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ABSTRACT

ltrls report descrlbes the outcome of a revlew of computationaL modelling
methods for representing curtents in wave dlsturbancl models. The purp6se
of the rev:lew ls to allow the most appropriate method to be selectei p-rior
to fu4plenentatlon.

The review essentially comprises three parts. In the first of these the
available nathernatical. representations of the physical processes are
consl'dered. Having identified these the diffeient methods of numerlcal
solution for the various equatlons sets are surunarised. The final part
describes the data sete rvhlch are available for validation. At all stages a
discussion of the various aspects Ls given, and the overall outcome of these
discusslons is presented in the concLuElons.
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NOUENCLATURE

A wave action

A amplitude of water surface fluctuation

a  C C g

C wave celerity

Cg group velocity

g gravitational acceleration

h' depth

K wave number (modelling parameter if currents included)

m (=k/ko) index of refraction

n (C=Cglc )

B unit normal to water surface

a flow rate

rf reduction factor

t time

u total  part ic le veloci ty

u steady/ambient velocity

ur unsteady velocity

x two dimensional position vector

z vertj.cal position vector

V horizontal gradient operator

Vg three dimensional gradient operator

q water surface elevation

4 mean vertical position of water surface

rl' variable vertical position of water surfaee



NOI,IENCLATURE (Cont'd)

O (x,z, t)  complex veloci ty potent ial

O O(x,t) complex velocity potential representing 0 at z=o

0 0(x) complex velocity potential

p scaled velocity potential

o relative angular wave frequency

u, angular wave frequeney (absolute if currents included)
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IMRODUCTION

1. I Baekground

At present, most computational models used in the

determination of wave conditions in harbours neglect

the effect of currents on the waves. This

approximation is justifiable at some sites but in many

situations significant currents exist around the

harbour which modify the wave climate in that

local i ty.

The presence of a current will change the wave speed,

and thus alter the dependence between the wavelength

and period. In travelling between areas with

different currents the wave speed and length alter,

leading to refraction by currents, and a resulting

nodification in wave height and direction. In some

cases this may induce breaking. These factors will

lead to different wave effects within the harbour, and

consequent changes in the movement characteristies of

moored vessels.

For harbours which are entered through a dredged

approach channel, changes in wave height and direction

due to current refraction will have a significant

effect on both siltation and ship manoeuvrability. In

particular, a more accurate assessment of the

hydrodynamics including both the effects of waves and

currents, will allow much better estimates of

siltation rates in dredged channels to be made.

There are a wide variety of nathematical techniques

which can be used to solve the equations representing

the effect of currents in wave disturbance models.

Thus, before embarking on a developnent of a model it

is necessary to review these techniques, so that the

most appropriate to the physi_cal problem can be



L.2 General

considerations

selected. In addition, possible sources of data for
verification of numerical models including currents

needed to be identified. Both of these aspects are
discussed in this report. Once the method for

representing current effects has been selected, the
next stage is to implement and validate it. Ttris will

be done during the subsequent phases of this project.

Ttris report describes and discusses methods available

for representing mathematically wave disturbance under

the influence of currents within and in the approaches

to harbours.

Nr:merical models are based on the solutions of

mathematical statements which characterise the

features of the physical problen. Ihe accuracy of the

prediction will depend on how well the governing

equations represent these mechanisms, and the accuracy

of the numerical approximation to those equations.

Therefore within the bounds of a desired level of

accuracy and available computational polrer we have two

main problems: defining a mathematical statement which

best represents the physics, and secondly developing a

nurnerical method which solves the statement or its

equivalent as accurately as possible. Furthermore, in

order that the numerical models are economically

viable our problem involves a compromise between

accuracy and computational efficiency. Ideally we

require a model which solves the equations rapidly and

which satisfies our accuracy requirements.

The methods most frequently used at HR in nave

disturbance studies use ray tracking techniques.

These provide an efficient method for preliminary

assessment of harbour layout. Ray models can be

modified to include the effects of currents on rsave



1.3  Out l ine  o f

refraction in a relatively straightforward way.

However, tay models have one significant limitation,

and that is that they do not include diffraction

effects in the governing equations. Diffraction by

breakwaters can be represented in this t1rye of model

by explicitly including its effects. However,

diffraction by sharp discontinuities in the bed such

as those which can occur at shoals or dredged channels

will not be modelled. Thus whilst a ray model

modified to include current effects will give a

reasonable representation of physical process, a much

more accurate description will be provided by using a

technique which includes bed diffraction in the

governing equations.

An alternative approach to modelling wave disturbance

is to use a mathematical representation based on the

mild slope equation. Ttris includes both refraction

and diffraction effects in its governing assumption,

and can be nodified to include current effects. This

equation, or its derivatives, are most frequently

solved using either finite difference or finite

element, techniques.

report

As a startj-ng point a general description of the

effects of currents in wave disturbance models is

given. This includes a description of the physical

problem and the mathematical representation, and is

presented in Chapter 2. Ihe solution methods which

are available are described in Chapter 3, together

with a discussion of which i.s the most appropriate for

the applications considered here. In Chapter 4 the

data avai-lable for verification of wave/current models

in harbour applications is reviewed. The conclusions

and recommendations resulting from this study are

given in the fi.nal chapter.



2 THE EFFECTS OF

CURRENTS IN WAVE

DISTURBAIICE I.'ODEIS

2.L Representat ion of

the physical

problern

In the approaches to a harbour wave propagation is

influenced by refraction and shoaling due to depth

variation, diffraction by sharp discontinuities at the

seabed, shallower regions inducing wave breaking and

seabed friction. Within the harbour, diffraction by

breakwaters is also of importance, as are reflections

from the internal structures. In an area where

currents are strong these will also have a significant

effect on \ilave propagation.

The physics of wave refraction, shoaling and

diffraction is well understood and can be modelled

mathenatically with reasonable accuracy. The effects

of bed friction and wave breaking are less well

understood, and as a result mathematical models often

rely on an empirical representation of their effect on

\tave propagation. The influence of large scale

currents on \rave activity is also reasonably well

researched, but it is only in recent times that

mathematical models have begun to be developed to

include their effects on waves.

2.2 Mathematical

representations

As a starting point we need to review the methods

available to represent the effects of currents in wave

disturbance models. T\ro basic representations,

referred to as ray methods and the rnild slope

equation, will be considered. A brief account of each

of these is given here, a detai led descript ion of the

mild slope equat ion wi l l  fo l low j .n later sect ions.



Much of the relevant mathenatical theory describing

the process of water wave refraction, reflection and

diffraction by impermeable barriers are analogous to

the theory of light. Frorn this derives ray theory

which is in frequent use in many mathematical models

of wave activity (see for exanple Ref 1). Ttris

approach can be modified to include the effect of

large scale currents, but this has so far only been

carried out for coastal wave refraction models, ie

models which do not include diffraction by breakwaters

or reflections from structures. An account of this

modification is given in Reference 2

It is therefore possible to extend existing ray

models of wave disturbance for harbour applications to

include current effects. Ttris would be a relatively

straightforward process, and would provide a model

which would be capable of giving a preliminary

estimate of the effects of currents on wave

disturbance in harbour studies. However, as discussed

briefly in the preceeding chapter, tay methods do not

include in their governing equations diffraction

effeets. Diffraction by breakwaters can be included

by other means, but diffraction caused by

discontinuities at the seabed will not be adequately

represented. In many harbour studies, for example

where access is by a dredged channel, this process

wi l l  be signi f icant.

Thus, before increasing the complexity of the physics

of a model by including currents, the accuracy of the

representation of wave effects can be improved. This

can be achieved by using the mild slope equation as

the basis for a wave disturbance nodel. The mild

slope equation incorporates diffraction effects i-n its

formulation, and can also be extended to include

current effects.  A detai led derivat ion of three

different forms of the equation follows. For clarity



2 .3 The mild slope

e.quation

the mathematical derivations without currents will be

described first, and then the modifications required

to include currents.

2 . 3 . I  E l l i p t i c  f o r m

The mild slope equation for which the derivation

credited to Berkhoff (Ref 3) is given by

v(c cg v0) 0=0

where V is the horizontal gradient operator

C is the wave celerity (= rrllk)

C_is the group velocity durldk
6

0 = 0(I) a complex velocity potential at the

mean free surface, and by introducing a time

harmonic motion

iD(5 , t )  =  Re {e - i ' t  O(E) }  i s  re la ted  to  the

poten t ia l  O (4 ,2 , t )  by

o (r,z,t) = 
"*@#P 

o(1,t)
k is the wavenumber obeying the dispersion

relation uz = gk tanh kh

and u is the angular frequency.

This equation is accepted as a suitable equation for

modelli-ng refraction and diffraction processes

provided the bed slope is as implied mild, ie slowly

varyi-ng. It. j-s derived using ]inear wave theory under

the assr-unptions that the flow field is incompressible,

irrotational and homogeneous. Alternative derivations

by Smith and Sprinks (Ref 4), Lozano and Meyer (Ref 5)

and Behrendt and Jonsson (Ref 6) result in the same

equat ion  (1 ) .

(  1 )
c*f ,,



The mild slope equation is elliptic in forrn. This

means that it is a boundary value problem, and its

solution is independent of any initial conditions.

One result of this is that i! is computati.onally time

consuming to solve numerically using a finite

difference or finite eLement scheme. Therefore

approximations to the nild slope equation have been

sought which are more efficient to solve. It is

possible to derive both hyperbolic and parabolic

approximati.ons to the eguation. These are initial

value problems which are computationally more

efficient when solvi-ng numerically. However, the

approximations required to derive them do impose

limitations on the physics originally represented by

the mildslope equation. To clarify this point an

outline of the derivation and assumptions employed in

the hyperbolic and parabolic forms are given in the

following sections.

2.3.2 Hwerbolic approximation

Almost simultaneously, but independently of the

derivation of the mild slope equation in Referenee 3,

Ito and Tanimoto (Ref 7) derived a set of linear

hyperbolic equations to model refraction and

diffraction processes in coastal regi-ons. Later

Copeland (Ref B) and Watanabe et al (Ref 9)

independently of each other produced sinilar

equations. In Reference B a transient forrn of the

mild slope equation is derived which is subsequently

represent,ed by a pair of first order equations.

Whereas, the derivation in Reference 9 is based on

substituting a relation between velocity potential and

surface elevation into the mild slope equation.

By expressing the water surface elevation q as

- ' :  /  "-u, t)q  =  A ( x , y ) e  ' ' A



where A is the amplitude of the water surface

fluctuation

and 1 is the phase angle

into equation (1) and equating real and imaginary

parts, the equations equivalent to (1) given in

Reference 9 are written as

A n  a z

; i *  iv(n n) = Q

A n  
( 2 )

#* v.Q = o

c
, swhere tt = 

d, 
q is the water surface elevation and Q,

the durny variable, i.s the flow rate defined as a

vertically integrated function of particle velocity.

The equations can represent diffraction, refraction

and reflections under the assumptions made in their

derivation.

By creating a hyperbolic form from the original

eguation the mild slope problem has been embedded in a

larger space (x,y, t) .  This appears to be an

unnecessary complication as the time dependence,
-iwL

e 
-"-, 

is known in advance. Therefore timestepping

will produce only a phase change. If it does not then

there is a basic inconsistency in the derivation.

This point has been discussed by Saville (Ref 24), and

explored further by Madsen and tarsen (Ref 25). They

make the observation that the time stepping is

actually only an iteration towards the steady state,

and that only the steady state solution is a solution

to the mild slope equation. This account,s in part in

the difficulties which are known to occur in getting

the hyperbolic form to converge to the steady state.



A difficulty which needs to be resolved before the

rnethod can be used reliably in practice.

The solution offered by Madsen and Larsen is to

extract the tine harmonic term out of the equations

set (2), and reformulate the hyperbolic form. Ttris

seems to offer a partial resolution to the

difficulties described above. However, the method of

solution and achieving convergence relies on a complex

variable time stepping numerical scheme which does not

offer as efficient a method of solution as

anticipated.

A possibility not yet erplored in the literature is to

formulate a hyperbolic approximation with an iteration

parameter which is not tirne dependent. If suitably

selected this would offer a form of the equations

which could be solved using a more rapid solution

technique.

2.3.3 Parabol ic approximation

The time taken to solve the elliptic mild slope

equation computationally, and the mathematical

uncertainties of the hyperbolic form, means that

attention should be given to the parabolic

approximation. This will be computationally efficient

to solve and mathematically more rigorous in its

derivation. However, this is achieved at the expense

of accuracy in the representation of physical problem.

That is,  whi lst  refract ion and di f f ract ion are

represented in the paraboli-c approxi-rnation,

ref lect ions are not.

The derivation of the parabolic approximation is given

by Radder in Reference 10. Here HelmhoLtz,s equation

is considered in a wave field consisting of forward

and backward propagation fields. The derivation



assumes the backward or reflected wavefield is

negligible compared to the forward or transmitted

field. Radder's parabolic approximation to the mild

slope eguation is given by

#- 2 i -k;n **  , roo' ' '  + too €?P 
= o

where k- denotes a constant wavenurnber, and m = k/k_o ' o
the index of refraction, and p a scaling factor

1A
d e f i n e d b Y P = 0  ( C C g l ' "

Modification of the

nild slope equation

to include current

effects

2 .4 .1  E l l ip t i c  fo rn

The numerical solution of wave current interacti.on

problems involving large scale currents using

techniques other than tradi.tional ray methods are

mostly based on, or are approximations to, the

mathematical formulation developed by Booij in

Reference 11. The derivation given there is not

entirely rigorous mathematically, and corrections were

put forward by Kirby (Ref 12). However the basic

principles are sound, and a brief account of the

derivation is given here.

The introduction of currents into the model implies

the total  part ic le veloci ty:

( 3 )

2 .4

u=i+u ( 4 )

where g is the steady velocity due to currents and
t

g i-s an unsteady veloci-ty with mean zero.

i 0



Since the motion due to vaves is assumed irrotational

the velocity g' can be represented by a

potential O by:

ot=o,  o

Then assuming the lower surface, or bed, at:

I

z = - h ( x )

where T = I (x,y) is the tvo dimensional position

vector is rigid and irnpermeable, the boundary can be

represented by:

I

! . 9  = 3 . V .  O  = O

nhere ! is the unit normal to the surface.

At the upper surface defined by

z  =  11  (1 , t )  =  ;  1 I )  *  q '  ( g , t ) ( 8 )

( 5 )

( 6 )

where n (X) is the mean vertical position of the free

surface, and n'(5, t)  is the var iable part ,  tvo

conditions must be satisfied:

l - l

-A !  +_u .V r l  aO  =Oonz=n (x )  ( 9 )
ar a i

a ( D
;T 

+ V_. (q O ) + grt  = 0 on z = n (x) ( f0)

vhich can be combined into

. e  -  ^ . 1  a  O(a r+  tL .  V ) ,  i i *  O_ .  (q  o  ) )  +  s  ; ;=  0  as  z  =  r t  ( x )  (11 )

-t-t



For time harmonic linear waves propagating

of uniform depth and a homogeneous current

potential O can be expressed in terms of

dj-mensional potential Q as

-itrr t
o  ( 1 , 2 , t )  =  R e  { e  

o  r ( r )  Q ( l ) }

and f (z )  _  cosh {k (h '  +  z ) }

cosh {k (h '  +  i )  }

for n'hich the rrave number k satisfies

o 2 = g k t a n h ( k h )

in a region

f ield the

the two

(12)

(13 )

o  = 1 I ,

a n d h = h '

Here o is the relative

is the absolute angular

(  14)

(  1s)

(  i6 )

angular vave frequency and ur

wave freguency.

e.s

+ rl_

k is a vectoral quantity whose direction is related to

direction of propagation of waves. k is known if this

direction of propogati-on is known in advance.

Subst i tut ing (12) and (13) into equat ion (11) gives

e - A d l

1:- + q.V) (fr * V. (qo) - V. (a Vo) + (oz-tsza)6 = g

(  1 7 )

vhere a

and O

= C C
g

( { , 2 , t )  =  f ( z , h ) o ( { , t ) (  18 )

periodic wavesAn

is

el l ipt ic version of (17) for purely

given by

I 2



- i r r r  tg .  VO +  V(gO))+  (g .V lV .  (gOl

- V . ( a V 0 ) + ( o 2 * u 2 - k 2 a ) 0 = 0  ( 1 9 )

where k can now be regarded as a modelling parameter.

Equation (17) yields the dispersion relation

( r r r  -  r . u ) z  +  -  a  K 2 -  ( o  r  -  a  k 2 )  =  0 (20)

and i f  k obeys (15) and (1.6) r  = k.

fn most cases, an approxi-rnation for

since crossing and reflected waves

and (16) void.

Kirby (Ref 12) detected an error in the

dynamic free surface boundary condition

(10)  w i th :

D0.
I t *  gn =  u

where the operator ft 
= 

*I + ,f.V

Ei"
exist

necessary

making (15)

However the main direction of propagation is often

known, and approximations to k can be used to

determine k. At worst, the relation

,o' = gko tanh (koh) (2L)

assuming zero mean velocity can be used with error of
t - l

order Otlul /C)(Ref 10).  For propagat ing rnodels the

value of k can be determined more accurately in a step

wise fashion dependent on the direction of

propagation.

derivation of

and replaces

(22)

13



and gives the hyperbolic equation

D Z ( D  -  n d !

= + (V.u)  i i  -  V(a VO) + (o2 -  k2 a)o = 0 (23)

Kostense (Ref 13) introduces a time harmonic solution

o( I , t )  =  Re (p tx ) . - i ' t )

which results in the elliptic equation:

(24)

* ,"  # + 2i ur q #. (kza - o2*o2 + iurV.rDo

=-oWO Q5)

including dissipation terms.

A slightly different approximation to k to that in

Reference 10 is given in Reference 13, and is

described be1ow.

Initially by setting ! = 0 or the direction of & equal

to that of the incident wave direction an approximate

solution Qo is determined fron (25) and the

approximation to the wave number vector k is

*o=r*tff Q6)

The direction of 59 is used as an estimate for the

direct ion of 5 in (15) such that

S o
o =  r r r  -  [ . : -  k ] .u  (27)

K O

Then using (14) o and k can be solved for and

subst i tuted into (25) to give a value of 0r.

I 4



Successive iterations of this procedure i-s appLied

unti-l a predetermined level of accuracy is met.

Usually 5 i.terations of this procedure are necessary

according to Reference 13 to obtai.n reliable estimates

o f  V S .

2 .4 .2  Hwerbo l i c  fo rm

Following the order of the previous section we now

consider formulations of the mild slope equations with

currents lrhich result in linear hyperbolic transient

equat ion sets.

In Reference 14, a form of Kirby's equation given by

A n-g  (#*  v<.Ln))  -  v (a v  o  )  +  (oz -  k2 a)  o

is considered.

Despite the dynamic free surface condition

Dd
5t=  

-g t l

= Q

(2s)

Phillips has shown

possible to put

i o
d  -  - - - n
'  o '

for current depth refraction it is

(30 )

and by substitution into the above equation the

dependence Q is removed. The relative frequeney o, is

related to absolute frequency u, and wave number k by

equat ions  (14)  and (15) .

To find the rnagnitude and direction of E the

kineraatical conservation equation of wave number

1 5



C - .  V k  +  V o  +  V ( k . u )  =  0-c ( 3  1 )

where Qg is the group velocity vector is considered.

However, equations (15) and (31) are only valid in

cases where both diffraction and reflection effects

are neglible. Thus the approximate formulation such

as'given in Reference 10 and previously discussed

could be enployed.

Substitution of (30) into Equation (28), elirninating

O gives

-e - v. (qr)) -v(- i  a v t) )  +
(crz-kz a )

fl= o
(32)

Conbining terms and

Q = - i a V ( q / o )

introducing

( 33 )

(34 )

separate it

the surface

(3s)

whereQ= (%,9)  g ives

- A
VQ+V(gr t )+ I f f=o

AO

#* ,  a  v (q /o )  =  Q

Ohnaka et aI (Ref 15) consider (23) and

into two equations expressed in terms of

elevation q, and the flow rate vector Q.

Defining Q = J

and relating O

0  =  Q(x , t )

1nv 0 az

t o0by

f  ( z )

16

(36 )



where f(z) = cosh F(hJz) (37)
cosh kh

gj-ves

Q = C2 !O/g (38 )

E>qpressing the conplex velocity potential Q in terms

of amplitude and phase as

' i v

o  =  0 (x )  e -A  (39 )

where X = k.I - trrt is the phase function,

the surface elevation can be written as,

1DO
h = -' '  g D t

then ignoring changes in the anplitude of the

velocity potential as compared with the change
, in the phase gives

D6
5i=  

-  top

Using this result and the erqpressions for Q

Ohnaka proposed

aQ

;E+,  CzV(q , /o )  =  0

and

A n
*#*  V. (q .n)  +  V(n .e)  =  0

(40)

(41 )

(42)

where  m =  I  +  (o /w) (n-1)  and n  =  C" /C,

to be the time dependent ni-ld slope equation

extended to a wave and eurrent co-existing field. It

should be anticipated that the same difficulties

discussed in 2.3.2 in achieving an accurate solut ion

T7



for the waves only case will

and current formulation.

2 .4 .3  Parabo l ic  fo rm

also apply to the wave

We now consider the parabolic nodel described by Booij

(Ref 11).  The analysis in Reference 11, with no

current acting shows that a parabolic representation

will be computationally the most economic, and one

would expect this also to be true for the case

involving currents. However, as previously mentioned

this efficiency is marred by its inability to model

backwardly scattered waves.

A procedure followed in

exact split between the

propagating wavefields.

in the s-direction, say,

justified to put

o = uJ - r_ l< u
I - s

Reference 1l is to make an

forward and backward

Assuning the waves propagate

then it is reasonably

o<r r<1 (43)

(44)

equations each

or ref lected

where r- is a reduction factor extrlressing the fact
I

that waves do not exactly follow the s-direction.

Then by manipulation of equation 16 it can be

presented in or at least comparable with the form

o

A s

.ad
, L  ' m( t  a:= )  + r  0*= o

which can be split exactly into two

representing either the transmitted

f ie1d.

With M defined by
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M0 = ( r^r ,  -  o  z  *  iur  v .u)  0  *  |n  t "  f$+ z iur ,L  #
(4s)

the parabolic approximation to the nild slope equation

given in Reference Ll is written as

irrr U t tt p- -u(  .  +r- ;  { (ak)oo* f f r* l -o"o}

-ik(ak)% 0 - iPz 1utk)-% M0 = o (46)

which differs only slightly from the equation used in

the nurnerical model CREDIZ, (Ref 16) which is based on

the equation:

rr^ru A Yz P1 -Y,

b*  * l  {  ( ak )  p+ f  t a t c l  ( l { 9+ i ' x l l 4 )  }

u -u 
.*7)

- i t<(ak)zp + Pr(ak)-o{-i l tp + urwp) = 0

P1  =P2+ f ;  o<P fY2  (P ron r=%)  (48 )

and which includes the energy dissipation terms

W0=( \+wf+ws)0 (4e)

where 
\ represents wave breaking, Wf, bottom

fr ict ion, and W_, wave growth.' g

Arguments put forward by Kirby (Ref 12) show that

(28) leads to the current conservation of wave action

relation

A -

*  
(A )  +V.  (A(  cs+q) )=0  (s0 )
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where A is the wave action.

The parabolisation in Reference 12 yields an

alternative equation to that in Reference 11.

Firstly, by considering the conservation law for

wave action A , defined by

A = %pg Az/o

i g - t O = R e a X

where R = A/o, r1 = 
f{ ana

the

(5  1 )

where A is the wave amplitude, the potential iD can be

written as

(s2)

R an 1 are both real in o<pression (52).

Substituting (52) into equation (23) and setting the

funaginary part to zero gives:
A n  A P

f i  R + 2o * '+  2o u.VR + V.  (ou)R + V(k a )R
dE  dE '

+ 2  a k . V R = 0 (s3  )

Since the processes of refraction and diffraction may

turn the calculated wave away from the x direction R

rmrst be allowed to be complex. Substituting (52) into

(23) and setting X = .ru dx - wt gives a complex

v e r s i o n  a t  ( 5 3 ) .

tr# * * z" ff + zoq.v R + v . (oQn * -LJ-ft94

+ 2o c"rSr -  # -  (vh.g) *t* o .(a ev -, ; ;

Then by negleeting time dependence and terms contain

gz and assuming that f - a(+J the parabolic
ctx dy

20



equation given in Reference 12 is written as

2ikAx + 2ik ,ep;o". , 
&, 

{; ,t:.: .

au
r ] r ^  ktl?'" *4fr,r. o/"=o (ss)

2.5  D iscuss ion

Three different forms of mathenatical representation

of the rnild slope equation have been presented. A set

of representations vithout current interaction

preceeded those developed to include the action on

rraves of a current field. The representations have

been categorised into equat ion forms: el l ipt ic,

hlperbolic and parabolic. In addition to the rnild

slope equation some consideration was also given to

ray methods. It is also possible to include current

effects in the ray nodels of harbour wave

disturbance.

Where the effects of currents are not included the

best representation of the physical processes is

provided by the elliptic form of the mild slope

equation. The hyperbolic forrs is mathematically

uncertain with respect to determining the steady state

solution. The parabolic form does not allow wave

reflecti.ons to be included; this will be a significant

hmitation in harbour wave disturbance studies. In

situations where seabed diffraction is not an

important mechanism, ray models vill also provide an

accurate representation of the physical problems.

Inclusi-on of current effects in all of the models

described here allolrs them to retain their basic form.
Thus, the select ion of the best type of model to
represent both wave and current effects can largely be
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based on their accuracy of representation of the waves

only situation. The foregoing discussion indicates

that the best representation will therefore be

provided by the elliptic form of the mild slope

equation. Ray nodels will also provide a reasonably

good method for many physical problems. These

comments do not make any allowances for methods and

efficiency of the numerical solution. Ttrese will be

discussed further in the next chapter.

NIIMERICAL SOLUTION

METHODS FOR THE

MILD SLOPE

EQUATION

3.1 Introduct ion

In this chapter we discuss the methods available to

solve the nild slope eguation, and its hyperbolic and

parabolic derivations. We first consider the

techniques which have been applied to the case without

currents, and then to the situation with currents

included in the forrnulation. It should be noted that

fewer mathematical representations of the case with

currents have been presented, and therefore only a

limited number of numerical solution techniques have

been explored.

3.2 No current act ion

solution methods

3 . 2 . 1  E l l i p t i c  f o r n

In vrork by Berkhoff (Ref 3) and others (see

Refs 16 and 17) the elliptic form of the mild slope

equation is solved nurnerically for several test

problems. One of these is the soluti-on for waves

propagating over a submerged circular shaped shoal.

The solution uses a hybrid finite element approach in

which the 'inner region' problem is solved by the
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finite element method. Ttris is using a standard

technique, based on a variational principle, involving

the ninimisation of a functional corresponding to the

elliptic mild slope equation. On the assumption of

deep or constant depth water the 'outer regionr and

boundary values between the two areas are calculated

using a source distribution method for solving

Helmholtz equation, such that the SonrnerfeLd radiation

condition is satisfied.

Ttris semi analytic matching process is also adopted by

Chen and Mei (Ref LB) for the solution of the long

wave linear shallow water equations. Representing the

boundary by a series expansion of a Hankel function,

which satisfies the radiation condition, this hybrid

finite element method solves for diffraction on1y.

Later Houstin (Ref 19) applied this solution technique

to the mild slope equation for refraction diffraction

type problems. Tsay and Lui (Ref 20) applied the same

natching process in the solution of the nild slope

equation in the study of wave scatter by islands and

calculation of wave force on offshore structures.

Bettess and Zienkiewicz (Ref 21) approached the

problem of solving the mild slope equation slightly

differently. The whole region was discretized using a

combination of isoparametric finite and infinite

elements over the inner region, and the outer

(constant depth) region respectively. Infinite

element are special elements which extend towards

infinity. Their associated shape functions are made

to satisfy the Somnerfeld radiation condition, and so

the whole region can be represented by one equation,

and solved by one solution method.

Greater understanding of the mild slope equation

terms of conservation of complex energy resulted

the reformulation by Behrendt (Ref 22) of the

1n

l-n
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functionals corresponding to those used in the

variational principles in Reference 3 and

Reference 21. Accurate treatment of boundary

conditions and dissipation due to bed friction were

also considered.

Williams et al (Ref 23) developed a implicit finite

difference method to solve the mild slope equations.

The model was then verified by the comparison of

results with o<perirnental data for the problem of

rraves passing over a circular shoal. No information

is presented on the tine taken to run the model.

In most cases the time taken to solve an elliptic

equation using either finite difference or finite

element techniques was found to be long. This was one

of the reasons which prornpted Saville (Ref 24) to

attempt to apply the nultigrid acceleration technique

to finding a numerical solution of the mid slope

equation. Multigrid methods are specifically designed

to solve elliptic problems, and accelerate convergence

by transferring the problem onto a coarser grid where

high frequency errors are reduced. By repeating this

process on several meshes a eonsiderable reduction in

the time taken to find a solution over more

conventional methods is achieved. The method is

widely used in aerodynamic applications, but its full

potential is stil l to be realised in water wave

problems.

3 .2 .2  Hwerbo l i c  fo rm

Paral1e1 to the development of numerical solutions to

the nild slope equation, various finite difference

rnethods were applied to the hyperbolic form of the

equation by Ito and Tanimoto (Ref 7). Application of

an explicit scheme which incl-udes fu1ly and partially

(Ref 8).  This method calculates the integrated
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component velocities at a tLme At/2 ahead of the

corresponding values of q, the surface elevation.

Time stepping over several wave periods is necessary

to achieve steady results. This staggered mesh scheme

and mid-time rnethod is also adopted by Watanabe and

Maruyam (Ref 9). Their results are in good agreement

for the sloping bed problem described in Ito and

Tanimoto Ref 7).

Madsen and Larsen (Ref 25) make a thorough examination

of finite difference schemes suitable for the solution

of their reduced set of eguations based on those in

Reference 7. They conclude that a forward centred

difference scheme and a time varying time step leads

to a stable ADI algorithrn, which was found to be

faster than existing solution techniques.

3 .2 .3  Parabo l ic

Finally we are concerned with the numerical solution

parabolic representation given by Radder in

Reference 10. llso alternative finite difference

solution methods are given. The first, whj.ch deals

directly with the parabolic equation, uses a

Crank-Nicholson finite difference scheme given by

Richtmyer and Morton (Ref 26).
-  

, , ' t  

' '

By changing the description of motion, by a change of

variable, to one in terms of amplitude and phase, an

alternative impl.icit scheme is defined. This requires

the addition of a dissipative term to introduce

numerical damping to ensure stability. Resulting from

the application of either the direct or indirect

nethod a system of simultaneous linear equations

requires solving.

The implicit Crank Nicholson scheme is also applied by

Dodd (Ref 27) , in which it is concluded that the
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method's popularity is due to the sfunplistic two-Ieve1

six poi-nt stencil on which it is solved. This results

in low computational costs, and unconditional

stability. Dodd also presents an alternative schene

based on the Douglas' equations, but despite greater

accuracy it requires boundary conditions of the same

order of accuracy and can only be used for parabolic

models in cases of constant xrater depth.

3.3 With current act ion

solution methods

3.3 .  1  E l l ip t i c  fo rm

Advances in computer power, optimisation and

vectorisation of computer codes has increased the

feasibility of solving elliptic type problens using

unsophisticated schemes. In Kostense et al (Ref 13)

the development of a numerical procedure, based on a

finite element method previously described in Kostense

et a1 (Ref 28) for numerical solution of wave

propagation problems i.n and around harbours of

variable depth and current is given. A standard

finite element approach using linear triangular

elements is applied to equation (19). The effects of

currents are introduced by means of an iterative

procedure giving a approximation of the wave nurnber

vector k until certain convergence criterion are

satisfied. However, to achieve reasonable solution

times the models were run on a Cray supercomputer.

Thi.s type of computing power is not generally

available and, as a result alternatives to the ful1

e1lipti.c model have been the more popular means of

solving the problem to date.
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3.3 .2  Hwerbo l i c  fo rm

The numerical procedures developed for the solution of

the equations presented by Dong (Ref 14) and Ohnaka et

al (Ref 15) are based on similar ocplicit time

stepping finite difference schemes to those previously

used to solve hyperbolic representations with no

current action.

The hyperbolic approximation given in Reference 14 to

the elliptic extended mild slope equation (Ref 12) is

discretised on a typical rectangular grid mesh

resulting in a scheme aLnost identical to that given

in Reference 7 and Reference 8 lrith the additi.on of

extra terms due to the effect of the current.

Discussion in (Ref 15) of the use of o<plicit and

implicit central, up wind, and ADE difference schemes

concludes that ADE schemes are best suited since

extensions to two dimensional wavefields are

straightforward for or.plicit schemes, and no numerical

diffusive terms are necessary. Along boundaries,

where the ADE scheme is unsuitable and backward

difference schemes have a tendency to produce

unrealistic reflections, the calculation region is

extended by half an interval. Thus the boundary

condition there is given in terms of surface elevation

using the method of characteristics i-nstead of the

f low rate Q.

3 . 3 . 3  P a r a b o l i c

In both Booij (Ref 11) and Kirby (Ref 12) the

application of a finite difference method to their

parabolisations of the extended mild slope equation

are described. The preference shown in Reference 11

lies with implicit schemes because of the i-nherent

stability and because the resulting set of equations
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3.4 Discuss ion

can be solved extremely efficiently. Discretisation

in the x and y directions are considered independently

with presentation of two funplicit schemes, the widely

used Crank Nicholson scheme and the less known Stone

and Brian scheme. The model CREDIZ (Ref 16) is based

on the parabolic approximation in Reference 11, but a

slightly more implicit scheme, that of Patankar and

Baliga, which produces the accuracy of Crank Nicholson

for small tine steps and the physical reali-srn of the

ful1y inplicit method for larger time steps is

applied. The scheme possesses the stability of both

methods and so reduces unrealistic oscillating

solutions when the forward step Ax is 1arge.

From the foregoing description of available solution

methods it is clear that those for the parabolic

approximation are the most efficient. However, the

loss in information due to its assumpti-ons made in

deriving the parabolic form mean that the parabolic

representati.on is only suitable for problems in which

there is unlikely to be a reflected wave field.

The solution of hyperbolie representations are slow to

run, and tests have shown that for certain cases the

solution may not converge. This is not necessarily

due to the solution method, but more likely to be

caused by the introductj-on of the tjme dependence for

what is essentially a time independent problem.

The best representation of the physical problem, the

elliptic mild slope equation, requi.res the greatest

computation effort for its numerical solution. This

suggests that the ful1 elliptic equations should be

retained, and the numerical methods optimised to give

a more efficient means of solving the problem. This

could be achieved either through use of para11el
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VERIFICATION OF

RXPRESENTATION

4.1 Avai lable data

computing techniques, and,/or the recently developed

multigrid methods.

A number of almost standard example cases exist to

test the numerical models ability to reproduce certain

wave climate features without current effects. Itrese

include the comparison with oqerimental observations

of refraction of waves due to a circular or elliptic

shaped shoal, and the diffraction o.f waves due to a

semi  in f in i te  b reakwater  (Ref  s  2 ,7 ,10 ,20 ,2 ! ,23) .  Some

field data examples provide infonnation on the

combinati-on of refraction and diffraction for real

bathlrmetries and offer a possibly alternative to

e><perimental and analytic validation.

However, no analytic and litt1e experimental or field

data exist for the verification of models with current

fields. At best only qualitative analysis has been

possible. This is like1y to continue until further

experimental work has been carried out. Martin et aI

(Ref 29) present a verification procedure for wave

prediction models based on laboratory data,

hlryothetical bath3nnetries and field data, but

inclusion of a current field is li-rnited to a

sensitivi-ty analysis of numeri-cal models for the

hypothetical bathynetry.

Similarly, a series of measured wave heights for

different conditions in an area off the Haringvliet

have been presented i-n Reference 16 in the

verification of the numerical model CREDIZ and

recently by Holthuijsen et al (Ref 30) and Booij et al
(Ref 31) in the verification of the Hindcast Model

HISWA. Only limited verification of the effects of
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currents lrere made in the form of a sensitivity

analysis with the conclusion given by Holthuijsen that

further field work is necessary.

Such is the difficulty in measuring waves an a moving

field most of the oq>erimental tJt)e research is

restricted to wave profiles in the z-x plane, see

Simons (Ref 32). Since rve are interested in waves

propagation in the horizontal (x-y) plane the shoaling

effects modelled in the x-z plane can only give an

indication of the change in wave characteristics as a

result of a current fie1d.

Three reports which present some measured field data

which typify those available are described below.

Vincent (Ref 33) presents a set of observed wave

height and current speed at two adjacent locations in

the Southern North Sea. Data from a 16 day period was

analysed statistically giving a table of the

difference in mean wave height for counter-current and

co-current conditions for a number of wind speeds and

an energy spectra from the time series of maximum wave

heights.

Lambrakos (Ref 34) presents velocity frequency spectra

for waves in the Strait of Juan de Fuca, between

Washington State and Vancouver Island. Observations

made over 14 days indicate the tidal currents have a

strong influence on the wave climate in that region.

The area under these spectra decrease or increase to

the magni.tude of current for co-currents and

counter-currents respectively, making this a suitable

qualati-tive test for any region.

A similar case study was reported by Gonza\ez

(Ref 35). The Columbia River Entrance on the

Washington-Oregon coast where the effects of currents

are known to produce considerable wave heights were
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observed for a period of 5 days or ten complete tidal

cycles.

4.2 Di-scussion

There are available only a small number of limited

data sets for the verification of a nurnerical model

including waves and currents. For idealised

bathynetries and current fields it will be possible to

compare any model results with those from analytical

solutions. However, for a real bathymetry such a full

verification will not be possible as existing field

data is inadequate for this purpose. In this

situation i.t may only be possible to make a

qualitative assessment of the behaviour of a wave

current model for realistic bathymetri.es.

5 CONCLUSIONS A}ID

RECOMMENDATIONS

1. An assessment has been made of the mathematical

representations which are available to model the

effects of currents in wave disturbance models.

It was concluded that for situations where seabed

diffraction is not an important physical process

then ray methods will give a reasonable

representation. Where this phenomena is

significant, for example in harbour approaches

with dredged channels, then the best

representation of the physical processes is

provided by the nild slope equation. This is the

case for situations both with and without

currents.

2. It is relatively straightforward to extend

existing ray models of wave disturbance to

include current effects. To develop a model

based on the mild slope equation which lncludes

eurrents is less easy, but will provide a
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5 .

comprehensive representation of the important

physical  processes.

Whilst it is presently computationally more

efficient to solve either the hyperbolic or

parabolic form of the nild slope equation,

neither of these provide as a full representation

of the physical processes as the elliptic form.

It is therefore recorsnended, as a first stage,

that existing ray models should be extended to

include current effects. This will provide a

good first estimate of wave conditions, where

currents are significant, suitable for many

engineering purposes.

At the same time that a mathernatical rnodel should

also be developed based on the elliptic form of

the nild slope equation. Ttris will give a more

complete representation of wave and current

effects within and in the approaches to a

harbour, which ean be used in a wider range of

situations than the ray models. Ttris model

should solve the governing equations using a

finite difference approach. Attenpts should be

made to overcome problems with excessively long

run-times by investigating the use of parallel

algorithuns or multigrid techniques.

The models to be developed can be verified for

idealised situations against available analytical

and or.perimental results. For realistic

bathymetries there are very few field data sets

available. Opportunities should be sought to

al1ow a wave-current model for harbour studies to

be more completely veri-fied against field data.

4 .

5 .
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