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Summary

Mathematical Modelling of the River-Aquifer Interaction

M Nawalany

Repod SR 349
March 1993

Modelling the river-aquifer interaction is always a challenge for both
practitioners and theoreticians of hydrogeology. The aim of this repoil is to
quantify the difference between the hodzontal two-dimensional flow model and
the full threedimensional model of groundwater flow in case of the river-
aquifer exchange of water. The third type boundary condition is commonly
assumed for the boundary between the river and the aquifer. For the two
models an analytical solution of the groundwater flow equations have been
found. A comparison of the total fluxes transmitted through the aquifer
calculated from the two models shows that the two models are not
equivalent. For different sets of hydraulic and geometry parameters of the
river-aquifer system, the ratio between the exact 3D-flow and the 2-D
horizontalapproximation of flow may be considerably less than one (in some
cases the ratio drops to 0.6). No simple relationship has been found which
could help in assessing the ratio for a given set of parameters. The general
conclusion from the research is that to model river-aquifer inleractions a full
three-dimensional model of groundwaterflow needs to be used to calculate the
correct water flow in the aquifer. The result indicates a need for further
theoretical investigations of the river-aquifer interaction phenomenon to include
the extension to the case of unconfined groundwater flow and for more
elaborate geometries of the river cross-sections.
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Notation

c
Da
Dr
Hr
lt
La
p
q
q
qs

total resistivity of the river sediments, (T)
thickness of the aquifer, (L)
depth of the river, (L)
half-width of the river, (L)
hydraulic conductivity of the aquifer, (LT-1)
half-length of the aquifer, (L)
penetration of the river,.p=Dr/Du, t)
specific discharge, (LT-')
approximation of q obtained from the 2-D model, (LT-1)
specific discharge through the bed of the river (i.e. seepage
intensity), (LT1)
exact outflow from the aquifer, (L31t;
horizontal flow approximation of the outflow, 1L3T-1;
flow rate through the river bank, (L3T-1)
flow rate through the river UeO, 1l3t'11
horizontal flow for the simplified model, (L3T-1)

asymptotic flow rate, (L3T-1)
transmissivity of the aquifer, (Lz1t;
transmissivity of the aquifer below the river UeO, 1t21_1;
auxiliary variable, (-)
leakage factor, (L2)

leakage factor under the river, (L2)
modified leakage factor, (L)
piezometric head, (L)
piezometric head specified at the end of the aquifer, (L)
water table position in the river, (L)
auxiliary value for Q, (L)

modified piezometric head, ([ =0r-Q), (L)

o
QH

Qbank

Qo"u
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1 Introduction

The representation of river-aquifer interactions (r-a-i) always poses problems
when modelled as a part of some larger hydrological systems. Especially
when incorporated into the twodimensional horizontal flow models of
groundwater systems, the (r-a-i) rnay not be mimicked accurately thus resufting
in an unacceptable inaccuracy of the global mass balance. lt is the intention
of this report to check whether (r-a-i) can be represented whhin a framework
of horizontal flow models. For the simple case of a river that recharges the
adjacent aquifer two analvtical models - the two-dimensional horizontal and the
three-dimensional one - are derived. The models are compared with each
other in terms of the totalseepage within a series of computer experiments.
Also the asymptotic behaviour of the two models is analyzed showing
conformity of the models with the physical background of the river-aquifer
interaction. From the calculations important recommendations on the
experimental and modelling aspects of the (r-a-i) are drawn.

2 Assumptions

The following figure (Figure 2.1) illustrates the case thal is analyzed through
the report.

+ Q

Figure 2.1 River-aquifer system.

Assumptions
Throughout this report a river bed is assumed to have a rectangular cross-
section. lt is located in the middle of the rectangular, homogeneous and
confined aquifer and it only partially penetrates the aquifer. Also a constant
water table position is assumed in the river. At both ends of the aquifer
constant piezometric heads - 0'o and 0"6 - ore specffied. They are assumed
to be equalto each other and less than the piezometric head in the river, i.e.
0'o = Sno = 0o < 01 This implies that the interaction between the river and the

ffi
0.;
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aquifer is symmetric in space. Physically the interaction is a seepage through
the sediments which have accumulated on at the river bed and banks. The
seepage is proportionalto the difference between the piezometric heads in the
river and the aquifer and reciprocal to the flow resistivity through the sediments
- c. The resistivity c is also agsumed to be homogeneous. Because of the
geometric symmetry of the case, only one half of the (r-a-i) system needs to
be considered - Figure 2.2.

- + Q

Figure 2.2 River-aquifer system (simplif ied).

This figure is repeated throughout the report showing distinct features of the
models being considered.

3 Simple two-dimensional model of the river-
aquifer interaction

For the special case of a shallow river - see Figure 3.1 - with its dimensions
negligible when compared with the dimensions of the adjacent aquifer, a water
continuity requirement is sufficient to derive a formula for the aquifer outflow
oH.

2

ffi ffi
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La

Q o * Q u

Figure 3.1 Shallow river - aquifer interaction (2D-simple).

Assumptions:

i) D, << Hr
i i )  Dr . .  D"
iii) Hr.. L"
iv) 0 = const. below the bed of the river.

The continuity requirement can be formulated as follows:

OH = Qb"d

6* - QoI2*$tr"H,' 
T*LJI,.

where,

1,2 = Ta.c
T"  = D" 'k" .

n  .L  .0 ' -0o  _  Qr -O ' . r .  ( g .2 )u a ' K a  
T -  

= - - , , t

From (3.2) the unknown Q can be calculated from the equation

(3.1)

(3.3)
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After substituting (3.2) into (3.3) one gets

o, = 3(0.-oo) =L"H'La I .+LaHr

This is the required formula for the shallow river-aquifer interaction.

(3.4)

4 Complete two-dimensional model of the river-
aquifer interaction

Forthis case we relax allthe assumptions made in the previous chapter. Now
the river can have arloitrary dimensions and g' (aquifer's piezometric head
below the river's bottom) may be a function of x. Still, a piezometric head in
the aquifer is considered depth-averaged. Also Qo**contributes to the global
outflow Qp - see Figure 4.1.

* Q "

Figure 4.1 River-aquifer interaction (2D-complete).

4.1" Analytical solution for the flow equation
lf 0 is a value of piezometric head at x = H, the total outflow Q, can be
calculated from the following formula:

0 * -QouH = ra '1J[

where T. = Du . ku.

An analytical horizontal flow model is derived
equation with the source term (seepage flux)
Figure 4.2:

(4 .1 )

by considering the 2D-flow
e" for x e [O,Hrl - see also
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Q' -Q
Qs(x) = 

"

The steady state flow equation for this region is therefore

T ,  a0  *  Q r -Q  -O'dx2  c

where T, = (D;Dr).k".

The boundary conditions for the region are as follows:

r  - .
l d Q r  - ^
l f i t x = o  

- v

1
[  0 l x = H ,  =  Q . .

By introducing the notalion

6 = 0r -Q

and

f,2 = Tr.c ,

equation (4.3) can be rewritten as:

- fO * 0 =o
3"2 1.2

with the boundary conditions (b.c.-s):

[  - :
l * l r=o =o and
{ o ^
I

l  6l '=r, = 0r-0*.

The general solution to equation (4.7) has the form:

6 ( t )=Ae*a *Be - ' a

(4.2',)

(4.3)

(4.4)

(4.5)

(4.6a)

(4.6b)

(4.7)

(4.8)

(4.e)
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The constants A and B can be calculated from the boundary conditions as
follows:

(i) o =$l,.a =,+"*-+e-d)1,+ =(A-B)/f,,

=e A=B + 6(*) = A("d*e-tA).

Hence the general solution has the form

6(*) = Acosh(.r/i,). (4.10)

( i i )  0 '  - 0 *  =6 (HJ  =Acosh(H / f , )

+ A = 0'-0*
cosh(H/i,)

Finally, we get

6(") = (0.-o) cosh('lli') . ( 4 . 1 1 )
cosh(H/.)

After returning to the original piezometric head Q(x) we have

0(x) = 0'-(0r-0.) l""h(4-
cosh(H/X.)

It should be noted here that the totalflow increases instantly at the point x=H.
because of the additional bank seepage. This causes an abrupt change in the
slope of Q when passing from x=H'r to x=Hr* - see Figure 4.2.

(4.12)

6 sR 349 23103/93



source/sink (linear, &Dirak type)

sourcey'sink region (distri buted)

Q n = 0

Ftg.a.z. Top view of an aquifer and piezometric head for the
2D-horizontal flow model.

The unknown Q. can be calculated from the tolal mass balance equation

Q H = Q b " a * Q b * k

where,

(4.13)

Qbed = = Tr{o,-Q)tgh(H/L)l}' (4.141(Da-DJ*a.[-* , , .* ,  
;

Qbank = Dr. 
(0t-0.)

-  0 ' - 0o  ,ar = T"I;;d - formula (4.1).

After substituting (4.1),(4.14) and (a.15) into (4.13) we obtain

r.{fr = r,(0,{*) tsh4/Dtf,,. DJ'J')

from which

,. _ Qo*QlI
.  1+v

(4.15)

(4.16)

sR 349 2AOU93
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where

-  L " -H ,
Ta

T,  = (D.-DJku

D.
o =D;

= (t -p)T"

[*,*r0.3]

=['-+J'"-"
(4.17)

(4.18)

(4.1e)- penetration

irz =Trc = (t -p)T.c = (t -p)1.2 - corrected leakage factor V.2O)

)t2 = T uc - normal leakage factor.

Formula (4.1) together with formulae (a.16)-(a.18) define the required solution
to the 2D-horizontal flow equation that include the river-aquifer interaction.

Remark 1. Since ry > 0 therefore

0o < 0* . 0, 9.21)

Remark 2. Formula (4.14) can also be obtained by integrating the
seepage along the bed of the river. Indeed,

H .  H .

eo"a = 1 
Qr-0(x)o* = f 

0r-0' cosh(.llE r,
6c6ccosh (H / } . )

0,-0 '

= Tr.c g tgh(H/i.) = formula (4.14).
l L 'C

In the particular case of the fully penetrating river, i.e. when
p -+ 1, we have

T, -+0 and l,-+0 + i,-+0 + tgh(H/f,,)-+1

t#A'i 'sinh(H/r') 
- t ' '*;J'tsh(Hli ')

Remark 3.
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Hence

p-+1 + Q6"6-+0.

Remark 4. It can be proven that lhe total seepage (=QH) calculated from
the 2D-model is always larger than the exact Q. This however
can be deduced even without deriving the formulae for 3D-
model. Indeed, when considering the vedical distribution of
piezometric head below the river bed one can obserue that
since Q(x,z) is an increasing function of z (or decreasing
function of depth d -see Figure 4.3) the value of g just below
the bed (i.e. Q(x,D.-Dr)) is always larger than the vertical
average of Q used in the 2D-model. When the vefiical
seepage flux for the two models is calculated from the same
formula (4.2) using different values of piezometric head two
different values for q" are obtained:

Q s =
Qr-0(x)

3D: 9 s =

c

Qr-Q(x,D" -Dr)

Since  6 ( t ) . q (x ,D . -D , ) )  i t f o l l ows tha t  lQ .  l t  l q "  I

Obviously, when a river is draining an aquifer we may repeat this reasoning:

*eo"o- (1?)T" =S-o
y'1 1 /T.c y'c

2D: q" = 6(") -o'
c

Q(x,D. -DJ -0..
9 s =

2Dh:

3D:

Since 6(r) t  Q(x,D.-Dr) hence again lQ"l t  lq"l .

sR 349 23/03/93



ffi

Figure 4.3 Piezometric head under a river bed.

Concluding, we may state that in any case 2D-horizontal models always lead
to an overestimate of the river-groundwater interaction.

4.2 Asymptotic behaviour of the solution
From the solution (4.1), the asymptotic behaviour of the horizontal flow Q,
can be deduced for a number of special cases.

Case one. River is in good contact wilh the aquifer i.e. c -+ 0

(4,'t7) (4.16)
c -+ 0 = V-+- =t 0"+0,

= oH = r..+_,.,,& (4.22)

(4.23)

River is isolated from the aquifer i.e. c -+ *

c - + o = V + 0  = O * - + Q o

+6r=6

Case three: The geometry of the river is negligible when compared with the
dimensions of the aquifer i.e. HfL. -r Dr/D" -+ 0 (but c*0).
As a consequence of D/D" = p -+ 0, l" -+ L, T /T ̂  -+ and

1 0 sR 349 23/0il93



i i, : 
L.(1 -H/1.)

' -F

From this and from (4.16) we get

6 ' :  0o+0r 'L"H. /X '2
' 

1 +L^H{ne

After substituting this in formula (4.1) we obtain

I I
A - T. I  0o+0/-aHr/x2-Oo-QoLaH/l2 I

t" 
L 1+L"H/i" I

from which we finally get:

; i  - -  Q r -Oo  L "H ,
u r r = I

La I .+LaHr

fl
= L"-Hr 

lo * O" |  -  (1"-HJD" _
Ta  I  c J  k " .D " ' c

I,,-,
l-

.^l#)
w
lw)

J
1

+ 
p.Da

c
J
0

- LtH,

L2

This is exactly the formula (3.4) for the simplified model of 2D-horizontal flow.

Case four: The river is fully penetrating, i.e. D. + D"

Then

L"-H,

(4.24)

(4.25)

vlo"=p,

where f  =  k" ,c .

From formulae $.16) and (4.1) we obtain

x2

o"+, 
(t"lJ

d*= l
1 *  L"#'

x2

_ OoI2 +0r(L"-Hr)

f +(L.-Hr)

1 1 sR 349 290993



u,,=#lq;f +Qr(l"-H ) -QoX2 -0o(1.#J

f +(L"-H,)

Finally we have

6 H  =  T "  - Q r - O o
26. +(L"_H)

(4.26)

This is exactly the same as the solution to the one-dimensional flow equation
if the third-type boundary condition is set forthe left boundary and the first-type
boundary condilions is set for the right boundary.

5 Three-dimensional model of the river-aquifer
interaction

In order to solve the groundwater flow
subdivide a flow domain Q into two parts .

problem in three dimensions we
I and ll - see Figure 5.1

Figure 5.1 Subdivision of the 3D-flow domain.

and solve two separate flow problems for the two pafis of O. After that we
match the solutions along the common boundary f* in terms of piezometric
heads and normal fluxes, i.e.:

0l(x,z) = qlllx,z)

and

d4l(x,z) - dqll(x,z)-Dx -dx

( 5 . 1 )

12 sR 349 2310993



for x=Hr and for all ze[O,D.-Drl.

5.1 Analytical solution to the flow equation.

Solution for region I
Piezometric head in region I ql(x,z) must satisfy the flow equation:

(

fo*#o=o for lxe[o 'H' l  (5 .2)
ax2 dzz I ze[o,D. -Dr]

and the following boundary conditions:

fr: 
$ lr* = o for ze[O,D" -Dr]

rr: -t.$12=D"-D, = 0 
-Q'lr=o"-D, 

for xe[o,Hr] 
{s.2,)

fre: Qlx=H, = Qlllr=H, tor zelO,D"-D)

la: 
$l*o 

= o tor xe[o,H]

Here and in the following the superscript "1" is omitted.
By shifting the reference level for the piezometric head we define

6 (x,z) I q (x,z) -01 (5.3)

Then equation (5.2) becomes

fO *  a26 =0.
ax2 dz2

Also, fr must satisfy the following boundary conditions:

where

X2 = l6.c - nndified leakage factor, (m).

Ir: 
$lr=o 

= o for ze[0,D"-Dr]

r .  a6 ,  
.=4 l r=0 ._e . fo rxe [o ,Hr ]12.  -p tz=Da-D.  

X1 
1w ' r r f l  (5 .4 ' )

Ire: 6 lr=H, = 6lllr=H, for ze[0,D"-Dr]

r - .  d6 'fa: 
f,lz=o 

= 0 for xe[O,Hr]

(5.4)

(5.5)

1 3 sR 349 2303/93



We seek a solution in the factorized form

{(x,z; = x(xlz(zl

which, after substitution to (5.4), gives

ZX '+ )17"  =O

or

x" (*) = _2,, (r)
-\-6- W

This can only be satisfied if

x t t  z t t  ^ t-7=*-

where l, is a constant,

i.e. if

(
l x t t - ) u2x=o  and
1

I

l Z t t  *727  =  g .

" - d6 ,  
- r dX- -;;rx=o - - 

7; lx+ 
=Z (At"ek-Bl.e-*)l*=o = Z (A-B)I =)

Hence

X(x) = Acosh(i,x)

The general solution to equation (5.9b) is given by

Z(z) = Csinl,z + Dcosl,.z

(5.7)

(5.7)

(s.8)

(5.ea)

(5.eb)

The general solution to equation (5.9a) is given by the following formula:

X (x )=Ae l x *Be - t r '

From the boundary condition on I., we have:

(5.10)

A=B.

( 5 . 1 1 )

(5.12)

'14 sR 349 23103/93



From the boundary condition on F. we have:

^7
0 = 

#lz+ 
= (C?ucosX,z - B?'sinl,z)lzo = CI

Consequently

Z(zl = DcosX"z

:+  C  =0 .

Substituting (5.11) and (5.13) to (5.6) we obtain the general form of the
required solution in region l:

fr(x,z; = A cosh (r8 cos(rz) (5.14)

(5.13)

(5 .17)

The solution should satisfy the boundary condition on lr, i.e. it should satisfy
the chosen model of the river-aquffer interaction - see formula (5.4'):

-Acosh(tx) [-i,sin(rz)] lz=D"-D, = 
ry 

lz=D"-D,

_ 
sin[],(Dr-Dr)l _ 1
cosp,(D"-D)l W

(5 .15)

Formula (5.15) can be equivalently written as

1qfr = Da-Dr.1
- l /  

r i ,

where

tr, = I(Da-DJ.

(5.15')

(5.16)

There is an infinite number of tr -s that satisfy (5.15'). This is clearly indicated
in the following Figure 5.2.

Consequently, there is an infinite number of l,-s that satisfy (5.15)

i

?'1 = -d-i (k=1,2,...)^  D " -D . '

where ia. - denotes solutions of equation (5.15').

1 5 sR 349 231103/93



D " - D .
-

K2 l"

,d2 rc

Figure 5.2 Graphical interpretation to the nonlinear equation (5.1s).

Finally, the solution for region I can be expressed as an infinite series:

Q(x,z) = Q, * 
.E Alcosh(\x)cos(\z) for 0<x<Hr, 0<z<D"_Dr. (5.18)
k=1

where A1 ft=l ,2,.--) are unknown constants that wil be carcurated from
matching condition (5.1 ).

Remark 1: lt can be easily checked that sotution (5.18) does satisfy the
water mass balance for the region l. Indeed,

1 6 sR s49 23/03/93



o," = ?u* l,=D"-D,dx = -"i[--i Ax\cosh(\x)sin\(D.-DrJo' =

= *.8 e1l*sint&.(D"-Dr)l Jcosh(\x)dx 
=

k=l o

= *. ! Alsin[\(D.-Dr)].sinh(\Hr)
k=1

(5.1e)

D"-D, _ D"-D, _
Qout = i -n"*lr=g,dx = -k. I i o*^*sinh(\Hr)cos(\z)dx =

6 dx "" k=t

= -k"i Aftsinh(\n,;o"-f'"o"(l,kz)dx- (5'20)
k=l ""

@

= -k" E Alsin[\(D"-Dr)]sinh(\Hr)
k=1

Hence

Q. = Qout

Solution for region ll

The piezometric head 6ll - Oll-g' (abbreviated hereafter as $; must satisfy
the flow equation:

I
a{ * a26 = o ,o, 

.{ xelHnLul (5.21)

Vr2 dzz [ze[0,D"]

boundary conditions:

Hr

1 7 sR 349 2903/93



r  t t .  a6 ,  f r  '112" : 
fr lx=n, = 

ftlx--n, 
for ze[D.-Dt'D"]

F '  d 6 '  = e  f o r x e [ H ' L . ]L 2. AZ tz=Da ,u ,r,Lar 
(5.21)

Fs: 6 lr+" = 0o-0r = 6o for ze[O,D.]

F .  d 6 '  = g  f o r x e [ H ' L " ]'  4 '  7; tza

and the matching condition (5.1).

By factorizing the solution for {ll1x,z) in similar way as for {l we obtain

X(x) = Aett(La-x) + g"-tt(Le-x) (5.23)

and

Xtt  Zt t  2
T=-z=P- '

As before, the general solutions for X(x) and Z(z) have the form:

z (z )=Cs inpz*Dcosuz .

From the boundary condition on fo we get

o - aZ(z) 
lz+ = (epcospz-Dpsinpz) lz+ = eF + 6 = 0.

Therefore (5.24) becomes

Z(z) = Dcos'

From the boundary condition on l, we get

e = 
ffE=o" 

= -DpsinpD,

which can be satisfied only if sinpD"=O i.e. when pD" = lrc.

(5.22)

(5.24)

(5.25)

1 8 sR 349 23y0993



Hence

H=#;

Remark 2.

; ( l=1,2,.. .) (5.26)

(5.27)

In (5.26) l=0 has been omitted as it only introduces a constant
to the solution whereas l<0 has been omitted because the
function (5.25) is even.

Combining (5.23) and (5.25) for all possible Fr given by (5.26) we obtain the
required solution for region ll:

6(x,z) = 
$ [u,"nn"-x) * Bre+,(1"-')] cospz

Without violating the boundary conditions for l, and fo we can add a linear
term L(x) to the solution

L(x )  =  s+p*x (5.28)

After combining (5.27) and (5.2S) and assigning temporarily $ given by (5.27)

as $(x,z) we get the solution for region ll in its generalized form:

{1x,21 =$(x,z)  +L(x) (5.2s)

ff we force L(x) to become 6 o=0o-0, for x=La we enforce azerc boundary

condition for qu.,4 for x=La and atl z e [0,D.]. tn other words

L(L )  =  6o  =  s+p*L"

resulls in

(5.30)L(8  =  6o-F ' ( l . -x )
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and

o = $(L.,2) = 2 IAFFP * B,"-*Pl cosplz .
t=1

The latter relationship can hold only if

Br -  -Al for al f  l=1,2,. . .

Consequently, the solution in region ll can be expressed as:

€

6(x,z) = f olsinrrlp(L"-x)]cosptz + [o-p.1L.-x)
l=1

Remark 3:

(5.31)

(5.32)

(5.3s)

a6,  6,
5- lx=H, = 

plr=tt,

On lptt of region ll (i.e. along a river bank) the solution

(5.32) must satisfy a river-aquifer interaction condition:

for ze[D"-D'D"]

i .e.

-i O,rq"o"hlg(La-Hr)lcoslqz +p' =
l=1

=i ol",nn[p1(1"-H,)]cosrqz 
+ 6 o-F.(t'-H')

t=1 f x'

Remark 4: On the common boundary frr' between regions I and ll we
must match both the piezometric heads and the normalfluxes.
Before doing so we can obserye that it is very convenient to
represent functions cosQz) (in (5.18) ) by the orthogonal
functions cos lqz (l=1,2,...). Orthogonality of the family {cosp.,z;
l=1,2,1 means that for

(5.34)
Da

r l.rlk = 
J
o

cos(p1z) cos(tt*ldz
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the following conditions hold:

I
| 0 for l+k
I

J r r  = ' l  D^
| ' for l=k
l2

Remark 5: Below some useful formulae are recalled that allow one to
calculate the representation of cos(\z) in terms of cos(p1z):

( i ) f o ra *b

, = sin(aS)x * sin(a+b)x
J cosaxcosbxdx = 

2(a+) z(a+b)

(i i) for a=b

lco*axax = j * sin2ax
J 2 4 a

Remark 6: From (R4) and (R5) we can condude that:

D"-D,
f  c  Do-D.  s in[2q(D"-Dr) ]

for i= i  e i i  =  
J  cos.gzd== '2 '  -_U. i -
o

D"-D,
Ifor i*j gij = 
J cos(p;z)cos(p1z)dz =

(5.37)

- ",1,,ry,gi-o,,, . "inr(l-glf?i-oJr =

= "inlltal(D:+)l * sinl(pirriXpa-pr)]
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Now the matching conditions (5.1) between regions I and ll can be written as
follows:

. , , .  ( 5 .3sa )
! Alcosh(\H,) cos(X,12) = | Dlsinh lltlL 

"-H 
)lcos(1tp) +L(H )

k=l l=1

@ 6

I n *l**inh (l,fi) cos( 7" A = -5 Op,"o" hllt {L "- 
H )lcos(trF) +p F' 39 b)

k=1 l--1

torall ze [O,D"-Drl

By muftiplying (5.39a) and (5.39b) by cospp and integrating over ze [0,D"-Drl
we obtain:

D"-D,
r

Tkj = 
J cos(fP)cos(piz)dz=

- ",ltl^ur,, lto.-o,lt * sin[(\+riXp.-p,)]--4fltl-- 
@

and additionally, that for any integers k and j

i Alcosrrl )"x11)yxi =
k=1

!,a*t*sinh(Lxti )^r *i =
k=1

for  i  =  1,2, . . .

where

(5.38)

I Dpinh[p tL.-H)lqti + L(H)'ci (5'40a)
l=1

@ (s.40b)
-! Dlpposhlp(ta-H)lqri * F*.ci
E1

D"-D,

I
o

cosp;zdz = 1 sin[pi(D"-DJ], ( i=1,2,.. .) .  (5.41)ci =
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a

Parameter F- can be calculated from the total mass balance in the flow
domain:

Q = Q U " a * Q b * k (5.421

D a @ D a

O = 
J 

-n.*lr=r,dz = -ka5 1-o,q"osh[p(1"-Hr)l Jcospqzdzl*
(5.43)

-k.F*D" = -k.F*D.

(5,19) @

Qbed = -k.EApin[],lDr-D)l'sinh[],pYJ
k=1

(5.44)

D a - D " :

eu*r = i +.*;,.=rdX = *. j q(n:'z) o= -
o"'-0, 

'ax 
D"-D, x2

= -#ri,[p o'"'nn'*(1"-H')]cosplz *$ o -p.11"-'''10'

, l *  Da I= -#fE o,"inr,U'(1.{,)l 
o"L:**=oz 

+[6 o -p.(La-Hr)lDr]

I
= -#fi o,",nnt*(1.-H,)l 1 1sinp1o6-sinp1(D"-D,)) +

*[oo-F'{1.-HJ]D,.} =
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= -F{i o,","n *(1"#,)l 
[-1",^*, 

o"-o,,).

*[o o -F.{t.-n;]o,} .

Finally

,f_l
eu*r = 

#t-DDplsinh[p1(1"-HJ]*[6o-F.(1"-r,)1o,1 
(5'4s)

After substituting all terms in the mass balance equation {5.42) we get:

-k"F'D" = -k"i Alsin[\(D.-D')]sinh[\H,.] +
k=l

. 
# $ 

Dlsinh[p1(1"-HJ]cr -f 't" -p-(La-Hr)tDr

From this

B. = i ep$sinllq(D.-D)lsinh[\H,] +
(5.46)

- 
D 

o'#"inh[q(1"-H)]cr * 0*

where

^*  -  6oD,
rT - (5.47)

(5.48)M =D^XZ + (L"-Hr)Dr .
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After substituting (5.a6) to (s.aob) we obtain the following set of algebraic
equations:

i llcosnl&HJt* - i o,"'nn(H(1"-HJ)an = L(H,) ci
k=1 l=1

@1. I
i n*"innlrnHJ 

i&r--$sin(\(o"-oJ)",1 
. (5.4e)

@ (

E D1]pqcosh[q(1"-Hr)]9,, * lsinh[p(L"-H,)]c,"'] = 0.",
l=1 t  

,  ( i=1,2, . . . ) .

Knowing B'we can calculate a term L(Hr) in formula (5.a9):

L(Hr) = 6o - F.(L"-HJ =

*2n -u \
= 6"-E A* ̂  t- "z sinh[\Hr]sin[\(D"-D,)] + (s.so)

k=1

- i o, 
(t",;tJ 

clsinh[p1(1.-Hr)] - 0.(1"#J
f iM

Now, equations (5.48) can be rewritten in a matrix form:

AtzArr

A1
A2

:

I

br

b2Azt Azz
D1
D2
a
a
a
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where

and

A11(i ,k)

A12(i,k)

A21(i,k)

A22(i,k)

= cosh(&<HJr* * x'G{H') sinh[\Hr]sin[\(D"-Dr)]c;

= -sinhlk(1"-HJt{**,. tt#'' 
"*"'}

= sinh(lr.H) 
{tr- $snt[P.-D,)l",]

= pxcosh[p1["-HJ]qr.i * 1 sinh[p1(L"-Hr)]c1c;

( i ,k  = 1,2, . . . )

(5.52)

f  o.t(D = [Oo - 0'(1"-HJ]ci
1
[ b2 ( i )=g .c ;  ,  ( i - - 1 ,2 , . . . ) .

(5.53)

Remark 7: The hyperbolic sin and cosine in formulae (5.52) need some
precalculations to avoid rising exponents. They can be
represented as follows:

= ec(1 -.-zu7l2 where 0=\,H,

= s011 +e-29)12 where F=pr(L"-Hr).

Factors eo and eF can be omitted when solving equations (5.51) but then the

solutions Ar,Ar,...;0r,D2,... must be interpreted as

=  Ake0

=  D t e F

Consequently, when calculating piezometric heads in regions I and ll from

formulae (5.18) and (5.31) one may write Ap(t -exp(-Zcr))/2 instead of

f 
sinrra

I coshp

{u'.
[6*
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A*sinh(cr) and D*1t -exp(-2B))/2 instead of D*cosh(p) thus avoiding rising

exponents once again.

An algorithm for calculating the solutions for the regions I and ll can be
summarized as follows:

i) Calculate A*-s and D,-s from (5.51)

ii) Calculate p'from (5.46)

iiD Calculate ql from (5.18)

iv) Calculate 4ll from (5.32)

v) Check the mass balance for the flow region f) using formulae
(5.42)-(5.45).

5.2 Asymptotic behaviour of the solution

Case one: lf the river is isolated from the aquifer, i.e. c -+ -

^ (5.50) (5.53)
C-)a + X=-)* =+ 0*-+0 =t A1-+0 =* B*-+0

(5.43)
A1-+0 + D;-+0 + Q-+Qo + 0-+0o (in region l l)

Also in region l, S -+ 0o. Indeed, X2 -+- = 1= -+o

x2

(5.38)_, ,,
+ 0' = Q" = L(HJ+0o+(0-+0o) everywhere, i.e. Q = 0o everywhere.

Gonsequently, Q = O

Case two lf the river is in good contact with the aquifer, i.e. c -+ 0

(s.50)
c-+0 =r 26-+0 = Q' -+ Qo/(L"-Hr)

(1s) _
Also 1-+0 \' i,r=2\-1 n + cos0.lD 

"-H)l-+o
,2

(s.1s) ts.rrl htxl=constl (s.14) -=e l,sin[],(D"_DJJ_+o =+ x._+0 + 
lzlry="on",J 

= Q=const.
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=+ Q(x,D.-DJ = 0, in region l.

ln region ll the solution has been chosen in such a way that it futfils the third

type b.c.) on f"r, i.". Xt*lr=H, = 0 lx=s, for all ze[D.-D, D".

When f -+O =r 6[=H,-O =+ 0[=H, = q, forall ze[D.-Dp"

Consequently, when c -> 0, the solution obtained g(x,z) is equal to S, along
the bed and the bank of a river. Still O < Qs for the reasons explained in
Chapter 4.

Case three For the fully penetrating river, i.e. D, = Da (or p=1)

D, = D" 9'ot)"'=0 for (t=1,2,,.)9'ot'or-*=-k ^ -

;tq "-p'(1.-H)lD,.

Also QO* = 0 - see formula (5.47').

From (5.45) and (5.48) we have

Consequently, Q = Qb*x.

-k6P*D" = -B'(L"-Hr)lD. + 9*lX2 * (L.-Hr)l =6o

from which

F"= (5.54)

Formula (5.46) results in

Q = T a (5.5s)

This is exactly lhe same resuh as that obtained for the 2D-horizontal flow
model for the fully penetrating river - see formuh (4.2O).

k ^ -- ; " "

Qr-Qo
__-
26'+(L"-H)
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Hence

Q=6u

It can also be easily shown that the piezometric
linearly and is a function of x only. Indeed,

(s.37) (5.43)
Dr=D" + Tki  =0 + Di =0

* '
with p given by (5.s4).

head in region ll changes

= L(x) = qo-F.(Lr-x)
(5.32)-
+ o(xz)

6 Comparison
dimensional

of two-dimensional and three-
models of the river-aquifer

interaction - computer experiments

A number of computer experiments have been carried out to find out how the
ratio between the exact totalflow Q - formula (5.43) - and the twodimensional
total flow Q6 - formula (a.1) - depends on lhe hydraulic and geometric
paramelers of the river-aquifer system. The results of these experiments have
been illustrated on the following Figures 6.1 - 6.9.

Figure 6.1 shows Q/Q6 as a function of the number of the infinite series
terms (kmax) for number of the river penetration values (p) and
for H, = 5.0[], c = 1.0d

shows Q/Q6 as a function of penetration (p) of the river into
aquifer for a number of hydraulic conductivity values (k ) and
for H, = 5.0m, c = 1.0d

shows Q/Q6 as a function of hydraulic conductivity of the
aquifer (k ) for a number of river penetration values (p) and for
H r=5 .0m,c=1 .0d

shows Q/Q6 as a function of penetration (p) of the river into
aquifer for a number of the river bed resistivity values (c) and
for H,= 5.0fi1, k = 10.0nVd

shows Q/Q6 as a function of the river bed resistivity (c) for a
number of river penetration values (p) and for H, = 5.0m, ka =

10.0r/d

shows C/Q6 as a function of penetration (p) of the river into
aquifer for a number of river width values (Hr) and for k. =

10.0m/d, c = 1.0d

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6
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Figure 6.7

Figure 6.8

Figure 6.9

shows Q/Qn as a function of the river width (Hr) for a number
of river penetration values (p) and for k = 10.0n/d, c = 1.Od

shows Cl/Qn as a function of the river bed resistivity (c) for a
number of hydraulic conductivity values (k") and for H, = 9.96,
P=0 .4

shows Q/Qn as a function of hydraulic conductivity of the
aquifer (k") for a number of the river bed resistivity values (c)
and for H, = 5.0m, p = 0.4

7 Conclusions

The results of the computer experiments show in particular that:

- with increasing penetration of the dver into an aquifer the total 3D-flow
becomes closer to the horizontal flow approximation (Q/a6 becomes
closer to 1.0) though for larger values of hydraulic conductivity Q the 3D-
flow exhibits values thal are much smaller then 1.0

- with increasing values of the hydraulic conductivity ka the values of e/e6
generally decrease though when the river bed resistivity c is large (c of
order of 50 days) an increase in ku causes an increase in Q/Qn

- for given penetration p and wilh increasing river bed resistivity c the ratio
Q/Q1., increases

- for given penetration p and with increasing values of the river width H'
the ratio Qy'Q6 decreases

- it was estimated that for most cases the number of terms that need to be
summed up in order to obtain the convergence of the solution's infinite
series is of order 30. There are however cases that causes problems in
convergence of the series. ln the case of p=O.S all the orthogonal
functions in coefficients c; (see formula 5.41) are close to zero and thus
the system of equations (5.40a, 5.40b) is close to being singular

The results also show several common features :

the relationship between the Q/Qn and the system parameters is
nonlinear

all the values of Q/Qn are (as it was envisaged in paragraph 4.1.) less
than 1.0

all the hydraulic factors (like increasing lq or decreasing c) that allow
water from the river to penetrate deeper below the river bed into the
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aquifercause an increasing difference belween thetwo models (i.e. Q/Qn
decreasing)

- all the geometric factors (like increasing penetration p or decreasing width
of the river H) cause water from the river to flow mostly through the river
bank and then continuing almost horizontally into the aquifer. As the
result the difference between the two models decreases (i.e. Q/Qn
increases)

Generally one may conclude that :

- 2D-horizontal model of groundwater flow always overestimates the total
flow in the aquifer in the presence of the river-aquifer interaction

- since there is no clear (easy) relationship between the ratio Q/Q6 and
parameters of the river-aquifer system it is more proper to use the full
three-dimensional model for calculating total flow in the aquifer if the
river-aquifer interaction needs to be taken into account

at least two extensions of the 3D-flow model need to be developed for
the river-aquifer interaction :

a modelfor the unconfined groundwater flow

ii) a modelfor npre elaborate geometries of the river bad cross-section.
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