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ABSTRACT

A new type of computational wave transformation model is described in this
report. The model incorporates the processes of wave refraction and
diffraction, and uses a tirne-independent finite-difference marching
technique. The model is computationarly more efficient than most
alternative techniques which conbine refraetion and diffraction in a general
manner. Tests are carried out on a circular shoal depth profire, a
situation for which strong diffraction effects occur.
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INTRODUCTION

This report is concerned with a new t5pe of

computational vave transformation model incorporating

the combined effects of refraction and diffraction of

waves using a tine-independent finite-difference

marching technique. This rnethod has several potential

advantages over alternative techniques. The inclusion

of diffraction should give improved predictions of

wave parameters compared with pure refraction methods

in areas of irregular bathymetry where diffraction

effects are strong. The method is also

computationally quicker than most alternative

refraction-diffraction methods, with the possibility

of further inereasing computational speed by the

ability to use coarser grid sizes. Random wave

spectra, current refraction effects, and dissipation

by bottom friction and breaking can be included, but

the tests described in this report are concerned with

the basic wave processes of depth refraction and

diffraction for monochromatic waves. The model is

designed for wave propagation in the open sea, rather

than where structures are present. llave directions

are limited to a certaj.n range either side of the

forward grid direction, although the tests presented

here indicate that the model can be used for wave

directions at more than 40o frorn this forward grid

direct ion.

The report is structured as fo11ows. Chapter 2

contains the theory on whi-ch the model is based, and

Chapter 3 describes the finite-difference scheme and

numericaL techniques. In Chapter 4 the model is

applied to the problem of wave propagation over a

circular shoal.  Classical  ray theory predicts a

cusped caust ic for this problem and therefore, in

nature, strong di f f ract ion effects are present.  The

cj-rcular shoal problem thus represents quite a severe



THEORY

test case for the model. Finally, the main conclusion

from the study are surtrnarised in Chapter 5.

The model is based on a theoretical approach

original ly put forward by Batt jes (1968).  This

approach, however, suffered from a lack of interest

for many years, probably because it was felt that it

had been superceded by the Mild-Slope Equation (Eq l)

which was formulated shortly afterwards (Berkhoff L973

and 1976). Although rnodels based on the Mild-Slope

Equation have been successfully applied to long waves

and relatively small enclosed sea areas, they have

been found in rnany cases to be too computationally

inefficient for short rraves and large open-sea areas.

In order to develop a model for these latter tlpes of

problem, Yoo and O'Connor (1986 and 1988) have

returned to and extended Battjes' approach. The model

described in this report uses the same theoretical

basis as Yoo and O'Connor but adopts a different

numerical modelling approach. Yoo and O'Connor used a

time-dependent formulation which can reguire a

considerable number of time steps to reach a steady

state. The present rnodel is time-independent and

gives the steady state solution directly.

The governing equations used by the model can be

derived from the time-independent form of the

Mild-Slope Equat ion,

tr,z c

V. (cc, Vn) * 
=-€ r l  = 0

in which q is the complex water surface elevation, c

is the wave celerity, c* is the wave group velocity,

is the angular wave frequency, and V is the

two-dimensional horizontal gradient operator. rl can

in general  be wri t ten as

(  1 )



rl = AeiS

where A is the wave amplitude and S

Substituting Eq 2 into Eq I results

two equations:

(Vs) ,  = kz +#. . .

{ 2 )

the wave phase.

the.fol lowing

( 3 )

(s)

( 6 )

t7)

( 8 )

(e)

1 S

l-n

V (  cc - )
ts

ccg

VA.A

v.  (A 'z3) = Q (4 )

k is the rrave separation factor and is determined from

known values of water depth (h) and angular wave

frequency (rlr) by the lj-near dispersion relation

u2 = gk tanh (kh)

c and c_ are given by the expressions,
o

c =

cg

{d

k

=irt , zkh \- 
sintr(ztctr/

The last two terms on the right-hand side of Eq 3

represent diffraction effects. The omission of these

terms gives the refraction approximation used in ray

tracing models. Under this approximation k is

equivalent to the wavenumber, K = YS. The present

model retains the VzAlA term which is usually much

Iarger than the final tern in Eq 3. The system of

equations solved by the model can therefore be written

4 D

v'{=9

1
K 2 = k 2 + + V 2 H

fl



V. (t t ,  
a) 

= Q

in whj-ch K(=VS) is the

height, and underlines

expresses the identity

(  1 0 )

waverurmber, H(=2A) is the wave

denote vector quantities. Eq 8

V x ( V s ) = 0 .

These equations can be represented in Cartesian

coordinates x,  y:

aP = -99
0y 3x

( 1r)

(  12 )

( r3)

P 2 + Q 2 = k 2 +
I , a ? H ,  S z q L >

E \ - i  
- )

3x2 dy"

(H?MQ) = 0L* crruel *o
0y

in which P is the x-component of

y-component of { and M is given

Q is the

(  14)

The wave direction a is defined in Figure 1.

It is usual that the wave height curvature in the rnain

propagation direction (y directj-on) is rmrch less than

in the lateral direction (x direction), and therefore

azH/ayz is neglected in Eq 12, al though this

approximation becomes less valid for small values of

cr. Furthermore, in order to use Eq 12 as a prediction

equation for Q, it is differentiated with respect to

y. Performing this di f ferent iat ion, and using Eq 11,

gives

5,
by

c
M = K g

#=+(_,#+kS-+&tf l4r- -  
3xz

(1s)



FINITE-DIFFERENCE

SCHEME

Eqs 11, 13 and 15 are the three equations to be solved

in the model for the three unknowns P, Q and H.

The sea area under study is represented by a grid

composed of rectangular or square elements. The

positive y direction is chosen to be in the main

propagation direction of the waves (roughly

perpendicular to the coastline). Most variables such

as h, H, k, K and q are defined at the centre of each

rectangular element, but P is defined at the centre of

the left-hand boundary, and Q at the centre of the

bottorn boundary (see Fig 2). Rows (grid lines in the

x-direction) are labelled by the subscript i, and

columns (grid lines in the y-direction) by j. A dr::my

column of P values beyond the right-most column is

required to maintain a latera11y s5mnetrical system.

It has been found that this staggered grid system

gives the most accurate finite-difference

representation of the governing eguations.

The method of solution uses a row-by-row marching

technique wiLh a predictor and corrector calculation

at each row. The input values of H, u and cr are

specified at each grid element, on the offshore row.

The finj-te-difference representation of the governing

equations is then used to make a calculati-on of these

parameters on the second row. This is the predictor

step. Using these values, a more accurate est imate of

the y-6glivatives can be made, and the calculation of

parameters on row two is repeated wi"th these
rcorrectedf y-derivat ives. This corrector step can,

i-n principle, be repeated an indefinite number of

times, but in most cases one calcuLation is found to

be suff ic ient.  The whole predi-ctor-correcLor process

is then repeated for row three, and the process



continues until the last row, furthest inshore, is

reached. The method employed is e>qplicit throughout.

Q Predict ion Equat ion

It is required to predict quantities on the jth row

given known values along the j-1th row. The first

quantity to be predicted is Q, using a finite

di f ference form of Eq 15. The overal l

finite-difference scheme for this eouation is

^ r  _  o 3 g *  I  3  l , l  e z u
Qi, j  = Av tk f r  -  r  a i *  Z ay (H#, /Qi , j - r *  Qr, j - ,

(  16)

The first term in the square brackets is known from

differentiation of Eq 5. An average value of P in the

second term is calculated by

P  =  ( P . . .
i + I , j - I

p  =  ( p .  +  P . . .
a r J  1 + I r J

* 

" ,5-r) / '
+  P .  +

a r J - r

3Q/3x is determined

method. A weighti-ng
{ - a

(predictor step) (  17 )

Pi* ' ,5_t ) /4  (corrector  s tep)

(  18 )

by a weighted angle derivative

factor, f, is defined according

for c 3 <r1 (  le )

c - ( ! r

a z - C I t

- a

i-n which cr1 and c,2

grid poi-nt to the

f o r c r l ( o ( a 2

for cr ) cr2

are  the  ang les  f rom the  ( i , j - l )

( i+ t , j ' )  and  ( i - -1 , j )  g r id  po in ts

(  20)

(2r)



AQ
0x

respect ively (see Fig 1).  The fol lowing formulae are

then used for 0Q/0x,

l ( 1 - f )  (Q r , j _ ,  -  Q i_ r , j _ i  *  f  (Q i * r , j _1  Q i , j _1 ) l /Ax
(predictor step) (22)

# 
=  t (1 - f )  (Q i , j - ,  -

*  f  (e i * t ,  j_ t
(corrector step)

Q i_ r , j_1  *  Q i * t , j  -  Q i , j )

-  Q i , j_ r  *  Q i , j  -  Q i_r  ,11 /  
(2Ax)

Q3)

square brackets

t o 3

in Eq 16 isThe third term in the

represented according

a
0y t * ; j  =  [ (H i+1 , i -1  -  2H i , j - l  *  H i - r  

, j - ] /H i , j - l

-  (H i * t  
, j _2

(predictor step)

* Hi*1,  
i - )  

/ " ,  
i - rJ laY(Ax) 

z

Q4)

Q 6 )

2H.
L t J - z

a
0y

.I 
A ?IJ

( ? -  =  [ ( H r , . ,  , - 2 H , , *r  a * ,  l - + r r J  1 , J

-  (H i * t , j - 1  2H i , j - t  *  H i - t , j - 1 ) / t t , j - t l  / Ly (a f l z
(corrector step) t25)

P Prediction Equation

A finite difference represenLation of the

irrotat ional i ty equat i-on, Eq 11, is used.

H .  ) / H .a - r r J  a r J

Pi , j  =  (Q t , j  -  Q i - r , r )  A l lAx  *  P i , j - l
(predictor and corrector steps)

In this equation, the value of Q at the current row

is used. Therefore the P calculation comes after the

Q calculat ion.



H Prediction Equation

A weighted angle derivative representation of Eq 13 is

used. A wei.ghting factor f is defined in the same

manner as for the Q prediction nrethod (Eqs 19-21) and

the following definitions are made,

p  =  H 'MP (27)

q = H2MQ (28)

The overall finite-difference scheme for Eq L3 is

9 i , j  =  -  P * *  9 i , j - 1

The value of p is calculated by

Qe)

p  =  ( r - f )  ( n i , j _ ,  -  p : . _ t , j * t )  +  f  ( p i+ l , j _ l  n i , j - t )
(predictor step) (30)

p  =  t ( 1 - f )  ( p i , j - t  -  P i - t , j - t  *  p i+ I , 5  -  p i , j )

+  f (P i+ l , j - 1  P i , j * t  +  P i , j  -  P i - t  , l J / 2  
( 31 )

(corrector step)

Once q.,j nu" been determined frorn Eqs 29-3L, the wave

height is given by

9 ; : 1 t
H = 1-----!:J-1 h
" i . i  ' M .  O .  . '

1 ' J  ' 1  ' J

(32)

Stabi l i tv

The model has been run on a circular shoal bathymetry

which provides quite a severe test case. It was found

that the finite-difference scheme gave nunerically

unstable results, and as a consequence much of the



work in developing the model has been devoted to

devising modifications to ensure stability. The

governing equations do not readily lend themselves to

an analytical investigation of stability, and

therefore a number of ad hoc approaches have been

tried. The most successful of these has involved

forming averages of various quantities with

neighbouring values along each row, according to the

formula,

br , i  =  ( t rbo, i -L  + 2(2- I )bo, i  *  t rbo 
, i+L)  

/4 (33  )

in which b denotes any predicted wave.variable, and

the subscripts o and n denote old (before averaging)

and new (after averaging) values respectively. tr is

an input parameter, between 0 and 2, which denotes the
rstrengthr of the averaging proeess. The strength of

averaging can be expressed by the value of N in the

ra t io ,

t r :2 (2 -^ ) : t r=1 :N:1

), is given in terms of N by

(34 )

) 1 = (3s)
N+2

The averaging process can be repeated a number of

t imes.

The use of this averaging process introd.uces some

numerical dispersion in the model whj.ch has the effect

of decreasing maxima and increasing ninima of wave

height. The most accurate results are found to be

obtained when just sufficient averaging is used to

ensure stabi l i - ty.



4 FASULTS

The testing of the model has been carried out using a

circular shoal depth prof i le.  This is a classical

test case in which the shoal acts as a lens, focussing

the r.save rays into a cusped caustic (see Fig 3) . In

the region of the cusp the ray method breaks down and

strong diffraction effects occur. Other researchers

have studied this probLern to assess the performance of

alternative refraction:diffraction models. These

include Ito and Tanimoto (1973) who used a type of

time-dependent Mild-Slope Equation, Radder (1979) who

used a tfune-independent parabolic method, and Yoo and

OrConnor (19B6 and 1988) who used a time-dependent

form of the equations in this report.

The dirnensions of the grid and circular shoal are

identical to those used by Radder (1979), being 20rn

and 30m in the x-direction and y-direction

respectively, vhile the depth profile over the shoal

was defined by:

( h ^  -  h  ) r 2
h = h  +  ' =  t  ( 3 6 )- m  

R z

in which h = depth at a general point over the

shoal,

r = the distance from this general point to

the centre of the shoaI,

h0 = the constant depth of the rest of the

gr id  a rea  ( in  th is  case 0 .9375m) ,

h = is the minimum depth at the centre of
m

t h e  s h o a l  ( 0 . 3 1 2 5 m ) ,

and R = the radius of the shoal (5m).

The shoal has a circular cross-section in a horizontal

p1ane, and a parabol ic cross-sect ion in a vert ical

plane, and is centred at x=10m, y=10m (see Fig 4).

10



Throughout the tests, the same offshore wave height

and period (2.5m, 1.265s) were used as input to the

mode1, with only the incident wave direction, cr, being

varied. As described in Sect ion 2, a is def ined as

the angle between the positive x-axis and the

direction that the wave is travellj-ng towards, so that

normal incidence is given by c = 90o (see Fig 1).  A

large number of different incident angles were used,

but in this report, results are presented onLy for

c equal l ing 90o ,  7Oo and 50o, these being

representative of a wide range of all possible

incident angles. Indeed, 50o was considered to be a

very str ingent test of  the model 's abi l i t ies, s ince in

nost physical situations, one would oq>ect the peak

energy direction to be close to the normal.

Initial tests with a square grid spacing displayed

instabilities. In order to solve this problem,

without using a prohibitively small gritl spacing, the

spacings in the y-direction were halved with respect

to those in the x*direction. A variety of different

spacings were then used, corresponding to an Bth, a

l6th and a 32nd of a wavelength in the x-direction,

and, of course, half this in the y-direction. These

are referred to in this report  as the 'coarser,

rmediumr and ' f inet gr ids respect ively.

Furthermore, the parameter tr, the so-called tst,rength

of averaging', was varied for each grid spacing. The

values used were L, % or /+. Halving ), essentially

halves the effect ive gr id size, s ince i t  is the

equi-valent of averaging a value with the values of two
'pseudo'-points on ei ther side, these being calculated

by interpolation between the value of the original

point and those at its neighbours. However, the lower

the value of this parameter, the more the tendency for

instabi l i ty.

a a



It was also possible to vary the number of averagings

performed in order to ensure stability. Of course,

the general effect of averaging will be to increase

stability at the cost of accuracy, since averaging

will tend to bring peaks down and troughs up towards a

mean Ievel. Thus a balance had to be struck between

these two necessary goals. Unsurprisingly, the larger

the grid size, the higher was the number of averagings

required to maintain stability. In some extreme

cases, it was not even possible to attain the required

balance between stability and aecuracy without

reducing the grid size.

Finally, it was possible as well to vary the nunber of

tjmes the corrector step in the marching seheme was

performed (see Section 3). However, after various

different trials, it was found that while one

corrector step was necessary to attain the required

level of accuracy and stability, little was achieved

by having more than one. Thus, all the results

presented in this report are from runs where the

nr:mber of corrector steps is one.

Previous works on the same shoal with similar input

conditions (see Refs 4 and 8) indicate that, with an

incident wave height of lm, there should be a sLi,ght

decrease in wave height around the shoal, and then a

steady increase, slowly at first and then more rapidly

passing up the shoal, to about 1.3m over the centre,

and reaching a maximum of about 2m over the opposite

end of the shoal. Beyond the shoaI, the wave height

decreases gradually with smaller, subsidiary maxima

and minima forming on either side. There is a line of

synmetry through the centre of the shoal at the angle

of incident wave direction.

The range

the model

ampli-tudes obtained from various runs of

shown in Table 1. Holrever, the clearest

o f

i s

I 2



way of seeing the output from the model in detail is

in the form of a wave amplitude contour p1ot. A

variety of these is shown in Figures 5-10. AIso,

three isometric plots of wave arnplitude are shown i.n

Figures 11-13. These clearly show the shape of the

output as described in the above paragraph. As can be

seen, qualitatively, the results are exactly as

expected. However, to attain high accuracy requires

slightly more subtlety. For each set of input

conditions, it was found that the best results were

obtained when just enough averaging was used, with the

highest possible value of tr, to ensure stability. In

practice, this meant halving tr every time the grid

size doubled and sometimes using more averaging. For

example, Figure 5 shows the wave amplitude contour

plot for normal incidence with ), equal to 1.0 in the

fine grid. One averaging was used. Figure 6 shows

the plot for the same offshore conditions run over the

mediun grid with tr halved to 0.5. The plots are

almost identical. However, the sirnilar run on the

coarse grid with tr again reduced turned out to be

unstable with only one averaging.

The effect of increasing the number of averagings can

be seen by examining Figures 7 and 8. These are both

output from runs over the fine grid with tr equal to

1.0 and an incident angle of 70o. However, the run

shown in Figure t has only one averaging, while that

shown in Figure 2 has 2. In the former figure, the

contours are, in general, closer together indicating a

rapid change in wave amplitude, the maximum is higher

and the minimum lower, while in the latter, the

changes in amplitude are slower and smoother.

It was also found that the larger the grid size, and

the greater the deviation of incident wave direction

from normal incidence, the greater the tendency for

instability and thus, the rnore averaging that had to

13



CONCLUSIONS

be performed j.n such cases to maintain stability.

This trend can be seen clearly by looking at the

positions of blocks of runs where instabilities were

evident in Table l. For example, Figure 9 shows the

wave amplitude contour plot for the run over the fine

grid with l, equal to one, a 50" incident wave and two

averagings. As can clearly be seen, some instability

is evident on the down-slope of the shoal. Figure 10

shows the contour plot for the s€une run but with three

averagings. In this run, stability has just been

restored, but without loss of accuracy - the plot

looks like Figure 5 turned through 40o.

Ideally, it would have been desirable to derive,

hueristically at 1east, some relationship between the

input conditions, the depth grid and the averaging

parameters in order to dictate necessary conditions

for stability. However, with such a large number of

variables, it was not possible, in practice, to derive

such a relationship, or even to ascertain if one did

actually exist. But this is not a serious limitation

since, with the model running as rapidly as it does,

finding the correct averaging parameters by trial and

error is not a big problern. Furthermore, the user

quickly acguires a feel for how the model will perforn

after a very few test runs.

In this report, we have presented, with results, a nelr

type of computational wave transformation rnodel which

incorporates the combined effects of refraction,

diffraction and shoaling of waves using a

time-i-ndependent, finite*difference marching

teehnique. The advantages of this model over previous

finite-difference models are increased computational

speed and the possibility of employing a coarser grid,

thus cutting down the requi-red computer space and

time, while stil1 maintai.ning a high degree of

T4



accuracy. Furthermore, the model has several

advantages over traditional ray-tracing models too,

since these necessari ly ignore di f f ract ion effects.

The price to pay for these improvements has been the

necessity to introduce two averaging parameters which

must be chosen carefully, depending on depth, input

conditions and grid size, in order to achieve both

stability and accuracy. However, since the model runs

in such a short time, it is usually a sfunple matter to

obtain sati-sfactory values for these parameters by

trail and error without too much effort. It is to be

hoped that, after further use of the rnodel in real

situations, a more definite method of.optimising the

averaging parameters may be found. Despite this, the

model has been found to be both accurate and efficient

and should be of value in determining wave conditions

at places where shoaling, ref,raction and diffraction

of waves is significant.

15
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TABLE





TABLE 1

Angle of

incidence

5 0 0

70"

5 0 0

NOTE: F

M

c

Range of wave anplitudes for various runs

F

M

c

F

t{

c

F

M

c

0 .69 -1 .76

0 .70 -1 .75

a  . 87  -1 .2 r

0 ;38 -1 .9  I

0 .  13 -1 .92 *

0 .05 -1 .95 *

0 .48 - t . 98 *

0 .30 -2 .  t  B *

1 )

Y2)

Y')

Number of Averagings

2

0 .82- t .47

0 .82 -1 .45

0 .  82 -  1 .  43

0 .59 -1 .69

0 .  59 -1  .68

0 .56 -1 .66

0 .  55 -1  .92

0 .56 -2 .06 *

0 .26 -2 .O5*

amplitudes in metres.

J

0 .87 - t . 32

0 .87 -1 .31

o .B7-L .29

o .70 -L .52

0 .72 -1 .50

0 .73 -1 .48

4 .63 - t . 92

0 .34 -1 .95

4 .25 -L .92

Fine gr id,

Medium grid,

Coarse gr id,

( t r=
( t r=
(4, =

The figures shown are minimum-maximum wave

* indicates instability
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Fig 1 {a) Definit ion of wave ray direction q
(bl Def init ion of t imit ing angles q j and u, used in eqs. 19-21
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Fig 2 Grid system for the finite - dif ference scheme
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wave travel

Fig 3 Ray diagram for rraves tr:avetting over circutar shoal.
shoving formation of cusped caustic
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Fig tr Model layout and grid for the circutar shoat probtem
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Fig 5 Wave amptitude contoursr g0o incident direction, f ine grid,
averaging number=1



Fig 6 Wave amptitude contoursrg0o incident directionrmedium grid,
averaging number=1
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Fig 7 Wave amplitude contoursrT0o incident directionrfine grid,
averaging number=1



Fig I Wave amplitude contoursrT0o incident directionrf ine grid,
averaging number=2



Fig 9 Wave amptitude contours,50' incidenf directionrfine grid,
averaging number=2
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Fig 10 Wave amptitude contoursr50o incident directionrf ine gnid,
averaging number=3
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Fig.  11 lsometr iq ptot  of  wave ampl i tude,g0o incideni  d i rect ion.



c
.9
g

a,
. !
E
o
|!
l

c
o
!t
U

Fig. 12 lsometr ic ptot of  wave ampti tude,T0o incident direct ion.
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Fig.  13 lsometr ic  pto l  of  wave ampt i tude,S0o incident  d i rect ion,




