Medium grid, (A

0.69-1.76
0.70-1.75
0.87-1.21

0.38-1.91
0.13-1.92%
0.05-1.95%

%

0.48-1.98%
0.30-2.18%

(A

]

1)
%)

Coarse grid, (A = %)

Range of wave amplitudes for various runs

Number of Averagings

2

0.82-1.47
0.82-1.45
0.82-1.43

0.59-1.69
0.59-1.68
0.56-1.66

0.55-1.92
0.56-2.06%
0.26-2.05%

0.87-1.32
0.87-1.31
0.87-1.29

0.70-1.52
0.72-1.50
0.73-1.48

0.63-1.92
0.34-1,95
0.25-1.92

The figures shown are minimum-maximum wave amplitudes in metres.

* indicates instability






FIGURES.






1 Ray direction

{a)

Ray direction

{b)

Fig 1 (a) Definition of wave ray direction o
(b) Definition of limiting angles o, and o, used in egs. 19-21



A
- L 4 e L] L o [ L o o e ° -
et et Lot ijer [ietiet ietjed
. il I LT .
T T T Y Y ¥ T
FAY y - . + o <4 . = . . . ° -
-y - ] ij iel,j isl]
I‘ 1 1 i-1,j g\ pitlj ] L
' Ll 1 LD ! '
- ® —— [ 3 b o [ -+ . L) e ud L ]
-15-1 0141 it ij-1 Jieljet it
1 f-1.j-1 Li'j—1 g+l j-1 1 i
T T T T T T
4 ° L o . -+ . - ) - . . -~
1 1 I L 1 L -~
¥ L}  § | 1 ¥ e

®  hHK.ka defined at these points

= PzK cos « defined at these points

| 03K sin o defined at these points

Fig 2 Grid system for the finite - difference scheme



=
e =
0| '“'
-\ o
S
=SS

.‘é;lﬁl
\\“" i Direction of
\&’@! wave fravel
)‘t“‘g")
A

\ /
Nl )
TH-
Fig 3 Ray diagram for waves travelling over circular shoal,

showing formation of cusped caustic



(m)

30

25

20

15

10

il

- Portion of grid

- Depth =h

Boundary of shoal

Centre of shoal
depth = hm

General point on
shoal

5 10 15 20

Incident wave direction

{m)

Fig & Model layout and grid for the circular shoal problem







Fig 6 Wave amplitude contours, 90° incident direction, medium grid,
averaging number=1
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Fig 7 Wave amplitude contours,70° incident direction,fine grid,
averaging number=1
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Fig 8 Wave amplitude contours,70° incident direction, fine grid,

averaging number=2



Fig 9 Wave amplifude contours,50° incident direction, fine grid,
averaging number=2



Fig 10  Wave amplitude contours,50° incident direction,fine grid,
averaging number=3



Fig. 11  Isometric plot of wave amplitude,90° incident direction.



Fig. 12 Isometric plot of wave amplitude,70° incident direction,



Fig. 13  Isometric plot of wave amplitude,50° incident direction.






