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Summary

Mathematical Modelling of the River-Aquifer Interaction
M Nawalany

Report SR 349
March 1993

Modelling the river-aquifer interaction is always a challenge for both
practitioners and theoreticians of hydrogeology. The aim of this report is to
quantify the difference between the horizontal two-dimensional flow model and
the full three-dimensional model of groundwater flow in case of the river-
aquifer exchange of water. The third type boundary condition is commonly
assumed for the boundary between the river and the aquifer. For the two
models an analytical solution of the groundwater flow equations have been
found. A comparison of the total fluxes transmitted through the aquifer
calculated from the two models shows that the two models are not
equivalent. For different sets of hydraulic and geometry parameters of the
river-aquifer system, the ratio between the exact 3D-flow and the 2-D
horizontal approximation of flow may be considerably less than one (in some
cases the ratio drops to 0.6). No simple relationship has been found which
could help in assessing the ratio for a given set of parameters. The general
conclusion from the research is that to model river-aquifer interactions a full
three-dimensional model of groundwater flow needs to be used to calculate the
correct water flow in the aquifer. The result indicates a need for further
theoretical investigations of the river-aquifer interaction phenomenon to include
the extension to the case of unconfined groundwater flow and for more
elaborate geometries of the river cross-sections.
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Notation

c total resistivity of the river sediments, (T)

D, thickness of the aquifer, (L)

D, depth of the river, (L)

H, half-width of the river, (L)

k, hydraulic conductivity of the aquifer, (LT

L, half-length of the aquifer, (L)

p penetration of the river, p=D/D,, (-)

q specific discharge, (LT™)

q approximation of q obtained from the 2-D model, (LT
qe specific discharge through the bed of the river (i.e. seepage

intensity), (LT™)

exact outflow from the aquifer, (L3T™)

Q4 horizontal flow approximation of the outflow, L1
flow rate through the river bank, (L3T™)

flow rate through the river bed, (L3T'1)

horizontal flow for the simplified model, (L3T'1)
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asymptotic flow rate, (L3T'1)

transmissivity of the aquifer, (L2T™")

transmissivity of the aquifer below the river bed, (L2T'1)
auxiliary variable, (-)

leakage factor, (L2)
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leakage factor under the river, (L2)

modified leakage factor, (L)

piezometric head, (L)

piezometric head specified at the end of the aquifer, (L)
water table position in the river, (L)

auxiliary value for ¢, (L)

modified piezometric head, ((T) =¢,-0), (L)
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1 Introduction

The representation of river-aquifer interactions (r-a-i) always poses problems
when modelled as a part of some larger hydrological systems. Especially
when incorporated into the two-dimensional horizontal flow models of
groundwater systems, the (r-a-i} may not be mimicked accurately thus resulting
in an unacceptable inaccuracy of the global mass balance. It is the intention
of this report to check whether (r-a-i) can be represented within a framework
of horizontal flow models. For the simple case of a river that recharges the
adjacent aquifer two analytical models - the two-dimensional horizontal and the
three-dimensional one - are derived. The models are compared with each

other in terms of the total seepage within a series of computer experiments.
Also the asymptotic behaviour of the two models is analyzed showing
conformity of the models with the physical background of the river-aquifer
interaction. From the calculations important recommendations on the
experimental and modelling aspects of the (r-a-i) are drawn.

2 Assumptions

The following figure (Figure 2.1) illustrates the case that is analyzed through
the report.

I‘.

prrzrrsrrs. vz IR

L 2L,

Figure 2.1 River-aquifer system.

Assumptions

Throughout this report a river bed is assumed to have a rectangular cross-
section. It is located in the middle of the rectangular, homogeneous and
confined aquifer and it only partially penetrates the aquifer. Also a constant
water table position is assumed in the river. At both ends of the aquifer
constant piezometric heads - ¢’ , and ¢", - are specified. They are assumed
to be equal to each other and less than the piezometric head in the river, i.e.
05 = ¢"5 = ¢, < 0, This implies that the interaction between the river and the
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aquifer is symmetric in space. Physically the interaction is a seepage through
the sediments which have accumulated on at the river bed and banks. The
seepage is proportional to the difference between the piezometric heads in the
river and the aquifer and reciprocal to the flow resistivity through the sediments
- ¢. The resistivity c is also assumed to be homogeneous. Because of the
geometric symmetry of the case, only one half of the (r-a-i) system needs to
be considered - Figure 2.2.

Y
L e e ) \
Y |

Ly

Figure 2.2 River-aquifer system (simplified).

This figure is repeated throughout the report showing distinct features of the
models being considered.

3 Simple two-dimensional model of the river-
aquifer interaction

For the special case of a shallow river - see Figure 3.1 - with its dimensions
negligible when compared with the dimensions of the adjacent aquifer, a water
continuity requirement is sufficient to derive a formula for the aquifer outflow

Q.

2 ~ SR 349 23/03/93



‘ ///i’/_//////////// R A e 2 )

A\VA
¥
7 e . 4 3
SRR
¢r g $o —* QH
L .
La
Figure 3.1 Shallow river - aquifer interaction (2D-simple).
Assumptions:
i) D,<<H,
i) D,<<D,
i) H <<L,
iv) ¢ = const. below the bed of the river.
The continuity requirement can be formulated as follows:
OH = Qbed (31)
Da’ka'¢ ~®o - ¢r=0 H, (3.2
L, c

From (3.2) the unknown ¢' can be calculated from the equation

A2 H
0* = ¢o 2+¢rLa r (3.3)
A= +LH,
where,
A2 = Tyc
Ta = Daky

3 SR 349 2%/03/93



After substituting (3.2) into (3.3) one gets

L H,

(¢r 0 (3.4)

This is the required formula for the shallow river-aquifer interaction.

4 Complete two-dimensional model of the river-
aquifer interaction

For this case we relax all the assumptions made in the previous chapter. Now
the river can have arbitrary dimensions and ¢ (aquifer's piezometric head
below the river's bottom) may be a function of x. Still, a piezometric head in
the aquifer is considered depth-averaged. Also Q, ., contributes to the global
outflow Q, - see Figure 4.1.

11 L1L LIS LIV LTI IIT 1171111111 SV IS T 7711 \

&

Figure 4.1 River-aquifer interaction (2D-complete).

4. 1 Analytical solution for the flow equation
If ¢ is a value of piezometric head at x = H, the total outflow Qg can be
calculated from the following formula:

Qy - Ta.¢*-¢o | (4.1)

where Ta = Da . ka.

An analytical horizontal flow model is derived by considering the 2D-flow
equation with the source term (seepage flux) q4 for x € [0,H] - see also
Figure 4.2:

4 SR 349 23/03/93



QS(X) = ——q) rc_¢

The steady state flow equation for this region is therefore

Tr a0 -0

ox?2 c

where T, = (D,-D))k,.

The boundary conditions for the region are as follows:

d
'%|x=0 =0
¢ Iszr =6

By introducing the notation

q; =0,-¢
and
7\.2 = Tr'C )

equation (4.3) can be rewritten as:

P L8
x2 A2

0

with the boundary conditions (b.c.-s):

3%
%IX=O = and
‘I)|X=H, = ¢r'¢'-

The general solution to equation (4.7) has the form:

$(x) = AeX* + Be XA

(4.2)

(4.3)

(4.4)

(4.5)

(4.6a)

(4.6b)

@.7)

(4.8)

4.9)
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The constants A and B can be calculated from the boundary conditions as
follows:

@ o-= %¢|x=o - %e”i-Ee—xﬂnw = (A-BYA

= A-B = §(x) = A@EeP+e A

Hence the general solution has the form

é(x) = Acosh(x/A). (4.10)
@ ¢r - " = d(H) = A cosh(Hy/A)

L AL o

cosh(H/X)

Finally, we get

$0) = (0,-¢7) SoShiA)

—_— . (4.11)
cosh(H/A)
After returning to the original piezometric head ¢(x) we have
0(X) = 0,~(0,-¢%) COSh/A) (4.12)

cosh(H/A)

It should be noted here that the total flow increases instantly at the point x=H,
because of the additional bank seepage. This causes an abrupt change in the
slope of ¢ when passing from x=H", to x=H" - see Figure 4.2.

6 SR 349 23/03/93
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> X
! La i
A i 1
6 (x) i |
{ Sudden change I
| _inslope |
&~ |
| I
| f
i i
! i
§ |
: %o
H, l Ly - Hy I f g
ﬂ—bk—-————-—ﬂ

Fig.42. Top view of an aquifer and piezometric head for the

2D-horizontal flow model.

The unknown ¢* can be calculated from the total mass balance equation

QH = Qped *+ Qpank

where,

Qeg = (Da-Dr)ka{—%" |x=H,-) - T 0o Nah(H/AVA

Qpank = D¢

©r07)
c

Qy = Ta.qi_;gf’. - formula (4.1).
a r

After substituting (4.1),(4.14) and (4.15) into (4.13) we obtain

Ta‘t *ﬁl" = T,(6,~¢)tgh(H/A)/A + DM
a tir ¢
from which
¢* - ¢(1)+¢rw

+y

(4.13)

(4.14)

(4.15)

(4.16)
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where
L,-H, JT - D 417
¥ = 20 Cgh(Hy w1
a A c
D, 4.18
Te = (Ba-Dokq = |1-5= Daka = (1-P)Ta (4.18)
a
D, .
P = — - penetration (4.19)
Da
A2 =T.c = (1-p)Toc = (1-p)A% - corrected leakage factor (4.20)

A2 = T,c - normal leakage factor.

Formula (4.1) together with formulae (4.16)-(4.18) define the required solution
to the 2D-horizontal flow equation that include the river-aquifer interaction.

Remark 1. Since y > 0 therefore

0o < 0" <o, (4.21)

Remark 2. Formula (4.14) can also be obtained by integrating the
seepage along the bed of the river. Indeed,

H H

F 0= 0(x) - &r=0" cosh(x/)
Qpeq = dx = d
bed ! s {  Sosh(HA)

I M _-Asinh(H/A) = 52970 -tgh(H/%)
¢ cosh(H/A) Ac
e O g -
= T,c- tgh(H/A) = formula (4.14).
Remark 3. In the particular case of the fully penetrating river, i.e. when

p — 1, we have

T, >0 and A—0 = A-0 = tgh(H/A) =1

8 SR 349 23/03/93



= Qbed

Hence

AATa VTP Ta

Ve %

p—)1 = Qbed—>0.

Remark 4.

2Dh:

3D:

~

Qs

It can be proven that the total seepage (=Q) calculated from
the 2D-model is always larger than the exact Q. This however
can be deduced even without deriving the formulae for 3D-
model. Indeed, when considering the vertical distribution of
piezometric head below the river bed one can observe that
since ¢(x,z) is an increasing function of z (or decreasing
function of depth d -see Figure 4.3) the value of ¢ just below
the bed (i.e. ¢(x,D,-D,)) is always larger than the vertical
average of ¢ used in the 2D-model. When the vertical
seepage flux for the two models is calculated from the same
formula (4.2) using different values of piezometric head two
different values for q are obtained:

or '4;()()

[

or-¢(x,D4-D))

Since ¢(x) < ¢(x,D,-D,) } itfollowsthat |qs|>|qs| -

Obviously, when a river is draining an aquifer we may repeat this reasoning:

2D:

3D:

qs

q—’(x) ~Or

c

¢(era "Dr) -0
(o}

Since ¢(x) > ¢(x,D,-D,) hence again |45| > |q].

[¢] SR 349 23/03/93



Figure 4.3 Piezometric head under a river bed.

Concluding, we may state that in any case 2D-horizontal models always lead
to an overestimate of the river-groundwater interaction.

4.2 Asymptotic behaviour of the solution
From the solution (4.1), the asymptotic behaviour of the horizontal flow Q
can be deduced for a number of special cases.

Case one. River is in good contact with the aquiferi.e. c - 0
(4.17) (4.16)

C—>50 = Yoo = "¢,

A ¢r—¢o
=Qy=T,- 4.22
H a La -H,— ( )
Case two: River is isolated from the aquifer i.e. ¢ —

Coeo = Y0 = ¢ ">0o,

Case three:  The geometry of the river is negligible when compared with the
dimensions of the aquifer i.e. H/L, — D/D, — 0 (but c+0).
As a consequence of D/D, =p = 0, A —» A, T/T, - and

10 SR 349 23/03/93



g = La(1-HJLy) \T.H, ML, . p-Dg - LH,
Ta 2 (H/L, c A2
X
| ML, 0
)
1

From this and from (4.16) we get

q';, ; ¢o +¢r'LaH|D"2

(4.24)
1+LH /M2
After substituting this in formula (4.1) we obtain
QH - Ta 6o +¢rLaHl/x2 -0 -¢°LaH,/7»2
L, 1+L,H /A2
from which we finally get:
R - L H
Gy = T2, (4.25)

La  22+L_H,
This is exactly the formula (3.4) for the simplified model of 2D-horizontal flow.
Case four: The river is fully penetrating, i.e. D, —» D,
Then

La-H; 0 Da - (La-Hp)Dy - La-H,

¥ho,-o, - . | ) KDie 2

where ? = k, - c.

From formulae (4.16) and (4.1) we obtain

(La-H)y)
dotd— =
0" = o x? - 0oxZ +0LaHy)
1sma 22 +LaH))
X2

11 SR 349 23/03/93



Ta ¢0X2 +¢(L,-H) '¢ox2 -0o(LaH))

Gy =
La—Hr 22 +(LaHy)

Finally we have

¢r’¢o

éH = Ta ——
x2 +(La'Hr)

(4.26)

This is exactly the same as the solution to the one-dimensional flow equation
if the third-type boundary condition is set for the left boundary and the first-type
boundary conditions is set for the right boundary.

5 Three-dimensional model of the river-aquifer
interaction

In order to solve the groundwater flow problem in three dimensions we
subdivide a flow domain Q into two parts - | and |l - see Figure 5.1

bz
Cc

AV4
>

e, —

%o

o

Figure 5.1 Subdivision of the 3D-flow domain.

and solve two separate flow problems for the two parts of Q. After that we
match the solutions along the common boundary I, in terms of piezometric
heads and normal fluxes, i.e.:

0'(x.2) = ¢"'(x,2) (5.1)

and

30'(x,2) _ 39"(x,2)
ox ox

12 SR 349 23/03/93



for x=H, and for all ze[O,D-D,].
5.1 Analytical solution to the flow equation.

Solution for region |
Piezometric head in region | ¢'(x,z) must satisfy the flow equation:

PP o o | EIOHH (5.2)

2 %2 ze[0,0,-D/]

and the following boundary conditions:

| 9% % Ix=0 = O for ze[0,D,-D,]
ox
_0-¢
k, 90 az lz-D r |2-p,-p, for xe[O,H] (5.2)
INPS ¢|x-H = ¢ Ix-—H for Zs[o’Da'Dr]
9
| % s =0 for xe[0,H
4 =520 e[0,H]
Here and in the following the superscript “I" is omitted.
By shifting the reference level for the piezometric head we define
9 (x.2) = ¢ (x2) -0, (5.3)
Then equation (5.2) becomes
- e
Po ., P _go (5.4)
x?  0z2
Also, ¢ must satisfy the following boundary conditions:
Iy ﬁ|x=o =0 for ze[0,D,-D]
) 1"2: TIZ—D -D, :’ |Z— D,-D, for XG[O Hl’] (54,)
o ¢ lxett, = 0"y, for e[0,D,-D)]
Iy aq’ |z=0 =0 for xe[0,H,]
where
X2 = k,-c - modified leakage factor, (m). (5.5)

13 SR 349 23/03/93



We seek a solution in the factorized form

0(x.2) = X(0)Z(2)

which, after substitution to (5.4), gives

ZX"+ XZ" =0 (5.7)
or
X"x _ 2" (6.7)
X(x) Z(2)

This can only be satisfied if

X// Z/I >
= - =) (5.8)
X z

where A is a constant,

i.e. if
X" X2X =0 and (5.9a)
zZ" 127 = 0. (5.9b)

The general solution to equation (5.9a) is given by the following formula:

X(x) = AeM + Be X (5.10)
From the boundary condition on I, we have:

0 dX R
0= %1,@0 =Z o = Z (Are™-Bre ™), =Z (A-B)A = A =B.

Hence
X(x) = Acosh(\x) (6.11)
The general solution to equation (5.9b) is giVen by

Z(z) = CsinAz + DcosAz (5.12)

14 SR 349 23/03/93



From the boundary condition on I'; we have:

0= %f_ 2=0 = (CAcosAz - BAsinAz)|;.o =CA = C =0.

Consequently
Z(z) = DcosAz (5.13)

Substituting (5.11) and (5.13) to (5.6) we obtain the general form of the
required solution in region I

®(x,2) = A cosh (Ax) cos (Az) (5.14)

The solution should satisfy the boundary condition on I,, i.e. it should satisfy
the chosen model of the river-aquifer interaction - see formula (5.4°):

~Acosh () [-Asin(A2)] |.p,p, = A°°Sh0‘x2)°°so‘z) |z-D,-D,

X

sin[A(Da-D)J1 _ 1

- (5.15)
cos[A(Da-Dpl  py2
Formula (5.15) can be equivalently written as
wgh = 22 lr1 (5.15")
X A
where
A =A(D,-D). (5.16)

There is an infinite number of A -s that satisfy (5.15). This is clearly indicated
in the following Figure 5.2.

Consequently, there is an infinite number of A-s that satisfy (5.15) -

M= X s (k=1,2,..) (5.17)

where X, - denotes solutions of equation (5.15’).

15 SR 349 230393



Figure 5.2 Graphical interpretation to the nonlinear equation (5.15).

Finally, the solution for region | can be expressed as an infinite series;
¢(x.2) = ¢ + 3 Agcosh(hx)cos(hz) for 0<x<H,, 0<z<D,-D,.(5.18)
k=1

where Ak (k=1,2,...) are unknown constants that will be calculated from
matching condition (5.1).

Remark 1: It can be easily checked that solution (5.18) does satisfy the
water mass balance for the region I. Indeed,

16 SR 349 23/03/93
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H, _ H, -
Qj, = ,{ka%lz=Da-Drdx = ka{(-kg Akxkcosh(}»kx)sinxk(Da—Dr)de =
o0 Hl’
= &a X Ay sin[(Da-Dp)] [ cosh(hq) dx =
k=1 o
= 4y X Ay sin[(Da-D]sinh (hHy
k=1
(5.19)
Da"Dr Da'Dr 0o
Qou = f Ka g o % = g f 3 Ahysinh () cos(h2)ox =
oo Da"Dr
= Ka Y Adysinh(yH) [ cos(yz)dx = (5.20)
k=1 o
= -kafj Asin[ (D, -Dp)lsinh(AH,)
k=1
Hence
Q. = Qyy

Solution for region Il

The piezometric head ¢ = ¢''-¢, (abbreviated hereafter as §) must satisfy
the flow equation:

j‘i . *é o xe[H,L,] (5.21)

ox2 z2 ze[0,D,]

boundary conditions:

17 SR 349 23/03/93



RP % |x=H, = % Ix=H for ze[D,-DnD4l
X
Iz gﬁ |,-p, =0 for xe[H,,La] 5.21)
Iy 0 lxat, = 0o=0r =, for ze[0,D,]
3
L Iy 3921 20 =0 for xe[H,,L,]

and the matching condition (5.1).

By factorizing the solution for §''(x,z) in similar way as for §' we obtain
" 7 o
X" _ _Z 2 (5.22)

As before, the general solutions for X(x) and Z(z) have the form:

X(X) = Ae I»l(l-a'x) + Be _p'(LA_X) (5.23)
and
Z(z) = Csinuz + Dcospz. (5.24)

From the boundary condition on I', we get

daZ
d

0=

(ZZ) |z-0 = (Cpcospz -Dusinpz) lz=0 = Cph = C=o0.

Therefore (5.24) becomes
Z(z) = Dcospz (5.25)

From the boundary condition on I',, we get

0 .
0 = g(zz) =0, = -DusinuD,

which can be satisfied only if sinuD,=0 i.e. when pD, = Ix.

18 SR 349 23/03/93
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Hence
W= =12 (5.26)
Da
Remark 2. In (5.26) I=0 has been omitted as it only introduces a constant

to the solution whereas <0 has been omitted because the
function (5.25) is even.

Combining (5.23) and (5.25) for all possible y, given by (5.26) we obtain the
required solution for region Ii:

o(x2) =Y [A,e"‘(l‘"x) + §|e_”'('“a_x) cosyz (5.27)
=1

Without violating the boundary conditions for I'; and I'y we can add a linear
term L(x) to the solution

LX) = o +B*x (5.28)

After combining (5.27) and (5.28) and assigning temporarily ¢ given by (5.27)

as ¢(x,z) we get the solution for region Il in its generalized form:

é(x,2) = d(x,2) + L(x) (5.29)

If we force L(x) to become ¢ ,=¢,-¢, forx=L, we enforce a zero boundary

condition for é(x,z) for x=L, and all z € [0,D,]. In other words

LL) = ¢o = a+Pp*L,
results in

L = q—’o - B‘(La'x) (5.30)

19 SR 349 23/03/93



and
0 =¢(La2) = y [A,ewo + B,e_”p] cosjyz .
=1

The latter relationship can hold only if
B, = -A for all 1=1,2,... . (6.31)

Consequently, the solution in region Il can be expressed as:

$(x2) = ¥ Dysinh{py(La-x)] cosyz + o -p* (L X (5.32)
=1

Remark3:  On I',,” of region Il (i.e. along a river bank) the solution
(5.32) must satisfy a river-aquifer interaction condition:

12 et, for ze[Dy-D,.Dg]

da¢ -
W |x=H, "

—'21: Dypycoshpy(L,-Hplcospz +B* =

) (5.33)
=D ® B (L,-H
=y _él.sinh [(La—H)]cospz + %_B(zi__ﬂ
=1 X P4
Remark 4 On the common boundary I',,’ between regions | and [l we

must match both the piezometric heads and the normal fluxes.
Before doing so we can observe that it is very convenient to
represent functions cos(h,z) (in (5.18) ) by the orthogonal
functions cos pz (1=1,2,...). Orthogonality of the family {cosp,z;
I=1,2,} means that for

Da
Ji = f cos(z) cos(z)dz (5.34)
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the following conditions hold:

0 for Ik
Jk=] D
—2  for =k
2
Remark 5: Below some useful formulae are recalled that allow one to

calculate the representation of cos(A,2) in terms of cos(yz):

(fforazb

sinfa-b)x _ sin(a+b)x
2(a-b) 2(a+b)

f cosax cosbxdx =

(ii) for a=b

fcoszaxdx - X , sin2ax
2 4a

Remark 6: From (R4) and (R5) we can conclude that:

D,-D, .
for i=j @5 = f cos?yzdz = Da;D' + S'nlz"i(ia-D')]
D,-D,
for i#j @ = f cos(;z) cos(uz)dz =
o (5.37)
- Sin[(”i_“'j)(Da'Dr)] . sin[(y; +4)(D4-Dy)] -
2(wy) 2 (i 4y)
- Sin““i'“jl(Da'Dr)] . Sin[(ﬂi"ﬂj)(Da'Dr)]
2 |y 2 (u+y)

21 SR 349 23/03/93



and additionally, that for any integers k and j

Da‘Dr
Y = I cos (Az) cos(p;z)dz =
° (5.38)
- Sin“)”k'ﬂj“Da_Dr)] . Sin[(}"k"’“j)(Da"Dr)]
T 2wy 20y

Now the matching conditions (5.1) between regions | and Il can be written as
follows:

3" Acosh(yHcos(hia) = 3 DjsinhlifLy-Hylcos( L (H) 0
k=1 =1

(5.39b)

kE Aihgsinh(A H)cos(h2) = —’_E Dpycosh{pfL ,-H)]cos(z) +B
| k=1 =1 ‘

forall ze [0,0,-D]

By multiplying (5.39a) and (5.39b) by cospz and integrating over ze [0.D,-D,]
we obtain:

kz; A cosh(MH )y, = /E Dysinh{ufL-H)l gy + L(H) -c; (5.40a)
= ]

3 i - . (5.40b)
kz; Agrgsinh(hH ) vy = -IZ Dy coshlufL~H)lo; + B* - c;
L k= =1
fori=1.2,...
where
D,-D,
Ci = f cospzdz = Lsin(Da-D)l,  (i=1.2,..). (5.41)
K
o
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Parameter B* can be calculated from the total mass balance in the flow
domain:

Da - o Da
Q-= —ka%’h,Hrdz = -ka Y. (-Dyycosh[y(L,-H))] fcoquzdz)+
1=1
° ° (5.43)

"kaB*Da = 'kaB‘Da

619

Qpeq = -k 2 Asin[A(D,-D)]-sinh[\H] (5.44)

D bHe2)
Qpank = f -ka—lx—HdX = kq f dz
D, DD, X

D,
-2 f ED,smh[m(L “H,)]cosz +$ o -B*(La -H,)}j
x D,-D,LI=1

D
Ky | 2 -
-2 Iz;o,sinhuq(La-H,)] f cospyzdz +[§ o -B*(La-H) 1D,
vl = D.-D,

-k_: ZD|sinh[u|(La—Hr)]%(sinu|Dd -siny(D,-D))) +
x2 (i=1

[ o-B(La-H)]D,} -
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k o0
- -x_';‘ L;j Disinh[iy(LyH,)] (—%sinul(Da—D,)}

+[q;°-;3*(La-H,)]D,}.

Finally

k — -
Qbank = _;:-{"g; chISinh[u'(La_Hr)]+[¢O—B*(La-Hr)]Dr}. (5.45)

After substituting all terms in the mass balance equation (5.42) we get:

-k B*D, = —kakz A sin[A (D, -D)lsinh[AH,] +
=1

Koo . Ka oo .
+ — 3 Dysinhliy(Ly-Hp)le,-— [60 B (La-H)ID;
x =t X
From this

B* = fj Ak?'f;sin[kk(Da—D,)]sinh[XkH,] .
k=1 (5.46)

- |21: D,%sinh[u,(La—H,)]cl 9

where

¢*=‘|~’ r . (5.47)

M =D,x% + (Ly-H)D,. (5.48)
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After substituting (5.46) to (5.40b) we obtain the following set of algebraic
equations:

k§: Agcosh(MH) Y - |§: Dysinh((L,-H)) ¢; = L(H)) <
=1 =1

oo

Y Agsinh(MHp) [N -Zmz_sin (M(Da DG | + (5.49)
k=1

Ii Dy {MCOSh[m(La—H,)](p“ . %sinh[m(La—H,)]c,ci} = ¢%c;
=1

; (1=1,2,..).

Knowing B* we can calculate a term L(H,) in formula (5.49):

LHy) = q;o - B*(La'Hr) =

. 2L -H

= ¢°_k§ Akl‘L&_’) sinh[MH,]sin[A (D,-D))] + (5.50)
= (L,-H

+ Iz; D.&‘M_f)c,sinh[w(La-H,n - ¢*(LyH)
=1

Now, equations (5.48) can be rewritten in a matrix form:

| As
: A,

Ay Ag . b,

_____ Y | AL I B

| D,

Apq ! Az D, b,
' .
| : .
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where

20
Aq4(i,k) = cosh(MH) 1 + %H')sinh[}»kH,]sin[)»k(Da—D,)]ci

L.~H
| Agzlik) = -sinhly(LaHl | og+ 2 o

M (5.52)
A2y(iK) = sinh(4H) M - X sin0y(Da-Dley
Asa(ik) = pycoshipy (Ly-H) oy + %sinh [y (LaHleke;
, ik =12.)
and
bi) = [0, - ¢™(La-H)]c; (5.53)
bo(i) = 0%c; | (i=1,2...).

Remark 7: The hyperbolic sin and cosine in formulae (5.52) need some

precalculations to avoid rising exponents.

They can be
represented as follows:

sinho. = e*(1-e2%)/2 where a=AH,

coshB = eP(1+e )2 where p=p(L,-H,).

Factors e* and eP can be omitted when solving equations (5.51) but then the

solutions Ay, A,,...;D,,D,,... must be interpreted as

Consequently, when calculating piezometric heads in regions | and Il from

formulae (5.18) and (5.31) one may write A, (1-exp(-2a))/2 instead of
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Asinh(a) and Dy (1 -exp(-2B))/2 instead of D,cosh(B) thus avoiding rising
exponents once again.

An algorithm for calculating the solutions for the regions | and Il can be
summarized as follows:

i)  Calculate A.-s and Dy-s from (5.51)
i) Calculate B from (5.46)
iy Calculate ¢' from (5.18)
iv) Calculate ¢'" from (5.32)

v) Check the mass balance for the flow region Q using formulae
(5.42)-(5.45).

5.2 Asymptotic behaviour of the solution

Case one: If the river is isolated from the aquifer, i.e. ¢ — o

(5.50) (5.53)
C—oo = x2—>oo = $T—0 = A—0 = B*—>0
(5.43 o )
A-0 = Di—0 = ¢o0, = ¢—¢, (in region Il)

Also in region |, ¢ — ¢ . Indeed, xz—-wo = l2—>0
X

(5.15) (5.11) |X(x)=const| (5.14) _
= AsinA(D,-D)]-0 = A>0 = = ¢ =const.
Z(z) =const
(6.38)_, . .. o
= ¢ =¢ =LH)-o0,=(¢—>0,) everywhere, ie. ¢ = ¢, everywhere.

Consequently, @ =0

Case two If the river is in good contact with the aquifer, i.e.c —» 0

(5.50) 5
€0 = x>0 = 6" - ¢o/(La-H)

(15) _

Also x—»0 = lk=2k_1

n = cos[h(Dy-H)]—0
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= ¢(x,D,-D)) = ¢, in region I.

In region |l the solution has been chosen in such a way that it fulfils the third

type b.c) onI",, i.e. XZ%%MH, =¢ |x=H, for all ze[D,-D, D,.

When 20 = ¢k =0 = ¢ly = ¢, forall ze[D,-DD,

Consequently, when ¢ — 0, the solution obtained ¢(x,z) is equal to ¢, along
the bed and the bank of a river. Still Q < Q for the reasons explained in
Chapter 4.

Case three For the fully penetrating river, i.e. D, = D, (or p=1)

(5.41) (5.48) ky - .
Dy =Da = ¢=0for (F12,.) = Qpank=-—3[6 o-B*(La-H)ID;.
X

Also Q.4 =0 - see formula (5.47). Consequently, Q = Qpank:

From (5.45) and (5.48) we have

k, - -
~kaBDa = ~—2180-B*(La-HYIDa = B0 + (LaH)l = §o
X

from which
* = 2_{’_"_ (5.54)
X" +(La-HY
Formula (5.46) results in
Q-T, %% (5.55)

%0
%2 +(La-Hy)

This is exactly the same result as that obtained for the 2D-horizontal flow
model for the fully penetrating river - see formula (4.26).

28 SR 349 23/03/93



It can also be easily shown that the piezometric head in region Il changes
linearly and is a function of x only. Indeed,

5.32
(5.37) (5.43) (=> )q">(x,z) =L() = ¢,-B"(Lax)

D,=D, = ;=0 = D;=0

with B~ given by (5.54).

6 Comparison of two-dimensional and three-
dimensional models of the river-aquifer
interaction - computer experiments

A number of computer experiments have been carried out to find out how the
ratio between the exact total flow Q - formula (5.43) - and the two-dimensional
total flow Q, - formula (4.1) - depends on the hydraulic and geometric
parameters of the river-aquifer system. The results of these experiments have
been illustrated on the following Figures 6.1 - 6.9.

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

shows Q/Q,, as a function of the number of the infinite series
terms (kmax) for number of the river penetration values (p) and
for H, = 5.0m, ¢ = 1.0d

shows Q/Q;, as a function of penetration (p) of the river into
aquifer for a number of hydraulic conductivity values (k,) and
for H =5.0m, ¢ = 1.0d

shows Q/Q, as a function of hydraulic conductivity of the
aquifer (k,) for a number of river penetration values (p) and for
H,=5.0m, c=1.0d

shows Q/Q, as a function of penetration (p) of the river into
aquifer for a number of the river bed resistivity values (c) and
for H, = 5.0m, k, = 10.0m/d

shows Q/Q;, as a function of the river bed resistivity (c) for a
number of river penetration values (p) and for H = 5.0m, k, =
10.0m/d

shows Q/Qj, as a function of penetration (p) of the river into
aquifer for a number of river width values (H,) and for k, =
10.0m/d, ¢ = 1.0d
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Figure 6.7 shows Q/Q,, as a function of the river width (H,) for a number
of river penetration values (p) and for k, = 10.0m/d, ¢ = 1.0d

Figure 6.8 shows Q/Q,, as a function of the river bed resistivity (c) for a
number of hydraulic conductivity values (k,) and for H, = 5.0m,
p=04

Figure 6.9 shows Q/Q, as a function of hydraulic conductivity of the
aquifer (k,) for a number of the river bed resistivity values (c)
and for H = 5.0m, p = 0.4

7 Conclusions

The results of the computer experiments show in particular that:

- with increasing penetration of the river into an aquifer the total 3D-flow
becomes closer to the horizontal flow approximation (Q/Q;, becomes
closer to 1.0) though for larger values of hydraulic conductivity k, the 3D-
flow exhibits values that are much smaller then 1.0

- with increasing values of the hydraulic conductivity ka the values of vQy,
generally decrease though when the river bed resistivity ¢ is large (c of
order of 50 days) an increase in k, causes an increase in Q/Qy,

- for given penetration p and with increasing river bed resistivity ¢ the ratio
Q/Q, increases

- for given penetration p and with increasing values of the river width H
the ratio Q/Q;, decreases

r

- it was estimated that for most cases the number of terms that need to be
summed up in order to obtain the convergence of the solution’s infinite
series is of order 30. There are however cases that causes problems in
convergence of the series. In the case of p=0.5 all the orthogonal
functions in coefficients ¢; (see formula 5.41) are close to zero and thus
the system of equations (5.40a, 5.40b) is close to being singular

The results also show several common features :

- the relationship between the Q/Q, and the system parameters is
nonlinear

- all the values of Q/Qj, are (as it was envisaged in paragraph 4.1.) less
than 1.0

- all the hydraulic factors (like increasing k, or decreasing c) that allow
water from the river to penetrate deeper below the river bed into the
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aquifer cause an increasing difference between the two models (i.e. Q/Q,,
decreasing)

- allthe geometric factors (like increasing penetration p or decreasing width
of the river H)) cause water from the river to flow mostly through the river
bank and then continuing almost horizontally into the aquifer. As the
result the difference between the two models decreases (i.e. Q/Q,
increases)

Generally one may conclude that :

- 2D-horizontal model of groundwater flow always overestimates the total
flow in the aquifer in the presence of the river-aquifer interaction

- since there is no clear (easy) relationship between the ratio Q/Q;, and
parameters of the river-aquifer system it is more proper to use the full
three-dimensional model for calculating total flow in the aquifer if the

river-aquifer interaction needs to be taken into account

- at least two extensions of the 3D-flow mode! need to be developed for
the river-aquifer interaction :

i)  a model for the unconfined groundwater flow

i) a model for more elaborate geometries of the river bad cross-section.
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Figure 6.1 Convergence of the Q3D/Q2D as kmax increases
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Figure 6.2 Dependence of Q3D/Q2D on penetration p (ka families)
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