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Summary

The Joint Probability of Waves and Water l,evels: JOIN-SEA

A rigorous but practical new approach

Report SR 537
November 1998
(Re-issued with minor amendments May 2000)

A common application ofjoint probability in coastal engineenng is to the
simultaneous occurrence ofa large wave height and a high still water level, and its
consequent effect on sea defences. If two or more variables are either completely
independent or completely dependent, then the joint probability calculations are
relatively easy: however, this is rarely a good approximation in practice. In the
past, the fitting and extrapolation ofthe dependence function between large wave
heights and high water levels has involved complicated and./or subjective
approaches unsuitable for use by non-specialists.

We present a new approach to the joint probability of large wave heights and high
water levels which:

- removes most of the subjectivity from the present methods;

- allows the distribution of wave period to be included in calculations,
by treating wave steepness as a third variable partially dependent upon
wave height;

- allows long-term simulation of the combined wave height, wave
period and water level variables, in tum allowing more accurate
calculation of the effects on sea defences.

This research was funded by the Ministry of Agriculture, Fisheries and Food, and
was undefiaken jointly by HR Wallingford and Lancaster University. The first
part of the report, written by HR Wallingford, summarises the new developments
and tleir range of applicability, and tests them against a number of field data sets.
The second and longer part, written by Lancaster University, gives full technical
details ofthe new methods and a more rigorous comparison of altemative
approaches based on synthetic sea state data. A shorter companion report
(HR, 2000) is intended for day-to-day application as a user manual for the
associated JOIN-SEA joint probability software. A paper on the development and
testing of the new methods was presented at the MAFF Conference of River and
Coastal Engineers (Owen. 1997,1.

Availabilitv of Drosrams and reDorts
In principle, the methods, reports and programs are freely available, since they
were developed entirely with MAFF funding. However, adoption of the methods
and programs requires some familiarity with numerical modelling andjoint
probability methods, and there are costs in terms of training, follow-up advice,
software library licences and copying of documentation (and of course the time
series wave and water level data required as input). MAFF funded an initial
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Summary continued
distribution of the programs to industry specialists lor beta-testing, in the form of a
briefing workshop in February 2000. at which the issues relating to dissemination
were clarified.

For further information on this report and the associated computer programs
please contact Dr Peter Hawkes of the Coastal Department at HR Wallingford.
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1. INTRODUCTION

1.1 Background
Meaning of ioint probabilitv
Joint probability typically refers to two or more partially related environmental variables occurring
simultaneously to produce a response of interest. Examples are:

- Iarge wave heights and high water levels;

- large river flows and high sea levels;

- Iarge surges and high astronomical tidal levels.

Importance of ioint nrobabilitv
Damage to sea defences is often associated with times when large wave heights and high water levels
occur simultaneously, even if neither one is exceptional in its own right: hence it is necessary to estimate
theirjoint probability. There are a range of techniques available: from an intelligent choice ofa single water
level to use with established wave conditions, to a rigorous joint probability assessment using long time
series data; from a general offshore study which might be valid over a wide area, to a site-specific prediction
of overtopping volumes. MAFF has been funding research on this topic for several years (HR, 1994; Coles
and Tawn, 1994; POL, 1997) and is increasingly expecting the results to be applied in scheme assessment.

Prediction of ioint Drobabilitv
Compared with other types of oceanographic variable, there is a large volume of high quality tide data
around the UK. This, together with the fact that spatial variations in tide are smooth in some areas such as
the east coast of Britain, means that extreme water levels can be predicted quite reliably for much of the
UK. Conversely, the lack of long-term wave measurements in many cases, and the variability of wave
conditions in coastal waters, mean that prediction of exffeme wave conditions is more difficult and
uncertain. Meanwhile, estimates of the level of service of UK coastal defences can be nearly as sensitive
to uncenainties about the dependence between large waves and high water levels as they are to
uncertainties about extreme wave heights. HR (l994) includes an example calculation for a location with a
small positive dependence between waves and water levels, and deep water at the structure toe. The
assumption of complete dependence between wave heights and water levels could lead to a sea wall crest
level up to two metres too high. Conversely, the assumption of independence could lead to a crest level
half a metre or so too low. It therefore seems reasonable to put about the same amount of effort into
assessing this dependence as into assessing wave conditions.

The Start-up Workshoo
In August 1994, MAFF hosted a Workshop on joint probability (MAFF, 1995) at which Messrs Hawkes,
Owen and Tawn presented their own preferred approaches. As a result of the Workshop, MAFF agreed to
fund a two-year joint research project at HR Wallingford and Lancaster University. The intention was to
combine the best ofthe existing methods, and to develop, test and eventually disseminate a rigorous and
practical approach to the joint probability of large wave heights and high water levels.

The prpsell]L_Brqieal
MAFF provided funding for the development and testing of new joint probability methods from April 1995
to March 1997, although in practice development continued until September 1998. Most of the
development and validation of the methods and computer programs was carried out at Lancaster
University, but the process continued when program code was transferred to HR Wallingford in
April 1996. In principle, the computer programs and reports are freely available, since they were
developed entirely with MAFF funding. However, in practice there are additional costs associated with
training, follow-up advice, NAG licences and copying of documentation.

t"*Wallingford



1.2 Definitions used in joint probability analysis
Marginal probability and return period
Marginal probability refers to the distribution of a single variable, for example wave height or water level.
Return period refers to the average period of time between occurrences of a panicular high value of that
variable. So, for example the | 00 year retum period still water level is the level equalled or exceeded
once, on average, in each period of 100 years.

Record interval and event duration
Usually, in the context of sea defences, only conditions at high water are of interest, and typically peak surges
and wave conditions persist for less than half a day. Therefore, each high water (706 per year) can
conveniently be taken as an independent 'record', which is assumed to persist over the duration of high
water. Therefore, 1 year and | 00 year retum period 'events', for example, have probabilities of occurence of
l/706 and 1/(100x706) and are assumed to persist over the duration of high water.

Joint structural probability and return pqtied
Joint probability refers to the chance of two or more partially related variables (x, y) occurring
simultaneously. The joint structural probability refers to the occurrence of a particular response (such as
overtopping) which in turn depends on the joint occurrence of those variables. The blue and red curves in
Figure I illustrate the typical shape of contours of equal response, with the shaded areas above the curves
indicating the outcomes which give occurrence of the two responses. Different types of response may
occupy different parts of the wave and water level distribution. In this example, the equal overtopping
curve lies towards the bottom right ofthe diagram where the water level is higher, whilst the equal force
curve lies towards the top left where the wave height is higher. If the response value(s) is/are chosen to
correspond to structural failure, then the probability (or risk) of failure is obtained by summing the
probabilities of all the outcomes ofthe response which give structural failure, i.e. summing the
probabilities of (x = x6, y = y6) for all (x6, ys) in the appropriate shaded region. Therefore, in determining
probabilities of structural failure in this way it is necessary to estimate the joint probability density
(x = xj, y = y0) for extreme values of (x0, y0) for the two variables. This may be either in the form of an
extrapolated probability distribution or a long-term simulation.

Joint exceedance orobability and retum period
Joint exceedance probability combinations of wave heights and water levels with a given chance of
occurence are defined in terms of sea conditions in which a given wave height is exceeded at the same
time as a given water level being exceeded (x > xs andy > y0). The black curve in Figure 1 illustrates a
contour of equal joint exceedance probability for wave heights and water levels, with the brown points
indicating particular examples which might be tested in design. The green and yellow areas illustrate
ranges of wave height and water level with the given joint exceedance probability. These areas, and the
probability they represent, provide an approximation to the red and blue failure regions shown in Figure I
and the probabilities they represent.

The discreoancy between joint exceedance andjoint stxctural probabilities
In current practice, a number of combinations of waves and water levels are denved with a given joint
exceedance return penod (these are represenied by the brown dots in Figure l). Only one ofthese will be a
worst case in terms of structural response, and it may not be the sarne one for each response (these 'worst

cases' are represented by ringed brown dots in Figure 1). The probability of occurrence of the structural
response function (eg overtopping or force) calculated from the worst case combination of wave height and
water level will be higher than thejoint exceedance probability. In other words,joint exceedance return period
sea conditions will tend to under-predict responses if the responses afe assumed to have the same retum
period. This is because the same strucfural response function value might be obtained by other sea conditions
in which only one or other of wave height and water level takes a very high value. This is illustrated in
Figure I by the difference between the green and red areas and between the blue and yellow areas. h cunent
practice, a small margin of safety is added to the joint exceedance probability predictions to try to offset this
discrepancy with the retum period of the response. The new method, conversely, works in terms of the joint





south-€ast at Dover). In this situation there may be a very low or even negative dependence between high
surges and large wave heights. However, this dependence (which may not be particularly high to begin with)
is masked in consideration of wave heights and tota, water levels, because the astronomical tidal component is
unrelated to the weather conditions. This leads to the bulk of wave and water level data being very modesdy
dependent (and perhaps suggests a future approach in which the dependence between waves and srurges is
assessed and extrapolated, before adding in deterministic tides). However, the most extreme conditions
(usually including a high surge component) will tend to be more dependent, particularly where the surge to
tide ratio is larger.

Scatter diagrams to illustrate the degre€ of dependence
An easy way of demonstrating the apFoximate degree of dependence between two variables is by means of a
scatter plot. Many pairs of values of Variables A and B are shown as points on a diagram which has
Variable A on its x-axis and Variable B on its y-axis. Well scattered points are indicative of low dependence.
Points lying approximately on a line with a positive slope are indicative of a strong positive dependence.
Points lying approximately on a line with a negative slope are indicative of a strong negative dependence. In
the case of waves and water levels, any dependence is usually modest and typically shows itself as a slight
upward (or occasionally downward) trend in the scatter. To illustrate the idea and to emphasise the
dependence, Figures 2 and 3 are scatter diagrams of wave height against sarge. Figure 2 contains data for a
site demonstrating negative dependence between wave height and surge, whilst Figure 3 shows data for a site
with positive dependence. Different types of dependence and degrees of correlation are also illustrated in
Section 3.3.1 of the Lancaster University part of this report.

Figure 2 Probability density contours shorying negative dependence between surge and wave
height (off Hythe)
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Figure 3 Probability density contours showing positive dependence between surge and wave
height (Christchurch Bay)

1.4 Review of alternative methods
Scooe of the review
There are severaljoint probability analysis methods available, depending upon time, budget and anount of
field data available, and upon the end purpose of the calculations. Even when it is not considered explicitly,
and the structural response is primarily dependent upon the incident wave conditions, a representative high
water level will often be required for calculations. In principle, any number of partially dependent variables
can be analysed, although in practice both the calculations and the results become too unwieldy when more
than three are used. There are several methods of presenting the results, depending upon the end purpose and
the end user. Most of the assessment methods are compatible with most of the presentation methods. A
more detailed review and testing of the earlier methods is given in HR (1994).

Independent and dependent cases
The dependent case is trivial, assuming that the statistics of waves alone and of water levels alone are known,
since one only has to combine waves and water levels each with the same matginal probabilities as the
response. The independent case is easy when working withjoint exceedance probability (which provides an
approximation to the response with the same probability) as it is just the product of the two marginal
probabilities. As the independent and dependent cases are simple to calculate, it may be worth deriving them
early in any project. Treating these as the 'most optimistic' and 'most pessimistic' scenarios, respectively,
may help in judging the value of any more detailed joint probability analysis.

Inhritive joint probabilit]' assessment
The simplest method for assessment of dependence is an intuitive one based on general experience and the
shape and size of the sea area around the prediction point. The assessment may conclude that there is a
modest dependence, and for example, that high waves and high water levels with a 100 yearjoint exceedance
retum period are 10 to 100 times more likely to occur together than the assumption of indeoendence would
suggest. It may conclude that there is a strong dependence, and for exarnple, that high waves and high watEr
levels with a 100 year joint exceedance return period are only 1O to 100 times less likely to occur than the
assumption of dependence would suggest. (The probability ratio between dre independent and dependent

g* Wallingford



cases is 706 x 100.) This is the basis of ajoint probability method des cnbed in the Beach nuTtxagenwnt
manual (C}F.IA, 1 996, Section 3.5.3).

Full analvsis of dependence andjoint orobabilities
A better approach, if constraints on time, budget and data permit, is to examine several years of simultaneous
wave and water level data in order to assess dependence and to derive joint probability extremes. This allows
the analysis to be performed in a similar objective scientific manner to that which would be applied to the
separate wave and water level predictions. The dependence is determined by analysis of pairs of values of
wave height and water level at each high water over a period of several years. Before JOIN-SEA became
available, extremes were determined by extrapolating wave heights for successively rarer water levels, and
water levels for successively rarer wave heights. By combining these extrapolations, contours were
consfixcted joining combinations of wave height and water level with equal joint exceedance retum periods.
The normal way of incorporating wave direction was to undertake a series of 'conditional' analyses, one for
each direction sector of interest. The normal way of incorporating wave period was to assume that it is
completely dependent upon wave height, and could be determined from an assumed wave steepness.

Extrapolation of ioint orobabilitv densitv
Joint probability density can be visualised as a three-dimensional histogran; in which the vertical axis shows
the likelihood of occurrence of combinations of the variables shown on the two horizontal axes. If a bi-
variate probability distribution model can be fitted to the observed joint density, then the fitted distribution
can be extrapolate.d to extremes. In the past, the main difficulty with this approach was in representation of
the dependence between the variables in the fitted distribution (although as stated earlier, the independent and
dependent cases would be trivial). An altemative way of calculating extreme densities, which has been used
in the past, involves numerical differentiation between previously calculated contours ofjoint exceedance
retum period (see previous paragraph). Extrapolation of probability density is perhaps the most flexible
method for presentation of extremes predictions, and permits a direct estimation of the probability of a given
response or structure variable such as failure due to high overtopping. This concept is a fundamental aspect
of the JOIN-SEA method.

Direct hindcasting of design vanables
An altemative approach can be used where a very specific local result is required, for example, run-up or
overtopping of a particular shoft stretch of sea defence. Site-specific shallow water wave data directly at the
point of interest, together with sequential water level data, could be used in a site-specific run-up or
overtopping formula to hindcast long-term run-up or overtopping conditions. The resulting single variable
data could tlen be extrapolated directly to extremes, avoiding the complications of a truejoint probability
approach in which waves and water levels are kept separate throughout. This single variable approach has
the advantage ofusing all the available information on individual wave conditions, for example including the
wave period, which is important for run-up and overtopping. However, it relies on the extrapolated variable
being of the same form as within the body of the distribution. It would not be applicable, for example, where
wave overtopping is expected to give way to weir overtopping or to structural failure at higher levels. The
advantages of this approach are available within the JOIN-SEA analysis method, with the added advantage
that it can be applied to a long-term simulation of wave and water level data.

Offshore and inshore extremes
Joint probability extremes can be calculated and presented either offshore or inshore. Offshore results are
more generally applicable over a larger area, but may need to be transformed inshore before further use.
Inshore results are more site-specific, and can take better account of any hydraulic interactions, but may be
applicable only in one smal I area. Wave predictions and joint probabilities are often calculated as a function
ofdirection. This is important, since general exposure to waves, the relationship between high waves and
high water levels, and transformation inshore, may all be dependent upon storm direction.

Depth-limited conditions
In coastal engineering applications, wave heights may be depthJimited. For example, there may be only a
few metres of water at the toe of a structure even in extreme conditions. so that the full force of the waves
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1 .

may not impact directly upon the structure. In extreme cases ofthese circumstances, only the highest water
levels need to be considered. A possible general approach for depth limitation is to determine the extreme
water levels, and then to check the probability that the depthJimited wave height could occur at the same
time, However, it is worth noting in this situation that swell waves, which do not usually have the largest
wave heights, may be a worse case for structural design than depth limited wind waves.

Presentation of results
Joint exceedance results are normally calculated and presented as 'contours' of combinations of wave heights
and water levels with given joint exceedance retum periods, from which a 'worst case' can be determined as
and when required for any particular situation. The same information might be shown in the form of a table
of pairs of values of wave height and water level (drawn from the 'contours'). This approach would allow
the 'worst case' to be identified in terms of run-up (or other design variables) at the site of interest, but
usually requires that several potential 'worst cases' be tested. Altematively, results can be presented as
extrapolated probability densities, in which 'contours' indicate the likelihood of occurrence of particular
combinations of wave heights and water levels. This approach is useful for risk analysis, where the total risk
is found by integrating probabilities over a wide range of wave conditions and water levels in which 'failure'

rnay occur. Either results format can be converted to other relevant variables, for example run-up,
overtopping or force on a coastal structure. Please note that although the joint density approach can provide a
direct estimation of the retum period of the response, tbe joint exceedance exfemes contours can provide
only an approximation to this probability.

1.5 Outline of the new method
Main elements
The new method consists ofthe five main elements listed below and described in more detail in
Sectrons 2.1-2.5.

3 .

Preparation of input data" consisting of many independent records ofwave height, wave period and water
level.

Fitting of statistical distributions separately to the wave heights, the water levels and the wave steepnesses,

Fitting the dependence between wave heights and water levels, and between wave heights and
steepnesses.

Simulation of a large sample of wave height, wave period and water level data, using the fitted
distributions.

5 . Extremes analysis of a range of response variables based on the simulated data.

Main develonments
The main developments of the new method and its apptications are in elements 2 to 5. It is more objective,
pafiicularly in its modelling of dependence, than most existing approaches to joint probability assessment, and
allows wave period (or wave steepness) to be included as a variable. With careful use its long-tem simulation
approach can deliver more accurate predictions ofjoint extreme values and structural response function values
(eg overtopping, run-up, force) than methods already in common use. It will also assist in a gradual move
towards risk-based design of sea defences.

1.6 Research outputs
Products
There are three main types of output from this research project, namely rcports, computer programs and
workshops, plus of course improved joint probability analysis in consultancy studies.

4 .
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JOIN-SEA software
The software consists of FORTRAN computer programs, incorporating numerical statistical subroutines
(in NAG). The programs are research-based and have not been tested to normal commercial standards, but are
available, initially on a trial basis, to appropriate users.

JOIN-SEA reports
The first part of this document gives a brief description of the new approach and its application in coastal
engineering. The accompanying staiistical methodology and further case studies are given in the technical
report which forms the second part of this document. A companion user manual (HR, 2000) describing inputs,
outputs and options available to the user is intended for day-to-day use with the new programs.

Workshoos and dissemination
A specialist workshop was held at HR Wallingford on 3 December 1998, at which this report and the
associated user manual were released in draft form. The workshop was attended by those directly involved in
the research and by a number of invited coastal engineers familiar with joint probability applications. It was
hoped that the workshop discussion would guide future dissemination, usage and continued development of
joint probability methods, and ultimately MAFF policy in regard to their use. A subsequent briefing workshop
was held at HR Wallingford on 4 February 2000. This was attended by about a dozen industry specialists
interested in receiving copies of the programs and training in their use. It is hoped that the subsequent beta-
testing progamme will yield useful feedback on continued development and usage ofthe methods.

2. THE NEWAPPROACH

2.1 Input data requirements
Prepara[qr o:f]hetinput data
The first of the five stages involves preparation of the input data. Generation and pre-processing of the inpur
wave and water level data is probably the most time-consuming part of the joint probability analysis
procedure. Each input record consists of a wave height, a wave period and a water level (or altematively a
surge) preferably using identical measurement or prediction locations for both waves and water levels. The
data can come from measurements or hindcasts, but for each record the values should represent conditions at a
particular point and time, A convenient way of satisfying the requirement for the records to be both
temporally independent, and relevant, is to use only those records representing conditions at the peak of each
tidal cycle (ie one record every 12 or 13 hours). At least three years of data" not necessarily continuous but
representative of the type of sea states of interest, are needed tojustify the effort involved in applying the new
approach.

Stages in data pre-pr@qa$sirg
Typically the following pre-processing of the data would be carried out:

- combining of the separate wave ard waier level data into a single sequential data file;

- exfacdon and retention of only one record, closest to high water, per tidal cyclei

- optionally, division of the data into two or three separate populations (data sets) corresponding
(for example) to different wave direction sectom or seasons, or to wind-sea and swell;

- removal of obviously faulty data, and

(optionally) records with zero wave height and records with very low
wave steepness (although both of these are automatically trapped by the
programs since they cause problems in the later analysis and long-term
simulation of wave steepness);
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- running of the preliminary diagnostic program TESTDATA to ^ssess the type of dependence
and whether independence or dependence would be adequate assumptions.

The TESTDATA diagnostic proeram
It is assumed that users will make their own arrangements for any pre-processing considered necessary: in
terms of the computer programs required, only the TESTDATA progran forms part of the JOIN-SEA package.
The purpose of this progmm, which can be run immediately before thejoint probability analysis, is to provide
guidance on the degree of dependence within the data, and whether it changes with exceedance threshold. For
example, it may indicate that complete dependence or complete independence would be a reasonable
assumption, or that dependence needs to be modelled carefully. The test statistic, T (z), is derived from the
conditional probability of the second variable exceeding the marginal T year level for that variable given that
the first variable exceeds its own marginal T year retum level. Here z is related to T by z = -lilog(l - 1/706T)
and a range of T values are considered. It is defined in Section 3.3.2 of the Lancasier University part of this
report, with examples and advice on interpretation ofthe results being given in Section 7.1.2. The rate of
change of T (z) with log (z) should be (l-p) / (1+p), where p is the correlation coefficient for that threshold. A
constant rate of change is indicative of a constant level of dependence, with a constant T (z) value of zero
indicatrng complete dependence and a gradient of one indicating independence. A varying rate of change
of T (z) with log (z) would indicate that dependence vanes with threshold.

2.2 Fitting of statistical distributions to the marginal variables
Statistical models for the marginal variables
The second stage involves the fitting of statistical models to wave heights, water levels and wave
steepnesses. Generalised Pareto Distributions are fitted to the top few percent of the primary marginal
variables, ie wave heights and water levels; and the distribution of wave steepness is modelled through a
combination of its empirical distribution and a regression relationship with high wave heights, For each of
the three marginal distributions, a threshold, specified in terms of the proportion of data less than, is used
for fitting. Below the threshold, the distribution is represented empirically, and above the threshold by the
fitted distribution. Details are given in Chapters 3 and 4 of the Lancaster University part of this report and
a brief summary is given below.

The Generalised Pareto Distribution (GPD)
The GPD is described in Section 3 . 1 of the Lancaster University part of this report. Although in practice the
GPD is fitted only above a chosen threshold, a feature of the distribution is that (if it is a good fit to the data) it
is invariant to the threshold. Another feature of the distribution is that, unlike the Weibull distribution for
example, it does not necessarily increase roughly in proportion to the log ofthe retum period. Instead it can
also either increase more rapidly in the tail or it can level off towards an absolute maximum value. Numerical
tests carried out using several of the project data sets suggest that extremes predictions are not sensitive to the
threshold chosen, and that 0.95 is usually a reasonable value to use, so that the GPD is fitted to the top 5% of
the data.

Importance of wave period
In some situations wave period can be as important as wave height in calculating effects at the coast such
as overtopping or armour damage, especially when wave heights are depth-limited at a sea wall. Although
good information on extreme water levels and extreme wave heights will usually be obtarned or derived
during a coastal modelling study, the marginal distribution of wave period is rarely considered beyond the
estimation of a representative wave steepness. However, in the JOIN-SEA and structure variable methods
the distribution of wave periods is built in tlrough respectively a model for the distribution of wave
steepness and empirically.

Incorporation of impleyeclplqeligliellfunarginal extremes
Joint probability analysis is based on simultaneous information on the variables of interest. It is quite
likely that there will be additional non-simultaneous data on at least one ofthe variables, with which to
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refine the extremes predictions for that one variable. For example, there may be 20 years of water level
data but only l0 years of wave data; accurate extreme values for one or other variable may have already
been established (eg from spatial analysis of water levels (POL, 1997)); or there may be anecdotal
evidence of severe sea conditions outside the period ofthe measurements. Good joint probability analysis
uses this additional information. This might involve modification of the parameters of the fitted
distribution(s) or scaling of the predicted extremes to achieve better agleement with the refined marginal
predictions. The present method incorporates any refinements by scaling during the long-term simulation
of data, thus permanently building this information into the synthesised sea state data to be used in
subsequent structural analysis.

2.3 Statistical models for dependence
The modelling procedure
The third stage involves conversion to Normal scales, and fitting of a dependence function to the bulk of
the wave height and water level data. Simple diagnostic tests have been developed to assess whether full
dependence or independence models are adequate approximations. For situations when these
simplifications cannot be made, two altemative partial dependence statistical models have been developed
to represent the dependence between wave heights and water levels. These consist of a single Bi-Variate
Normal (BVN) Distribution and a mixture of two BVN'.s. These models were chosen, since the
dependence and extremes characteristics of the BVN are well understood, and together these two models
are considered to provide a sufficiently flexible family of models

Selection of statistical model
The choice between one and two BVNt is determined by the relative goodness offit to the data, which can
be assessed with reference to the varying degree of correlation, expressed as a function of exceedance
level- The single BVN may be adequate for a location at which all the wave conditions belong to a single
population, although frequently the correlation will increase rapidly towards the tail and the mixture model
will be needed. However, where tle wave conditions belong to more than one population, for example
wind-sea and swell, the mixture model is always likely to be needed to capture the different dependences
in the two populations.

User input
In this and in the previous stages the user retains some control over the process, primarily by having the
choice of selected dependence model, and secondarily by being able to select both the thresholds above
which the fitting will be applied, and the staning values for optimisation of the fits: this is assisted by
reference to diagnostics to assess the fits.

2.4 Long-termsimulation
The simulation procedure
The fourth stage involves simulation of a large sample of synthetic records of I{", T* and water level, based on
the fitted distributions, and with the same statistical characieristics as the input data. At this stage it is
possible to re-scale the marginal extreme distributions to more established values, if they are known. For
example, concurrent wave and water level data may be available for a period often years, and by
extrapolation of this data the marginal distributions of the two variables are calculated within the joint
probability software. However, if either or both of the data sets extends beyond the concurrent period of
ten years, it is preferable to use the additional information contained within the extra data. Therefore the
marginal distribution can be derived from the longer data set and incorporated into the data simulation
process through the use of the re-scaling option. This is achieved by altering individual affected wave
heights and water levels from one scale to the other between simulation from the fitted distnbutions and
writing permanently to an output file. Thus, based on all available data, thousands of years worth of sea
conditions can be simulated with fitted distributions, extremes and dependences for wave height, water
level and wave period. This provides greater flexibility in the subsequent analysis ofthe sea state data.
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The simulation product
Output from this stage details the number of events per year, the number of records in the file, as well as
the individual sea state records and the marginal extremes. Checks can be made on the return period
marginal conditions that are within the time span of the input data. For example, if the input data consisted
of a time span of five years, the I year marginal extreme should be approximately equal to the fifth highest
record in the input file.

2.5 Analysis of joint exceedance extremes and structural response functions
Analysis of the si mulated data
The fifth stage involves analysis of the large simulated sample of data to produce extreme values for use rn
design and assessment of sea defences. These can take the form of extreme wave heights (and associated
periods), extreme water levels, or extreme combinations of the two. In addition, any structural response
function (eg overtopping, run-up, force) which can be defined in terms ofconstants (eg wall slope, toe depth,
crest elevation etc) and variables H,, T. and water level, can be synthesised directly for every record in the
simulated data sample. Direct analysis of the distribution and extremes of the structural response variable is
then relatively easy.

The 'count-back' extremes analysis method
Rather than fitting probability distributions to the synthesised data, extreme values are estimated from the
appropriate empincal exceedance probability in the synthesised data. This is achieved by 'counting back'
through the highest values within the simulated data, a method based on the literal definition of retum period
and best described by means of an example. If, for a 2000 year simulation, the 100 year retum period value
(ie the level equalled or exceeded on average once every hundred years) is required, then this is given by
'counting back' to the 2000/100 = 20th highest value, which is then assigned a return period of 100 years.
Joint exceedance extremes are detemined in a similar way, for example by 'counting back' through the
highest wave heights, but only considering those records above a certain threshold of water level. Thrs
intuitive approach is reliable for retum periods up to about one quarter of the simulation length. Hence it is
necessary to synthesise at least four times as much data as the highest retum period of interest, and in practice
ten times would be a more rypical ratio.

Direct analysis of structural response variables
At present, as well as marginal and joint exceedance extremes, four simplified structural response variables
are included in the computer programs for demonstration purposes, for which more details of the formuiae
used and the input variables are given in the user manual (HR, 2000):

- overtopping rate on a smooth slope;
- run-up on a smooth slope;
- fbrce on a vertical wall;
- armour size for a sea wall.

Analvsis of more comBlgl_ylli4blgs
More complex variables, for example the simultaneous occurrence ofa high force and a high overtopping ratre,
which would have been diffrcult to assess previously, can now be routinely studied. Sensitivity and altemative
designs can also be assessed relatively easily, by making appropriate changes to the structural response
tunction(s) analysed without the need for addrtronal statistical analysis of dependence or marginal variables or
a new long-term simulation.

2,6 Software implementation
Introduction
This section briefly describes the software package and the functions of the five main programs for the joint
probability analysi s: BVN, MIX, SIMBVN, SIMMIX and ANAZYSIS. For a more detailed description and
instructions on the use of the programs, a companion manual (HR, 2000) is available. In normal use in
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consultancy studies, the user would need to write some additional programs to carry out the necessary
pre-processing of the input data, and to compuie actual site-specific structural response variable(s),

Fittine of statistical models (BVN and MIX
Two programs are used to fit statistical models to samples of data, one based on a single Bi-Variate Normal
distribution (BVA) and one based on a mixture of two Bi-Variate Normal's (MIX). Both programs also fit the
marginal distributions of wave height, of water level, and of wave steepness, each above a threshold selected
by the user. Input data to the two programs, in fie dntafile , consists of a large number of records of wave
height, water level and wave period. Output from BVN consists of three files'. rhovalues, diagrnstic ancl
transfer. Rhovalues and diagnostic provide information on the fitting of the distributions and the conelation at
different probability thresholds, whilst rrander is used to input this information into the subseqaent SIMBVN
program. The next step is to run either MIX or SIMBVN, dependent on the information on correlation detailed
in the diagnostic and rhovalues frles. Essentially M/X performs the same task as BVN but will provide a better
fit to data where there is a large variation in correlation with probability threshold. Output from MIX consists
of a diagnostic {ie and a transfer file that perform the same function as the output from ByN.

Simulation of long data samoles (SIMBVN and S/MMID
Two programs, SIMBVN and SIMMIX, are used to synthesise much longer samples of data based on the two
aliemative fitted distributions. S/MBVN is run subsequent to ByN, and SIMMIX is run subsequent to M1X.
Although the two programs perform the same function, the inptt transfer fies (output from ByN or M/X)
differ. An option of re-scaling the marginal extremes, if more established values are known, is available in
both programs. The output files (r imdata) from SIMBVN and SIMMIX arc identical in form and consist of a
large number of individual wave height, water level and wave period records. 'Importance sampling' can be
applied at this stage, such that only the higher records are retained, so as to reduce the eventual size of the
simdata fiIe.

Extremes from the simulated data (ANALISIS)
The last program, ANALYSrc, is used to derive rnarginal extremes, joint exceedance extremes and extreme
values of demonstration structure variable(s) from the simd.ata frle. Threshold wave heights are specified
for which extreme water levels are derived, and vice versa, thus joint exceedance combinations are
obtained, For the structure variables it is necessary to specify parameters such as toe depth, wall slope and
crest level for individual structures.

User inpul
The ptocedure is largely automated, but requires quile substantial computer time, memory and storage
capacity. Although there is a large number of questions put to the user during operation of the programs,
the majority can be answered by accepting the default values. The user should be prepared to check for
mixed populations or faulty records in the original data, and to re-run parts of the procedure if indicated to
do so by the diagnostic information. It is sometimes necessary to take a view on the importance ofone,
two or three outliers, that is records of severe sea states with apparently high dependence between wave
height and water level in an otherwise uncorrelated data set. As in any joint probability analysis method,
the eventual results can be quite sensitive to the importance given to these records, and it may be worth
checking the validity of the individual records concemed. More specific advice is given in the JOIN-SEA
user manual (HR, 2000).

3. APPLICATIONS

The test data sets
During validation and comparison of results with altemative joint probability methods several test data sets
were assembled. Some were based on mea-sured and hindcast wave and water level data - these had the
advantages of not coming from pre-determined statistical distributions and of being representative of data sets
to be used in consultancy studies; some were synthesised using specified probability distributions loosely
based on measured data - these had the advantaee that the 'true' extremes and ioint orobabilities were known.
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3.1 Example applications to synthetic data
The simulated data sets
Five sets of wave and water level data with known statistical distributions, but broadly representative of
actual conditions at different points around the coast of England and Wales, were synthesised. Details of
the derivation of these data sets are given in Chapter 5 of the Lancaster University part of this report.

Comparisons made bv Lancaster University
Combinations of wave heights and water levels with given joint exceedance retum priods were calculated
using HR Wallingford's existing JOINPROB software (HR, 1994) and also using the new methods. The
results were compared with the 'true'joint exceedance extremes for return periods of 10 years (equal to the
length of the original data set) and 1000 years. Two of the comparisons are shown in Figures 4 and 5
(which are typical of the wider range of comparisons given in Chapters 8 and 9 of the Lancaster University
part of this report) . In these dia$ams the joint exceedance extremes predictions have been adjusted to give
marginal extremes in agreement with target values, so as to highlight the modelling and extrapolation of
dependence. In both figures, the 'simulation Model' lines represent the target (or 'true') values' The
'Estimated Model' lines show results from the new method, with marginal extremes predictions scaled to
give exact agreement with target values. The 'HR Estimates' lines show results from HR Wallingford's
JOINPROB method, here with marginal extremes predictions scaled to agree with earter slightly different
target marginal extremes. As expected, both methods perfr:rm well for a joint return period equal to the
length of the data set, but the new method gives more fobust predictions at much higher return periods.

Figure 4 Joint exceeilance contours of H, (m) and water level (mOD) for a site with very low
dependence
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Figure 5 Joint exceedance contours ofH" (m) and water level (mCD) for a site with high
dependence

Some conclusions from the Lancaster University comparisons
Overall, the comparisons presented in the Lancaster University part of this report suggest that the new
approach, working directly in tems ofthe structural response function, is more consistent and reliable than
altemative methods. The importance of wave period is shown in several ways: the use of wave periods
which are too low (perhaps due to using a constant wave steepness which is too high) do€s not affect the
joint exceedance extremes directly but it does lead to an under prediction of overtopping rate; the use of a
variable wave steepness, rather than a constant wave steepness, tends to increase overtopping predictions.
The return periods of structural response variables calculated (as has usually been done in the past) from
joint exceedance extremes tend to be about half the size ofthe retum periods ofthejoint extremes
themselves. The new long-term simulation approach allows a direct and accurate assessment of the 'risk'
with a given return period, without resort to the fairly arbitrary small margins of conservatism currently
used in consultancy studies.

Additional comoarisons usinq direct hindcasting
One further analysis method was applied to the simulated data sets after completion of the Lancaster
University (LU) part of the report, to illustrate an analysis method used satisfactorily by HR Wallingford
several times in the past. The remainder of this section effectively forms a post-script to LU's Chapter 9.
It involves direct hindcasting and exhapolation of overtopping, aiplied in the way that has been used in
previous HR consultancy studies. This is comparable with LU's 'SVM applied to Q.', referring to the
Structure Variable Method applied to overtopping rate, which suggested that the rnethod was flawed due to
its great sensitivity to threshold, but that the SVM applied to log (eJ was reasonable.
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Extremes analysis using direct hindcastins
For each of the simulated data sets (Sim1-Sim5) in hrm, each record of wave height, water level and wave
steepness was converted to an equivalent rate of overtopping using the same formulae and parameter
values as described in LU's Chapter 9 (although obviously the vast majority of the values were zero). For
each data set an empirical distribution of overtopping rate (Q") was assembled for extrapolation to extreme
values using HR's standard methods. This involved fitting a three parameter Weibull distribution (see
LU's Section 4.1.2), not to individual overtopping records but to equally spaced thresholds of overtopping.
In other words, tle information used in fitting the Weibull probability model consisted of, for example, the
percentages of data less than Qc (mlVm) = 0.005,0.010,0.015..., or0.010,0.015... Several different
thresholds were tested for each data set, and the predicted l, 10 and 100 year overtopping rates were
compared with the 'true' values (not available for the 1 year retum period) from the simulation model (see
LU's Chapter 9).

Results and conclusions from direct hindcasting
The extreme overtopping rate predictions given in the Tables 1-5 below do not show much sensitivity to
threshold and are quite close to target values. To put these results into the context of the comparisons made
in Chapter 9 of the Lancaster University part of the repolt, take average predictions for each column in Tables
1-5 and convert to equivalent 'true' retum periods. The accuracy of the direct hindcasting approach is
comparable with that of the JOINPROB analysis: a little better than JOINPROB at the 10 year retum period
(within the data) but less reliable at the 100 year retum period. This suggests that HR's current
implementation of the structure variable method is sound in this application, although some care is required in
preparation of the data and checking of the results, particularly for data sets containing just one or two high
overtopping results. Given the simplicity of the approach, and the fact that it is not subject to the uncertainties
associated with the fitting and exnapolation of dependence, the method could be retained for use in prediction
of specific response variables where several years of input data are available.

Table I Direct hindcasting and extrapolation of overtopping rate, applied to data set Siml

Threshold (ie the
proportion of data
ignored in fitting the
distribution)

Predicted extreme ovenoDping rate O" (mYs/m)
I year return 10 year retum 100 year retum

0.00000 0.00064 0.0059 0.034
0.99800 0.00063 0.0065 0.021
0.99860 0.00082 0.0065 0.030
0.99914 0.00103 0.0063 0.031

'Tme' values Not available 0.0075 0.030

Table 2 Direct hindcasting and extrapolation of overtopping rate, applied to data set Sim2

Threshold (ie the
proponion of data
ignored in fitting the
distribution)

Predicted extreme overtopping rate Q" (m'is/m)
1 year rehrm 10 year retum

'100 year retum

0.00000 0.56 l . z - 1

0.97240 0.61 1 .12 t.67
0.98800 0.61 t .12 r.63
0.99390 0.61 1 . 1  I 1.63
0.99643 0.62 1 . 1  I 1.57
0.99814 0.67 1.08 1.45
0.99829 0.71 1.07 1.38

'True' values Not available l . l ) t .87
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Table 3 Direct hindcasting and extrapolation of overtopping rate, applied to data set Sim3

Threshold (ie the
proportion of data
ignored in fitting the
distribution)

Predicted extreme overtopoinq rate O. (mls/m)
1 year retum 10 year retum 100 year retum

0.00000 0.62 r.77 4.O
0.97910 0.64 1.75 3.5
0.99130 0.63 r ;77 -r.6
0.99510 0.62 1.78 3.9
o.99670 0.63 r.79 4.4
o.99't57 0.63 l ;79 4.5
o.99829 0.54 1.81 3.8

'True' values Not available r.4l z.o

Table 4 Direct hindcasting and extrapolation of overtopping rate, applied to data set Sim4

Threshold (ie the
proportion of data
ignored in fitting the
distribution)

Predicted extreme oveftoppins rate O" (m'/Vm)
1 year retum 10 year retum 100 year re m

0.00000 J_O 9.2 18.8
0.97900 4 . 1 / . o tt.2
0.99110 4.1 7.5 11 .0
0.99370 4.r 1.5 10.8
0.99600 4.2 'J /1 10.5
0.99730 4.3 7.3 10.1
0.99800 4.) 7.3 9.8

'Tme' values Not available tl.7 27.2

Table 5 Direct hindcasting and extrapolation of overtopping rate, applied to data set Sims

Threshold (ie the
proportion of data
ignored in fitting the
distribution)

Predicted extreme overtoDDinq rate O. ( m'/sim)
I year retum 10 year retum 100 year retum

0.00000 2.5 6.7 1.4.1
0.98120 3.0 5.7 8.5
0.99130 3.0 5.7 8.5
0.99390 3.0 J .  / 8.4
0.99-560 3.0 5.7 8.4
0.99714 3.0 5.6 8.2
0.99'711 3.0 5.6 8.2

'Tme' values Not available 8.3 19.5

3.2 Case studies using field data
The field data sets
The compzrisons between methods described in the Lancaster University part of this report are based on five
simulated data sets, loosely based on five sets of field data from different parts of England and Wales, namely
Christchurch, Dover, Dowsing, Cardiff and North Wales. This section of the report describes equivalent
compaLrative analyses between JOINPROB and JOIN-SEA using the original long time series field data sets
underlying the synthetic data sets. (The word 'field' is perhaps a little misleading since in each case the wave
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data came from a numerical hindcasting model, but the sequential wind and water level data are from actual

measurements.) Details of the data sets are given in Table 5.1 of the Lancaster University part of the report.

Two data popUlations for Cardiff
The 2S-year Cardiff data set contained two distinct populations of wave conditions: swell waves with an
offshore directlon between 190 and 360"N and locally generated waves with an offshote direction between
0 and 190"N. The two populations were separated at the data preparation stage and were treated as two
separate 28-year data sets during the subsequent analysis even though each contained only about half as
many records as the original combined set. The direction-dependent marginal and joint extremes were
then defined such that there will be one extreme occurrence, on average, in each direction sector in each
return period.

The structural response function
For the purposes of this study the same structural response function was used as in the Lancaster
University comparisons, namely sea wall overtopping. Idealised sea walls were devised and the
overtopping discharge was calculated using the formulae of HR (1980) at each of the sites. Further details
of the formulae and the sea wall parameters can be found in Table 9.1 of the Lancaster University part of
this report. However, it is not so much the values of overtopping calculated that are of interest, more the
comparison between the different methods. Tables 6-11 give overlopping discharge rates usin-g the
different analysis methods described below. All discharges in the tables below are given in m'7s/m, but
please note that the idealised sea walls used in the tests do not correspond to the actual sea defences at any
of the five sites.

JOI{PROB analvsis
The JOINPROB combinations column in Tables 6-l l refers to the existing HR analysis method whereby
different combinations of wave height and water level, with the same joint exceedance retum period, are
extracted from a j oint exceedance probability contour plot. These combinations are then applied to the
structural response function and the 'wofst case' is found. The wave steepness is calculated for the top few
percent of wave conditions and is assumed to have a constant value, which is then applied to the extreme
conditions to calculate the wave oeriod.

JOIN-SEA analysis
The new joint probability methods were applied in three different ways in order to test different aspects of
the procedure. Two involved the joint exceedance combinations approach for comparison with eadier
methods and one involved direct simulation of the struchrral response function. The mean wave period
(T) for the JOIN-SEA analysis was calculated in three ways:

I Assuming the same steepness (HR steepness) as used for the JOINPROB calculations in assigning
a wave period to each wave height and water level combination.

Using the average steepness noted by the JOIN-SEA model for thetop 5Vo of wave heights (not
necessarily the same as the HR steepness, which was determined manually) in assigning wave
periods.

Allowing a natural variation in steepness during the simulation ofthe long time series data set, as
in the normal operation of JOIN-SEA.

Empirical extremes
Column 6 in each of Tables 6-11 gives e.,ttreme values derived directly from the original data. Each
record, in terms of significant wave height, mean wave period and water level, was converted to an
equivalent rate of overtopping. The I year return period extreme value was determined for each location
using the 'count-back' method described in Section 2.5 (so, for example, in a 28 year data set, the required
value would be the twenty-eighth largest overtopping value). This is perhaps the most accurate exlreme
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value estimate in each table. The 10 year, and in some cases the 20 year retum period values, were also
estirated from the data, but these are subject to great uncertainty.

Comparison between JOINPROB and JOIN-SEA joint exceedance extremes
Method 1 allows a direct comparison between the traditional sea state combinations (JOINPROB) method
and the new JOIN-SEA method, applied so as to obtain design sea states defined by specific wave heights
and water levels. (NB: the calculation of overtopping using the HR steepness in the JOIN-SEA model is
for comparison purposes only and is not a routine practice). If both methods worked perfectly then the
results in Columns 2 and 3 ofthe tables should be identical. Discrepancies are due to differences in
marginal extremes predictions as well as to the representation of dependence.

Comparison between joint exceedance extremes and simulation aBple@hg!
JOIN-SEA analysis metlods, numbered 2 and 3 above, give a direct comparison between the traditional
method of applying design sea state combinations, and the new method of structural response simulation.
Differences here highlight the discrepancy betwe€n estimating extreme values of structural response from
joint exceedance probabilities (without applying the usual small margin of conservatism) and from joint
structural nrobabilities.

Table 6 Comparison between overtopping rates (m3/s/m) for different analysis methods at
Christchurch

Table 7 Comparison between overtopping rates (m3/s/m) for different analysis methods at Dover

Return period
(yearsl

JOINPROB
joint

exceedance
(HR steepness

of 0.06)

JOIN-SEA

Jolnt
exceedance

(HR steepness
of 0.06)

JOIN-SEA
joint

exceedance
(model

steepness
of 0.053)

JOIN-SEA
structural
response

simulation

Empirical
(directly from
original data)

1 l . l 3 t .23 't.45 1.81 1 .68
10 2.29 L O I 3.07 3.55 2.75
20 2.63 3.40 3.88 4.20 Not available
100 Not available 4.85 5.49
200 5.31 5.75

Return period
(years)

JOINPROB
joinr

exceedance
(HR steepness

of 0.06)

JOIN-SEA
joint

exceedance
(HR steepness

of 0.06)

JOIN-SEA
joint

exceedance
(model

srcepness
of 0.045)

JOIN-SEA
structural
response

simulation

Empirical
(direct\ from
original data)

1 0 .17 0.20 0.35 0.53 0.46
l 0 0.51 0.48 0.75 0.99 1.1+0.4
20 0.67 0.56 0.86 1 .14 Not available
100 Not available 1.32 1.66
200 1 .86 1.96
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Table 8 Comparison between overtopping rates (m3/Vm) for different analysis methods at
Dowsing

Table 9 Comparison betwe€n overtopping rates (m3/s/m) for different analysis metlods at
Cardiff (0-190"N)

Table 10 Comparison between overtopping rates (m3/s/m) for different analysis methods at
Cardiff (190-3601V)

Retum period
(years)

JOINPROB
Jornt

exceedance
(HR steepness

of 0.06)

JOIN-SEA
joint

exceedance
(HR steepness

of 0.06)

JOIN-SEA

Jornt
exceedance

(model
steepness
of 0.053)

JOIN-SEA
structural
response

simulation

Empirical
(directly from
original data)

1 |  . 1 4 0.99 1 .19 2.20 2.6
l 0 3.40 3.35 3.83 5.76 7 .3+2.2
20 4.85 4.26 4.84 7 .19 Not available
100 Not available 8 . 3 1 10.9
200 9.84 12.5

Return period
(years)

JOINPROB
joint

exceedance
(HR steepness

of 0.05)

JOIN-SEA
joint

exceedance
(HR steepness

of 0.05)

JOIN.SEA
joint

exceedance
(model

sreepness
of 0.06)

JOIN-SEA
structuml
response

simulation

Empirical
(directly from
original data)

0.000003 0.000006 0.000003 0.00005 0.000015
t0 0.001I 0.00033 0.00019 0.0013 0.0013
20 0.0067 0.00075 0.00045 0.0037 0.002iil.0005
100 Not available 0.0026 0.011 Not available
200 0.0083 0.017

Return period
(yearsJ

JOINPROB
joint

exceedance
(HR steepness

of  0.01)

JOIN-SEA
joint

exceedance
(HR steepness

of 0.01)

JOIN-SEA
joint

exceedance
(model

steepness
of 0.039)

JOIN-SEA
structural
response

simulation

Empirical
(directly from
original data)

0.0001 0.00025 0.00000008 0.000008 0.00014
l 0 0.016 0.0081 0.00006 0.00089 o.oo?7
20 0.049 0.016 0.00018 0.0023 0.0056+0.0012
100 Not available 0.0032 0.024 Not available
200 o.oo77 0.089
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Table 11 Comparison between overtopping rates (m'/Vm) for different analysis methods at North
Wales

Discussion of the direct comparison between JOIMROB and JOIN-SEA
The comparison in columns 2 and 3 of Tables 6-l l, between JOINPROB (HR steepness) and JOIN-SEA
(HR steepness) using thejoint exceedance method of determining the worst case overtopping event and
assuming the same value of wave st€epness, shows good agreement at all sites. This suggests that the
method of marginal extrapolation at varying thresholds, for both variables, to construct contours of equal
joint exceedance retum period, gives similar results to those derived from the extrapolated joint probability
density obtained from JOIN-SEA. This is bome out by plots in Appendix I showing contours of equal
joint exceedance retum period (inespective of wave steepness) for each of the test sites, derived by the
JOINPROB and JOIN-SEA methods respectively.

Discussion of the sensitivitv to assumed fixed wave steepness
Comparison ofthe two JOIN-SEA combinations columns gives insight into the potential errors o{
manually calculating the mean steepness for the top 57o of wave conditions, as opposed to the more
rigorous calculation of steepness carried out routinely in the model. The results show the difference in
discharge rates to be slightly higher (no more than a factor of two, in terms of return period) using the
model steepness, for all sites, with the exception of Cardiff. The difference of the results at Cardiff is
probably explained by the separation of wave conditions by direction as opposed to steepness. Some
longer wave period (lower steepness) wave conditions were present in the 0-190"N (higher steepness
locally generated wave conditions) data, and vice versa.

Discussion of differences between thejoint exceedance extremes andjoint nrobabilit], densitv approaches
The simulation of the structural response function gives ovedopping discharges that are a factor of 2-3
times greater, in terms ofthe retum period, than those calculated using the combinations of marginal
values (JOIN-SEA (model steepness)). This is as previously expected and is explained by the fact that the
joint exceedance method does not account for the entire range of combinations that can contribute to the
strxctural response value for a given retum period.

Comoarison with empirical extremes
With the exception of the very low overtopping rates (less than 0.002m'/Vm) predicted for some retum
periods for the Cardiff data set, the JOIN-SEA results listed in Columns 4 and 5 ofthe tables agree well
with the empirical values. The discrepancy in the low overtopping rates for Cardiff is thought to be due to
the difficulty in representing the distribution of wave period correctly, as can be seen in the spread of
results across each of the rows in Tables 9 and 10.

3.3 Example application using both inshore and otfshore wave data
Reasons for choosins the Somerset siae
In addition to comparing results from different analysis methods, it is interesting to compare results from
i) offshore and nearshore (ie after wave ffansformation modelling) input wave data, and ii) depth-limited and

Return period
(yearsl

JOINPROB
joint

exceedance
(HR steepness

of 0.06)

JOIN-SEA
joint

exceedance
(HR steepness

of 0.06)

JOIN-SEA
joint

exceedance
(model

steepness
of 0.047)

JOIN-SEA
structural
response

simulation

Empirical
(directly from
original data)

I 0.26 0.38 o.57 1.04 0.82
t0 1.26 1 .43 1.86 2.59 l . 55
20 2.04 1 .89 2.44 Not available
100 Not available 3.85 4.42
200 4.56 5.28
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deep water conditions at the structure. To illustrate the differences an example study was carried out for a
hypothetical site on the Somerset coast. This location was chosen for a number of reasons: it has a high tidal
range; it is exposed to a mixhrre of locally generated waves and waves arriving from the Atlantic; wave
refraction effects cause a significant increase in T* as the waves prcpagate from offshore to nearshore; there is
increasing dependence between wave heights and water levels as wave height increases; and 28 years of
simultaneous measured water level data and hindcast wave data were available.

The input wave and water level data
Input water level data were derived from houdy measurements at Avonmouth over a period of 28 years,
transfbrmed for use at the study site. Input wave data wa-s derived from a site-specific wave hindcasting model
driven by hourly wind mea-surements at Cardiff Airport over the same period of 28 years. After
pre-processing of the data as described in Section 2. I , about 20,000 records of I{", T," and high water level
remained as input to the joint probability analysis. Two altemative t)?es of wave data were used:

- offshore wave data representative of conditions several kilometres away from the coast in
about 20m water denth:

- nearshore wave data (after transformation using a wave refraction model) just outside the
breaker zone at hieh water level.

The analysis methodg
The mixhrre of locally generated and swell waves at the site suggested that the mixture of BVN's would be a
more appropriate probability model than the single BVN. Therefore the mixture model was run to produce
bothjoint exceedance (JE) probability sea states and direct predictions of the structure variable (SV). The
BVN model was also mn for comparison purposes, but was used only for direct predictions of the structure
variable. HR's existing JOINPROB method was used to produce joint exceedance probability sea states. To
summarise, four altemative j oint probability analyses were used:

- JOINPROB_JE analysis (HR, 1994) as used in consultancy studies in recent years - this
produces multiple combinations of wave condition (with a fixed wave steepness) and
water level, with a given joint exceedance probability, which can then be converted to
structural response variable predictions i

- MD(_JE analysis using two fitted BVN'S - i) producing multiple combinations of wave
condition (again with a fixed wave steepness for comparison with JOINPROB_JE) and
water level, with a givenjoint exceedance probability, which can then be converted to
structural response variable predictions;

- MIX-SV analysis using two fitted BVN's - ii) working directly in terms of the structural
response variable, and now using a variable wave steepness derived from the orjginal data;

- BVN_SV analysis using a single BVN - working directly in terms ofthe structural
response variable, and using a variable wave steepness derived from the onginal data.

The coastal structures
Two hypothetical structures were tested:

a plain sea wall with a crest level 2,8m above MIIWS and deep water at the toe of the
wall:

a plain sea wall with a crest level 2.8m above MHWS and a toe elevation 2.7m below
MHWS.
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The structural response variables
Two structural response variables were tested:

- overtopping rate using the SWALLOW equations in HR (1980) for a wall slope of l:4;

- armour size using equations (5.44) to (5.46) in CIRIA/CUR (1991) for a wall slope of l:2.

Note on wave steeDness
For illustrative purposes, no upper and lower cut-offs were applied to wave steepness during the initial
long-term simulation used to derive the results shown in Tables 12 and 13 for a rehrm period of 100 yean. For
the offshorc wave data, this made little difference. However, for the nearshore wave data, which contained a
wider range of lower wave steepnesses, this had the effect of producing a small number of quite high waves
with much longer mean periods than in the original sample. For this example application, the longer period
waves demonstrate the importance of wave penod and the sensitivity of overtopping rate to uncertainties
therein. Il a subsequent simulation, a lower limit of 0.020 was imposed on wave ste€pness, as would be done
in a consultancy study. The new extreme oveftopping predictions, for a wider range of retum periods, are
given in Table 14,

The effect of correlation coefficient
For illustrative purposes, two additional series of BVN_SV results are shown in Table 14. Whilst the 'Best'

sub-column contains overtopping rate predictions for the best estimate of correlation direcdy from the data, the
'P = 0' and 'P = I' sub-columns show equivalent results assuming independence and complete dependence,
respectively.

Table 12 100 year overtopping rates (m3/s/m) for Somerset (no limit on wave steepness)

Wave data Sea wall JOINPROB-JE MD(-JE MIX SV BVN SV

Offshore
(steepness of
0.050 for JE)

Deep at toe 1.10 0.72 0.85 0.69

Depth limited
at toe

0.46 0.30 0.42 0.3 r

Nearshorc
(steepness of
0.029 for JE)

Deep at toe 1.34 1.08 9.0 10.7

Depth limited
at toe

1 .10 0.83 8.9

Table 13 100 year armour size (m) for Somerset (no limit on wave steepness)

Wave data Sea wall JOINPROB JE MIX JE MD( SV BVN-SV

Offshore
(steepness of
0.050 for JE)

Deep at toe t .27 1.27 1.n 1 .31

Depth limited
at toe

0.82 0.82 0.83 0.82

Nearshore
(steepness of
0.029 for JE)

Deep at toe r.45 1.45 1.43 1.31

Depth limited
at toe

0.90 0.90 0.96 0.94
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Table 14 Overtopping rates (m'/Vm) for Somerset (minimum wave steepness of 0.020)

Wave data Sea wall MIX_JE MIX SV B\,'}I-SV

Return periods are 1, 10, 20, 100 and 200 years

Best estimate of p P=0 Best P=1

Offshore (steepness
of0.050 for JE)

Deep at toe .-\- 0.03

0.23

0.34

0.72

0.95

0.10

0.37

0.50

0.85

1.04

0.06

o.2r

o.z5

o.47

0.58

0.09

0.31

0.38

0.69

0.85

0.41

0.99

1 . 2 1

1 . 8 1

2.(n

Depth limited at toe 0.03

0.15

0.21

0.30

0.41

0.05

0.19

0.25

o.42

0.48

0.03

0. l0

0.13

o.22

o.27

0.05

0.16

o.2 l

0.31

0.37

0.27

0.57

0-6s

0.87

0.98

Nearshore
(steepness of0.029

for JE)

Deep at toe 0.04

0.35

o.5 l

1 O8

t .25

0.15

0.73

1.01

1.72

2.25

0 . 1 1

0.54

o.77

1.44

r.)cr

0.14

0.67

0.90

1 . 6 1

t ; 7 I

0.68

2.M

2.45

3.50

4.31

Depth limited at toc 0.04

0.31

0.41

0.83

0.91

0 . 1 1

0.53

0.73

|  .zo

1.78

0.07

0.34

o.46

0.76

0.84

0.09

0.48

0.65

0.99

0.67

1.96

z.z2
2.78

2.94

Discussion of the Somerset case shrdv
All of the methods appeared to work satisfactorily, but there are some interesting differences. Roughly the
same armour siz€ (which is only a little dependent upon wave period and not directly dependent on water
level) was calculated whatever method was used. However, overtopping, which is dependent on H,, T. and
water level, was quite dependent on which method and which source of wave data was used. As with the
synthetic data analysed in the Lancaster University part of this report, slightly higher values were derived
directly from the structure variable than from the joint exceedance extremes. As expected, higher overtopping
was predicted usin gthe nearshore wave data, because of the increase in T- in the approaches to the coast, and
slightly lower armour sizes and overtopping rates were calculated in the cases of waves being depth-limited at
the wall, compared to those with unlimited depth. The existing methods gave slightly higher overtopping rates
than the new method, where both worked with ioint exceedance extremes and an assumed constant wave
steeDness.
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Lower llmit on wave steeDness
The importance of wave period was dramatically demonstrated, in the form of much increased overtopping
rates for the struchlre variable calculations using nearshore data where wave steepness was allowed to vary
over a wide range about its mean value, based on the variability seen in the original data. To some extent this
is a genuine effect, reflecting the existence of swell waves at the site, but it is over-emphasised in the results
seen in Table 12. However, in practice this would be corrected by setting a lower limit on wave steepness in
the synthesised data as seen in the much improved results in Table 14. The variability of the results illustrates
the care that should be taken in selecting input data and methods of analysis and interpretation.

Sensitivitv to correlation coefficient
The three altemative BVN_SV results shown in the three sub-columns on the right hand side of Table 14
illustrate the sensitivity to conelation coefficient. The lowest predictions are for'p = 0', corresponding to
independence between waves and water levels, and the highest are for 'p = 1', corresponding to complete
dependence, with the best estimates being only a little higher tian for independence. The independent
predictions fof retum periods of l0 and 200 years correspond roughly to best estimate predictions for 5 and
50 year retum periods, respectively. A factor of four difference in retum period at this site corresponds to a
difference of about a quarter of a metre in still water level, and perhaps a half a metre difference in sea defence
level (allowing for the larger waves which could reach the wall at a higher water level. Conversely, the
dependent predictions for retum periods of 1 and 20 years correspond roughly to best estirate predictions for
10-50 and 800-3000 year retum periods, respectively. This degree of overprediction for the design retum
period at this site would conespond to a difference of about two thirds of a metre of water level and perhaps a
metre or so in sea defence level.

3,4 lssues raised during analysis of other data sets
The new software has already been applied on a number of consultancy studies. This section gives an
insight into some of the experience gained in applying the new methods.

Tees Bay
The overtopping hazard was assessed at three different locations around the Tees Estuary. Wave
conditions were calculated at the three locations usins numerical models. Waler level data from North
Shields was convefted to the sites of interest using faitors based on differences in the tidal range. The
converslon ofthe water level data to the Tees Estuary raised several important issues regarding wind and
wave set-up.

Wind set-up is an increase in water level that occurs over a large area due to the direct effect of wind stress
on the water surface. Wave set-up is a much more localised effect that causes increased water levels in the
surf zone as waves break. It was thought that wind set-up would have been present in the measured water
level data at North Shields, as it is a widespread phenomenon. However, the extent to which it should be
included in the converted water level at the Tees Estuary was unclear. Wave set-up was thought to be
excluded from the measurements, since tide gauges are generally placed with a view to excluding wave
set-up.

As a result of this assessment tidal flow modelling was carried out to assess the extent of wind set-up at
Tees Bay in relation to North Shields. An empirical formula was derived that allowed the water level data
at Tees Bay to include the effects of wind set-up; additionally an allowance for wave set-up was made. As
it transpired, the inclusion of these processes had little effect on the joint probability extremes as the wind
was always from the west or south-west (ie off the land) at the time of the maximum measured water
levels. However, there was a small positive corelation between large wave heights and overall water
levels in the modified data, which was used in the subsequent analysis.

Lyme Bay
JOIN-SEA was also used at a location in Lyme Bay where flood risk was to be assesse.d over an area
comprising of several different sea defence structures. The JOIN-SEA method of exffapolating the joint
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probability density and simulating a very large data set was beneficial here in treating the different risk
elements in a consistent way. As in the Tees Bay study, considerable effort was concentrated on
accurately assessing the water levels at the site of interest (POL, 1997, which provides extreme water level
estimates for the whole of the UK was not available at the time of the study).

The nearest measured water levels to Lyme Bay (with sufficient length of data) are at Devonport, which is
a considerable distance away. The tidal range changes significantly along this stretch of coastline, causing
uncertainty in the interpolation of water level data to Lyme Bay. To overcome this problem, extremes at
Devonport and Weymouth (to the east of Lyme Bay) were derived, and also variations in the spring range
considered, before calculating factors to be applied to the measured Devonport data. The converted data
was then compafed to several months of measured water level data at the site of interest, which showed
good agreement. However, this study highlighted the problems that can arise in 'moving' measure.d waler
levels along a stretch of coastline where the tidal range varies significantly, and reinforced the preference
for having measured data directly at the site of interest.

An interesting point to make in passing is that it is not strictly necessary to 'move' the time series data,
either on waves or water levels, from the measurement or prediction point to the point of application. It
would be possible to determine the dependence between large waves and high water levels using data for a
nearby location and then, as in the intuitive approach (see Section 1.4) to apply it at the new point of
interest. However, it would still be necessary to determine the marginal extremes at the new point.

Korea
A consultancy project off the west coast of Korea provided a good oppomrnity to use the new software in
environmental conditions that were considerably different to UK conditions. The wave and water level
data were split into two seasons, summer and winter, ald considered as two separate cases, since there is a
distinct difference in climate between the two. The highest water levels were expected to occur in summer
and the highest wave conditions were expected to occur in winter. The analysis for each of the two
different data sets revealed a negative dependence between wave heights and water levels. This was
thought to be feasible, if unexpected. However, as a conservative measure for the design calculations the
relationship between the two variables was taken to be independent.

This study highlighted the requirement for a relatively long simultaneous data set. As the original three or
four years of data was split into two populations, the lenglh ofthe time series was effectively halved, thus
creating a relatively short period of data on which to base the fitted distributions. There was therefore a
Sreater than normal degree of uncertainty in the calculated design conditions, prompting the inclusion of a
higher than average margin of safety allowance in thejoint probability results.

Truro
Until now the only primary variables considered have been wave height and water level. However, there is
no reason why JOIN-SEA cannot be used for different variables. With MAFF funding, HR Wallingford is
currently involved in research into the prediction of extreme water levels in estuaries. In parts of many UK
estuaries the combined effects of wave conditions, tidal surges and river discharges need to be considered.
As part of the research JOIN-SEA has been used to assess the dependence between river flows and wave
conditions, and river flows and tidal surges, as well as wave conditions and tidal surges.

Knowing the dependence between each pair of variables enables a three dimensional surface of
combinations of wave height, tidal surge and river discharge, with a specifiedjoint exceedance refirm
period, to be plotted. Tests are currently under way to assess the applicability of such a method to
determine extreme estuarine water levels using three-variable joint exceedance extremes.

Another method being considered, which is perhaps more in keeping with the JOIN-SEA approach, is to
determine the correlation between each pair of variables and to use the results in a long-term simulation
using the Tri-Variate Normal distribution. However, whichever approach is used, conversion of original
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data on flow rate or wind speed to an equivalent increase in water level remains as a separate problem
probably best addressed using hydraulic modelling.

Humber Estuarv
As part of a major strategy study, HR Wallingford undertook wave hindcasting at sixteen points within the
Humber Estuary (based on | 4 years of winds measured at Spurn Point) and a j oint probability analysis
based on water levels measured within the Humber. A number of interesting points are noted.

Although there are many tide gauges within the Humber, HR's client needed to undertake a spatial joint
probability analysis (of tides and surges) similar to that described in POL (1997) in order to achieve the
desired resolution in the water level data.

Although river flow and wind set-up will affect the water levels within the Humber, they were not
explicitly accounted for in thejoint probability analysis, since they would already be present in the
measurements and in the spatial analysis based on those measurements.

The great majority of the records showed no dependence between wave heights and water levels, but for
most of the prediction points a small handful of records showed large waves occurring simultaneously with
high water levels. This rather uncertain indication of a significant correlation in the high tail of the
distribution meant that some manual smoothing of the derived conelation coefficients was necessary to
maintain spatial consistency between prediction points.

Anzrlysis of extreme water levels based on over forty years of water level data in the Humber gave
sufficiently different extreme values that refined values were determined by HR's client for use in
re-scaling during the simulation (otherwise based on only fourleen years of data).

4, DISCUSSION

4.1 Past practice for use of results in design
Joint exceedance combinations
In the past, joint probability analysis has usually resulted in a range of combinations of wave heights and
water levels, each with the same joint exceedance return period (and these 'design sea states' are a valuable
output from tle new method). Each combination is expected to be equalled or exceeded once, on average,
in each retum period. In designing or assessing a structure, one would need to ensure that it could
withstand every 'design sea state' for the return period being used. In other words, for each structural
response variable of interest, each combination of extreme water level and wave condition should be
tested, to determine the worst case for that resDonse vadable. The retum Deriod of the value thus derived
for the response variable (eg overtoppingtwili generally be less than th" r.tu- period of the joint
exceedance extremes, as illustrated in Figure I and discussed in the Lancaster University part of this
report. This discrepamcy between the two retum periods is usually addressed by inclusion of a small
margin of conservatism somewhere else in the assessment. A convenient metiod sometimes used in
previous studies is to use marginal extreme wave conditions with the standard 3-hour event duration, as
opposed to the 12-hour duration which is more strictly correct for extremes conditional upon being at high
tide. The resulting wave conditions are then appropriately conservative.

Application of results at different locations
Ifthe extremes are derived for a location other than the point at which they are to be applied, some
adjustment of values may be necessary. The most obvious case is the need to modify wave conditions
calculated offshore to allow for shallow water transformations orior to their arrival at coastal defences.
However, where the extremes have been calculated for a large irea, such as Christchurch Bay, it will also
be necessary to modify the water levels from one end of the bay to another. The wave transforrnation may
require a site-specific numerical model, but the water levels can usually be adjusted with reference to
published values of tidal ramges at different locations. This remains a consideration in the new method.
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Allowance for trends and/or unrepresentative data
If the wave conditions or water levels are known to be subject to any long-0erm variations or if the period
of measurements is known to be unrepresentative, then some allowance should be made for this. Short-
term or long-term variations could be filtered out from the data before analysis begins. Altematively,
derived extremes could be adjusted to offset known unrepresentativeness. The most obvious example of
long-term change is the expected rise in mean sea level due to global warming. The rate of rise is expected
to be about 5mm per year for the foreseeable future, which should be incorporated into design and
assessment of coastal defences. Other trends include increasing wave heights in the Atlantic, the tendency
for the highest tides to occur at certain times of day and certain times of year, and the 18.6 year cycle for
predicted tides. Again this remains a consideration in the new method, but one which is handled more
neatly than in past approaches.

Analvsis of wave period
In the past, except where direct hindcasting of the response variable has been possible, wave period has not
normally been considered as a separate partially independent variable. Any treatment of wave period has
usually been based on the assumption that wave height and wave period are strongly dependent, perhaps
being related by some standard wave steepness. (2EH,igT.1 is calculated for approximately the top one
per cent of the wave data and the same steepness is assumed to be valid for the extreme wave conditions.

Analvsis of wave direction
Any treatment of wave direction is usually based on a 'conditional analysis', the condition being that the wave
records analysed have directions within a particular angular sector. In other words, wave data within different
direction sectors are considered as being members of different populations (perhaps with different wave
steepnesses) which can be analysed separately. Ideally, the directional sectors should be chosen to correspond
with the different populations of waves expected to occur at the inshore site of inierest, taking accounl of
aspects such as bathymetry, fetch lengths, headlands, dependence upon water depth etc. Each direction sector
then provides separate and effectively independent sea conditions to be considered in any subsequent
assessment. This approach to the use of wave direction is retained in the new method.

4.2 Advantages of the new approach
The main advantages
The new joint probability approach is potentially more objective, flexible and accurate than a.ltemative
methods currently used in consultancy studies, although preparation of the input data and assessment of the
diagnostics for the statistical analysis requires experience. The new approach can provide all of the outputs
available from alternative methods, eg marginal distributions and extremes, joint exceedance extremes, joint
probability density, direct calculation of the distribution and extremes of structural response variables, and
parameters of all fitted distributions. It can thus provide input to both 'design sea state' and 'risk-based'

analyses of sea defences. Generally it performs at least as well as currently used methods, and in some tests
gave significantly better estimates than existing methods, particularly at very high retum periods. Specific
advantages, relevant in the majority of applications, are:

1. Incorporation of the variability of wave period (or wave steepness) both in the analysis and in the
simulation of long samples of data.

2. Assimilation into the analysis of improved marginal predictions based on additional (non-simultaneous)
data on any of the vanables.

3. More direct analysis of struchrral response function(s) such as run-up or overtopping, thereby addressing
the risk of failure or damage more directly. Once the long-term simulation has been carried out, several
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different structural response functions and/or different designs can be tested consis0ently and relatively
easily.

More accurate sensitivity testing
Sensitivity to uncertainty in the environmental variables can be tested in a similar way. For example,
assume that all wave heights could be under-predictedby 15Va and all wave periods by 107o: sensitivity
could be calculated easily and directly by repeating the structural response variable(s) calculations with
suitable multipliers applied to all wave heights and periods. Uncertainty in the dependence level could be
tested in a similar way, Although not so easy, the present approach would permit direct assessment of the
sensitivity to a distribution of uncertainty in one or more of the input variables and/or the combined effect
of uncertainties in more than one partially dependent variable.

Users and usage of the new anproach
The methods are intended for use both by practising engineers and by researchers, although training,
software and input data will be required. The amount of effoft, experience and input data required is
comparable with mnning a faidy sophisticated wave transformation model. The potential benefit of using
the new joint probability approach (or something similar), as opposed to an intuitive estimate, is also
comparable with the benefit of using a sophisticated wave model, as opposed to a simpler method.

The requirement for spesialist data and orogtams
One disadvantage, common to all analytical approaches to joint probability, concerns the need for reliable
simultaneous data on waves and water levels, the cost of which may not bejustifiable in some applications.
Another factor that rnay limit widespread adoption ofthe new methods is their reliance on specialist
computer programs and training.

4,3 New possibilities based on long-term simulation
The present 'design sea state' approach
A small number of design sea states for a particular location are often used in design and assessment of sea
defences. These sea states might correspond to wave conditions with specified retum periods or to
combinations of wave conditions and water levels with given joint exceedance rehrm periods. These design
sea states rnay be applied to the calculation of different variables (eg overtopping, armour size etc) and to
different types of sea defence. However, the same (or even higher) values of the struch.ral response variables
might occur, for example, during swell wave conditions with a lower wave height but with a longer wave
penod . The return periods of the calculated structural response variables will therefore not necessarily be the
same as those of the conesponding design sea states.

An alternative apJ@4qLLased directlv on the structural response variable(s)
A potentially better approach is possible based on long-term simulation of a wide range of sea states, from
which the distribution and extremes of the structural response variable(s) can be determined directly. Once
the long-term sea state data has been simulated, several structural response variables and/or defences could
be assessed quite quickly, without needing to know the corresponding sea states: the probability of
simultaneous failure mechanisms occurring could also be evaluated.

Al altemative risk-base.d approach
Design and assessment could thus be done directly in terms of any structural response variable(s) of interest.
Using this approach, it would not be necessary to detemine a design sea state, but instead the design would be
based more directly on the overall risk of structural damage and/or unacceptable overtopping etc. A further
point is that if a number of altemative designs and a number of different failure modes are to be analysed, then
the risk-based approach may be quickest. This would imply a major change in design practice, but it is
consistent with a gradual move towards more risk-based design.
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4.4 Recommended options for joint probability analysis
There are a range of techniques available: from an intelligent choice of a single water level to use with
established wave conditions to a rigorousjoint probability assessment using long time series data; from a
general offshore study which might be valid over a wide area to a site-specific prediction of overtopping
volumes.

Oualitv of the input data
As well as being consistent with the overall project value, the effort put into any joint probability assessment
is dependent on the quantity and quality of relevant field data. For example, there is little point in carefully
assessing the 'actual' dependence between high waves and high water levels, if the input data is of fairly low
quality, perhaps being drawn from intermittent anecdotal evidence. Around most of the UK coast, there is
sufficient good quality wind/wave/tide data for a proper joint probability assessment to be carried out. To
justify a rigorous approach (as opposed to an intuitive assessment), involving analysis of long time series
data, about three or more years of good quality wave and tide data should be available. This amount of
recorded wave data is very rarely available, but all around the UK there are several years of good quality
sequential wind data, which can be used in wave hindcasting. However, some parts of the UK coast are so
far from the nearest long-term tide recorder that it may be impractical to derive reliable local long-term water
level data. Similarly, there are some parts of the UK where wave hindcasting may be rather uncertain,
perhaps due to the mix of wind-sea and swell, or due to the complicated coasdine. In these circumstances the
effort involve.d in a full joint probability study may not be justified.

Simpler ioint probabilitv methods
In most coastal engineering projects it is worth giving some thought to joint probability, even if it does not
justify a fbrmal study. At the simplest level, an engineer might decide to test the design wave conditions at
Mean High Water Springs (if waves and water levels are almost uncorrelated) or at Highest Astronomical
Tide (ifthey are well correlated). Altematively (or additionally) the independent and dependent cases for
waves zmd water levels might be considered to determine the maximum range of uncertainty in water level
for use with any given extreme wave condition. A better, but still empincal, approach would be to determine
the degree of dependence between waves and water levels and then to apply the intuitive method described in
the third paragraph of Section 1.4. The necessary 'correlation factor' can be estimated from general
experience or with reference to earlier studies in the same area. (In view of the uncertainty, a conservative
value should be taken, as the method itself is not inherently conservative). Armed with this 'factor', extrcme
combinations of waves and water levels (expressed in terms of their marginal rehrm periods) can easily be
determined. These approaches carry a wide margin of uncertainty in terms of joint return period, but they are
better than not taking any account ofjoint probability and cheaper than a more rigorous study.

Riqorous joint probabilitv methods
The main distinguishing feature of a 'rigorous' joint probability analysis is that the dependence function, and
its variability with threshold, is determined analytically from simultaneous data on the variables conceme.d.
For waves and water levels, about thre€ years of simultaneous data are necessary to justify the additional
effort of a rigorous analysis. (Regrettably, the cost of purchasing this data, even where it already exists in
accessible format, can be prohibitive, so this should be checked at an early stage.) The present JOIN-SEA
approach described in Chapter 2 analyses the marginal distributions of the separate variables, and the
dependence function(s) linking them. It then simulates a much larger quantity of data with the estimated
marginal and joint distributions, effectively exkapolating the joint probabllity density. From this data,
extremejoint exce€dance probability combinations, and extreme values of structural response variables, can
be determined, The format also provides appropriate input to risk analysis methods. Extension of the
JOIN-SEA approach to three variables has been demonstrated during ongoing research on exffeme water
levels in estuaries. HR's earlier JOIMROB analysis method was less flexible and a little less objective in
derivingjoint exceedance extremes, and is no longer in frequenl use.
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Better knowledge of marginal extremes
The three basic inputs to joint probability analysis are the distribution of the fimt variable, the distribution of
the second variable, and knowledge of the dependence between the two. There may be additional
information on one or more ofthese three aspects, beyond that which is used directly in thejarnl probability
analysis. The most common example is a better knowledge of extreme water levels, based on previous
analysis of a longer period of data, than is available from analysis of the period for which there is both wave
and water level data. The most convenient way of incorporating this additional information is by re-scaling
of the results. For example if the shorter period of data is thought to under-predict extremes by 10cm, then
all extreme values are simply increased by lftm. JOIN-SEA allows this to be done smoothly, interpolating
between different amounts of adjustment specified by the user, during simulation of the very large sample of
sea state data.

Offshore and inshore joint probabilities
When specifying ajoint probability study, the coastal engineer should, of course, have regard to the intended
range of use of the results. If all of the existing coastal defences within a large bay are to be assessed, then a
general offshore wave and water level study is appropriate, resulting in combinations of water levels and
offshore wave conditions with given renrm periods. The offshore conditions will then be transformed to the
various inshore locations as and when needed. However, if only one inshore location is of interest, it is
probably better to transform the time series wave data to the inshore location and to carry out the joint
probability study directly at the inshore position. This has the advantages of assessing the dependence
between high waves and high water levels directly where they are needed, and of providing wave condition
results which are directly useful without further work. In some situations it may also be necessary to make
local allowance for the effects of wind set-up, wave set-up, river flow and seiching, where this is not already
represented in the water level data used for the analysis. It may also be necessary to consider the dependence
of wave transforrnation on water level. A common example of this is where waves are strongly depth-limited
at a sea def-ence and where more extreme water levels will pemit higher waves to reach the structure.

Inclusion of wave period and direction
For design sea states, expresse.d in terms ofthejoint exceedance probability of waves and water levels, wave
conditions are usually represented solely by wave height, with wave period and dircction being treated as
secondary variables. Wave periods can be assigned based on a standard wave steepness, although it may be
worth checking the sensitiviry of the end calculations to wave period. The new JOIN-SEA approach analyses
the distribution of wave steepness in the original data and allows wave period to vary as a function of wave
height. This variation is then automatically included in JOIN-SEA's long-term simulation of sea conditions.
If relevant, wave direction can be incorporated by means of separate analyses for each wave direction sector
of interest.

Direct calculation of structural response variable
If only one particular structural response is of interest, for example overtopping or force on a wall at one
peuticular location, then that variable can be hindcast and extrapolated directly. This has the advantages of
including wave period and direction as separate independent variables, and ofproviding results in
'single variable' format exactly where they are needed. Similarly, the long-term simulation part of
JOIN-SEA will incorporate the variability of wave period, which can then be used in the calculation of
structural responses such as ovenopping. However, the engineer should be aware that it is not possible to
infer the more general results from the more specific results.

Note on the use of multi-valued results
It should be emphasised again that wherejoint exceedance analysis yields multiple combinations of wave
conditions and water levels, each with the same retum period, then the worst of these potential 'design sea
states' should be adopted for design purposes. The particular combination may vary from one loeation to
another and from one response parameter to another.
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Note on climate chanse
The most convenient and most common way to make allowance for expecte.d future climate changes is to
perform thejoint probability calculations at today's values ald then to modify the results as and when
required for design calculations. For example, to allow for 0.25m of firture sea level rise, simply add 0.25m
to all water level results derived from thejoint probability analysis. Trends are harder to identify and model.
A possibility is to el iminate trend by converting all records to today' s values before j oint probability analysis,
and then to incorporate trend by modifications to the results as suggested for future climate change.

Summary
To summarise, consideration of the dependence between high waves and high water levels should never be
neglected, where both variables are important. However, the scope of each joint probability assessment
should be decided on its own merits, in terms of input data available, the intended end use, and the potential
benefits to be derived. HR's present practice in consultancy shrdies involvingjoint probability analysis
follows the recommendations above. Just over half of the studies are carried using the one of the methods
outlined in the paragraph headed 'Simplerjoint probability methods', with most of the remainder being
undertaken using JOIN-SEA. Onshore or offshore wave data, wave period ald/or direction, better
knowledge of marginal extremes, joint exceedance extremes and/or struchrral response variables, and
allowance for clinate change, are included as and when appropriate.

4,5 Perlormance of the various techniques
Overall conclusions
Several example calculations and case studies are presented in both parts ofthis repot, demonstrating the
relative merits of the different approaches to joint probability assessment. All of the methods seemed to work
satisfactorily, subject to their own limitations, mainly relating to the manner in which dependence and wave
period were assessed (if at all). Overall, JOIN-SEA performed best, perhaps because of its rigorous analysis
of dependence and its incorporation of variability in wave period, but still some care is required in operation
and interpretation of results. Conclusions from individual comparative tests are given in Chapter 3 of this
part of the report (field data) and in Chapter 10 of the Lancaster University part of this report (simulated
data). Some of the main points are repeated here.

Relative importance of different uncertainties
General experience suggests that uncertainties in wave conditions, uncertainties in water levels and
uncettainties in dependence are of roughly equal importance in determining the overall uncefiainty in sea
defence design. However, recent advances in extreme water level prediction, together with the large amount
ofhigh quality data available around the UK, mean that uncertainties in water levels are probably lower than
in wave conditions or dependence. A conclusion in the Lancaster University part of this report, based on
analysis of simulated data sets, is that refinement of extreme wave conditions is more important than
refinement of dependence modelling. However, this is partly due to the direct use of offshore wave
conditions in structural response variable analysis, when in reality shallow waler effects would usually have
moderated them before arrival at sea defences. Where wave heights are depth-limited by breaking at sea
defences, refinement of extreme water levels is probably the most important ofthe three aspects ofjoint
probability analysis, followed by dependence assessment. Where shallow water effects arc important but
waves are not depth-limited by breaking, refinement of extreme waves and dependence are probably of about
equal importance.

Dependence modelling
JOIN-SEA's statistical models have sufficient flexibility and robusmess to capture the features ofthejoint
distribution of sea conditions producing extreme sea states for a range of observational and simulated data
sets. As with all methods, experience is required in handling data sets which do not conform to expectations:
examples are an unusually wide distribution of wave steepness or more commonly a very small number of
severe sea states exhibiting high dependence within al otherwise uncorrelated data set. With care, it is
possible to treat such data sets less subjectively using JOIN-SEA than with other methods tested during this
proJect.
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Wave period modelling
The importance of wave period was demonstrated in both parts of this report. Where a standard wave
steepness was applied to obtain the wave period to use with extreme combinations of wave height and water
level, significantly different overtopping rates were predicted for a site-specific value of wave steepness
compared to a 'global' value. The use of a global value tended to under-predict the oveftopping rate, due to
its sensitivity to wave period. The facility to allow a distribution of wave steepness within JOIN-SEA
worked well, but some care is needed to prevent over-prediction of low steepness waves and consequent
over-prediction of overtopping rate.

The discrepancv between the iqillgxgeedalee aruLk)int density approaches
In the joint distribution of wave height and water level there is a discrepancy between the probabiliry
associated with thejoint exceedance extremes expressed in terms of combinations of wave height and water
level, and the failure region associated with struchrral response variables. The probability of the
combinations (the green zmd yellow square areas in Figure 1) is smaller than the probabilities of the
corresponding responses (the red and blue rounded areas in Figure l). This means that a worst case
combination with a givenjoint exceedance retum period will under-predict the response with the same retum
period. This effect is well known and, without being quantified, is usually assumed to be the equivalent of a
factor of 2-3 in retum period and to be offset by conservative assumptions elsewhere in the analysis
procedure. Tests with the simulated data in the Lancaster University part of this repoft suggest a factor of
lVz-2 in rchsm peiod, whereas tests with field data in this part of the report suggest a higher vahte of 2-4 .
Direct use of structural response functions, where known, avoids this difficulty but introduces others.

Direct comparison between JOINPROB and JOIN-SEA
The comparison of JOINPROB with JOIN-SEA in Section 3.2, using the combinations method of
determining the worst case overtopping event and assuming the same value of wave steepness, shows good
agfeement at all sites. This suggests that the method of marginal extrapolation at varying thresholds, for
both variables, to construct contours of equal joint exceedance retum period, gives similar results to the
extrapolation of the joint density, as used in JOIN-SEA.

Comparison between.ioint probabilitv and structure variable methods
In general, the newly developed joint probability methods are better than structure variable methods. This
was not necessarily the case for existingjoint probability methods as, unlike structure variable methods, they
ignored variation in wave period. Analysis presented in Chapter 9 of the Lancaster University part of this
report shows that it is possible to produce very erroneous extreme values by direct extrapolation of the
structural response variable. However, similar analysis in Section 3.1 ofthis part ofthe report suggests that
HR's existing approach to direct hindcasting and extrapolation of the structural response variable is
reasonably robust and reliable in this example, although not as good as rhe new JOIN-SEA method.

The imponance of site-specific nearshore data
The Somerset case study in Section 3.3 illustrated the importance oflocal variations in wave conditions and
dependence which might not be represented in ajoint probability analysis using offshore conditions.
Different overtopping rate predictions (in this case higher, due to the increased wave period) were obtained
using nearshore wave data. Reduced overtopping predictions were obtained when waves were assumed to be
depthJimited by brezking before arrival at the sea wall. A similar pattem was seen in the armour size
calculations, but differences between nearshore and offshore wave data were less, due to its lower sensitivity
to wave period,

A practical illustration of the conclusions
Some of the conclusions can be summarised in more practical lerms in the form of the following example.
For locations with a small positive correlation between waves and water levels, the assumption of complete
dependence between wave heights and water levels could lead to sea defence crest levels being designed up
to about two metres too high. Conversely, the assumption of independence could lead to sea defence crest
levels being set too low. More realistically a poor but deliberately conseruative estimate of dependence
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might result in a sea wall being designe.d about half a metre higher than if a more reliable analysis ofjoint
probability had been undertaken.

4.6 Availability of methods and staff time involved
Usage ofjoint probabilitv analvsis within coastal engineering studies
Joint probability has change.d over the last ten years from being a major element of a coastal desk study to
being a fairly routine tool for use in most coastal studies. A coastal engineer who is capable of deriving
extreme wave conditions and extreme water levels should also be capable of making an intelligent estimate
as to how likely they are to occur together, once the principles have been understood. A more detailed
assessment of dependence and joint probability requires more experience, specialist knowledge, and good
data on waves and water levels. However, coastal engineers who are familiar with wave predictions and
numerical techniques should be capable of carrying out theif own assessments. A rigorous joint probability
analysis using long time series data requires a large volume of data, experience, specialist software, and
expertise in interpretation of the results.

Relative costs of different analysis methods
The cost of ajoint probability assessment obviously varies depending upon how much input data has to be
purchased and upon the particular circumstances of the study. However, to give an idea of the effort
involved, the following numbers of days of experienced staff time are typical, including time for assimilation
of data, checking of marginal extremes, and for interpretation and reporting:

. Intelligent estimate of dependence, leading to sensible water levels at which to test derived extreme
wave conditions: % day

. Intuitive assessment ofjoint probability extremes, leading to a range of combinations of waves and
water levels with given joint exceedance retum periods: 2 days

. Rigorous assessment ofjoint probability extremes based on long time series data, leading to a range
of combinations of waves and water levels, from different direction sectors, with given joint
excee.dance rehrm periods: 5 days

' Rigorous site-specific derivation and extrapolation of force or overtopping, based on long time senes
data on waves and water levels: 5 days

The times given above refer to analysis at the first point within a study area. Each subsequent analysis point
within the same area and same repoft would add only about one third to the staff time for the first point.
Acquisitian of data, and wave generation and transfornwtion modelling are rct included in the times given.

ApprOqche$ laru used at HR Wallinsford
Joint probability analysis is a fairly standard requirement in UK coastal defence studies where overtopping
may be an issue. It is a less common requirement in overseas studies. Around two thirds of HR's joint
probability studies are undertaken using desk study methods (even in cases where wave or tidal flow models
may be needed elsewhere in the project). For larger studies and for final design, a rigorous analysis is
desirable, but the data purchase costs will often be prohibitive. A full analysis will not consistendy either
increase or decrease the best estimate of the required height for a sea wall, but it should reduce the uncertainty
by 10-20cm. If the potential saving in construction cost is high compared to the cost of buying or generating
the reliable time series data needed for a firll analysis, then this would seem to be a cost-effective option.

Since about 1998, HR Wallingford has stopped using the earlier JOIMROB programs, and has switched
entirely to the new JOIN-SEA methods. Results continue to be usually quoted in terms of joint excervdance
extremes, but direct simulation of responses such as overtopping is sometimes used.
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4.7 Futuredevelopments
Ongoing research
The methods are continuing to be developed and applied within other MAFF-funded research at
HR Wallingford. For example, the same statistical methods have been adopted for use within a project on
extreme water levels, flows and waves in eshraries. As part of another ongoing project, the programs have
been released for specialist beta-testing within the industry, which hopefu\ will lead to new developments
amd applications.

Application to other vadables
Most of this report deals with joint probability as it affects large waves and high water levels. However, it is
worth mentioning that, in principle, the methods have wider application, for example to waves and winds,
swell waves rmd stom waves, waves and currents, and water levels and river flows. However, it remains
necessary to have good data on the marginal extremes, and sufficient data to estimate the dependence between
the two variables. Also, the new progams are specific to wave heights and water levels, with wave periods as
a related third variable, so some re-programrning would be needed before use with other variables.

Move from 'design sea staie' to risk-based design
In the longer-term, the methods offer the chance to make a significant change to the way in which sea defences
are designed and assessed. An accuratejoint distribution of wave height, wave period and water level can now
be constructed, applied and analysed with relative ease. It would be feasible to work directly in terms of the
retum period for different structural response functions (eg overtopping or force) on a range of sea defence
options, without the need for the less direct 'design sea stale' approach used at present. The risk-based
approach may even be quicker to apply than the more traditional methods where a number of altemative
designs and failure modes are to be considered.

!"**"u,*",0 34



5. REFERENCES

CIRIA (1996). Beach management manual. CIRIA Report 153.

CIRWCUR (199I). Manual on the use of rock in coastal and shoreline engineering. CIRIA Special
Publication 83.

S G Coles and J A Tawn (.1994). Statistical methods for multirariate erdremes: an application to
structural design. Applied Statistics.

HR Waflingford (1980). Design of seawalls allowing for wave overtopping. HRReportEX 924.

HR Wallingford (1994). Valifution of joint probability methods for large waves and. high water levels.
HR Report SR 347.

HR Wallingfbrd (2OOO). IOIN-SEA user manual. HR Report TR 71.

Ministry of Agriculture, Fisheries and Food (1995). Joint probabilities - a workshop to further research.
MAFF Flood and Coastal Defence Newsletteq July 1995.

MWOwen,PJHawkes,JATawnandPBortot(1997). The joint probability of waves arul water levels: A
rigorous but practical new approach. MAFF Conference of River ard Coastal Engineers, Keele.

Proudman Oceanographic Laboratory (1997). Estiftntes of extreme sea conditions: Spatial analyses for the
UK coast. POL Intemal Document No 112.

E**Wdlingford 35 SR 53? l"l/05/d)





Appendices

lHa w"ttinsrora





Appendix I

Comparisons between joint exceedance eKremes for different analysis methods

Figure Al: Ckistchurch
Figure A2: Dover
Figure A3: Dowsing
Figure A4: Cardiff (0- 190"N)
Figure ,{5: Cardiff ( 190-360'N)
Figure A6: North Wales

Notes: l) Dots show original data
2) Prediction points show joint exceedance extremes with given
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Notation

Structure parameters

A: the structure function, which links the sea condition variables to the variable of interest
(the structure variable).
Y2: the structure variable at time f.

Qg: lhe overtopping discharge rate (an example structure variable).
X1: the (multivariate) sea conditions, at time f, for generality taken to be d-dimensional,
but usually consisting of (SW L, Hs,T2, d, S) Iisted below.
A,: failure region for X, corresponding to the set {x:A(x) > u}.

Input variables

.9W-L: still water level.
,.9zrge: non-tidal component of still water level.
f15: significant wave height.
T2: (zerc mean crossing) wave period.
d: (predominant) wave direction.
,5: wave steepness.

Distributious, densities and probabilities

ft(c): the (marginal) density function of X evaluated at z.
Fx(r): the distribution function of X evaluated at z, i.e. Pr{X < r}.
O(z): the distribution function of a standard Normal (Gaussian) random variable.

ft: the joint density function of X.

fx: the estimated joint density function of X.
Fx(x): the joint distribution function function of X : (Xr, . . . , Xa), i.e. Pr{X1 <
ry , . . . ,Xa1ra l .
Fx(x): the joint survivor function of X, i.e. Pr{X1 > 11,. . . , X1> r1}.
Pr(,4): the probability of event ,4 occurring.
Pr(A): the estimated probability of event ,4 occurring.

Statistical Models and parameters

GPD(o, {): the generalized Pareto distribution with scale parameter o and shape param-

eter {, used as a model for excesses over a threshold.
GEV(p, a {): the generalized extreme value distribution with location parameter p, scale
parameter o and shape parameter {, used as a model for maxima.
gp: the return level with return period of 1/p.
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1lo: the estimated return level.

BVN: a bivariate normal distribution which has correlation parameter p.

z: a threshold used in both marginal and dependence modelling.

Threshold BVN model: a model for the joint extremes which is of bivariate norma.l form
with correlation, p,, which depends on the threshold used to define a joint extreme.
Mixture of BV N model: a model for the dependence structure which is a mixture of two

separate BVI{ models with potentially different correlations. The probabilities ofthe two

BV/y' models in the mixture arc pM and, | - pM.

TYansformed variables

S*: wave steepness variable transformed to follow a standard normal distribution.
I{: significant wave height variable transformed to follow a standard normal distribution.

Diagnostics

T(z): a sample based diagnostic statistic, which is used to assess when a conservative
dependence estimate) of complete dependence between the variables, can be used without
substantial over-estimation.



Chapter t

Introduction

Since 1991, MAFF have funded a study of joint probability methods at HR Walling-
ford. HR have developed practical methods of estimating the degree of correlation be-
tween waves and water levels for practising engineers to apply to the design of coastal
flood defences. Under a separate MAFF-funded project, the Proudman Oceanographic
Laboratory and Lancaster University have developed statistically rigorous methods for
estimating the joint probability of tides and surges, and more generally, techniques for
handling joint probabilities of extremes of any environmental variables. However, these
rigorous methods can only be applied by specialist statisticians.

In previous work by Michael Owen, whilst at HR, joint probability methods were
identified as being important in estimating the probability that coastal flooding occurs,
as this is determined by overtopping discharge rates (given by sea-levels and waves) rather
than by sea-levels alone.

In August 1994 MAFF hosted a Workshop on joint probability chaired by Michael
Owen. As a result of the Workshop HR and Lancaster University submitted a joint

research proposal to MAFF entitled The use of joi,nt probabili,tg data on waues and, water
leuels i,n coastal eng,ineering appli,cati,ons. This proposed a 2 year study starting April
1995.

o During the first year Lancaster University would concentrate on developing generally
applicable statistical techniques and software, suitable for eventual use by non-
specialists for extrapolation in joint probability problems. These methods were to
be tested on synthesised data and the results compared with those obtained using
HR's existing methods.

r The second year would see further refinement of these techniques and extensive
application in practical studies at HR.
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MAFF funded this project with the aim of bringing together the best aspects of ex-
isting approaches, combining statistical rigour with engineering practicality, to provide
more powerful tools for routine use by practising engineers and consultants. This report
describes the work in the first year of the study focusing on the progress at Lancaster
University into producing rigorous yet applicable methods.

1.1 FYamework of the Study

When considering the design of a new sea-wall, or other sea defence, or when assessing the

safety offered by an existing design, a key step is the estimation of the probability that

the design fails to protect against extreme sea conditions. This probability assessment is

a fbur stage process:

1. the selection of a design (either the existing design or one based on some preliminary

analysis),

2. the identification of all possible types of failure for that design - the modes offailure,

3. for each mode of failure, the identification of the combinations of sea condition

variables which cause failure,

4. the estimation of the probability ofthese combinations which give failure.

There are a number of modes of failure. such as

o overflow when the water level exceeds the level of the crest of the defence,

r overtopping - when the combined effect of waves and water levels results in waves

running up and breaking over the defence,

r structural failure such as severe damage to rock armour revetment or erosion of an

embankment leading to the formation of a breach

For any particular mode of failure we term the associated variable of interest the

structure variable. Generallv the structure variable is related to the sea conditions

o tide,

. Sulge,

significant wave height,

wave period (here taken to be zero mean crossing period),
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. wave direction (here taken to be predominant wave direction),

via the function A, which we term the structure function. Thus

structure variable : A( tide, surge, significant wave height,

wave period. wave direction )

A more useful notation is that, at time t, we }ave sea conditions, X;, and the structure
variable X, with

Yr = A(&) for all t.

Here X1 is multivariate (5-dimensional) , (Xr,r,. .. , X5,1), with X1,1 denoting the iide, X2,1
denoting the surge, X3,s denoting significant wave height, Xa,1 denoting wave period, and
X5,1 denotiug wave direction.

Throughout the study the methods that are developed apply to any mode of fail-
ure/structure function. However, to illustrate the methods in application we consider
only overtopping as the mode of failure and take the structure variable to be the overtop-
ping discharge rate. For this example the structure function is

A(X) : o19X3Xa exp{- a2(u - X2 - X)llxa(sh)1/211, (1 .1 .1 )

for a sea-wall of height a and where g is the acceleration due to gravity. This form
was suggested by Hydraulics Research Station (1980) based on wave tank studies for a
simple type of sea-wall. Here the sea-wall is a sloping design and the constants a1 and a2
in equation (1.1.1) depend on the characteristics of the sea-wall design. From equation
(1.1.1) it is clear that overtopping will occur only if at least one of the variables

r still water level, Xr + &,

. significant wave height, or

r wave period

is sufficiently large.
Aside: note that Jor thi,s sturlg the structure function ignores the directi,onality of

the uaues but waue d,irection ts retai,ned in the sea conrl,iti,on uector X2 to ai,d, the latter
stati,stical modelling of the joi,nt distri,bution of the other sea corul,itr,on uari,ables. Srmi,larly,
the decompositi,on of the sti,ll uater leuel into tide and, surge coTnponents i,s not essential
other than to ar,d the statr.stical mod,elli,ng.

Now, the probability of some critical discharge rate, u say, being exceeded at time f is
given bv

Pr{Y1 > u}.

l1
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In terms of the sea conditions X; we can re-write this probability as

P. {4>u} :  P r {A(X1)  >z }
: Pr{Xr € -4"},

where the set A, corresponds to all combinations of the X1 variables which lead to values
of the structure variable which exceed z. i.e.

A" :  { x :  A (x )  >  u } .

We term the set,4., the failure region. Note that every combination in the failure region
is not equally likely, for example moderately large still water levels and waves may give
the same discharge rate as an extreme still water level with small waves, but one of these
combinations will be more likely than another depending on the joint distribution of X.

Motivated by the two forms for expressing the probability of the structure variable
exceeding a critical level, i.e. a design failure occuring, two statistical methods have been
proposed for estimating this probability, or the design parameters, in practice. These
methods are:

1 . Structure Variable Method
The sea condition data are used to construct a series of structure variable data.
These structure variable data are extrapolated to more extreme levels, via a statis-
tical model for the distribution of the structure variable.

Joint Probabilities Method
The sea condition data are themselves extrapolated to more extreme combinations.
This is achieved via a statistical model for the joint distribution of the sea conditions.
The probabilities ofinterest for the structure variable are then inferred by integrating
the joint distribution over the failure region.

There are three key distinctions between the methods:

1. The variable extrapolated: the structure variable in the structure va,riable method,

and the sea conditions for the joint probabilities method.

2. The use of the structure function beyond the data: this knowledge is ignored by

the structure variable method but, if known, can be fully exploited by the joint

probabilities method.

3. The generality of the analysis: the statistical extrapolations for the structure vari-

able are specific to the site, design, and mode of failure under consideration, whereas

fbr the joint probabilities method the design and site-specific features are excluded

from the extrapolation as they are features of the structure function. Thus the

statistical analysis for the joint probabilities method applies to any design analysis.

2.
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A consequence of these features is that the joint probabilities method is generally the
preferred approach by both statisticians and design engineers but has the drawback of
additional complexity, specifically the dimensionality of the extrapolation of the sea con-
dition variables, which requires both

e extrapolation of the separate sea condition variables

r extrapolation of the dependence between the sea condition variables.

In this study we will develop both these methods for problems involving the estimation
of the probability that overtopping discharge rates exceed critical levels.

L.2 Current Implementation

HR and consultant coastal engineers currently implement versions of both the structure
variable and joint probability methods for clients and for internal resea.rch in a routine
fashion (Hawkes and Hague, 1994).
Structure Variable Method
Application ofthis method involves the use ofthe structure function, e.g. equation (1.1.1),
which is viewed to be the most appropriate for the design under consideration. Data on
the structure variable a,re used to extrapolate to more extreme events using statistical
methods simila,r to those used in this report.
Joint Probabilities Method
There are a number of levels of sophistication at which this method is currently applied.
Here we review only the two most rigorous.

The approach currently used involves a number of stages.

1. The joint distribution of still water level, SW L, and significant wave height, IIs, is
evaluated by estimation of the probabilities

Pr {SWL>r ,Hs>A}

for all r and g in which either r or A ate la.rge levels of the respective variables.

2. The wave steepness (a function of wave period and significant wave height) is taken
to be a constant value. This constant is estimated as the average wave steepness
value of the largest 1% of significant wave heights (or some standard value is taken).

3. The structure variable value associated with each (r, g) pair above is now evaluated.
This evaluation requires the use of a wave period which can be inferred from y and
the estimated constant wave steepness value.

1 t
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4. The probability of the structure variable exceeding the level a is taken to be esti-
mated by

maxPr {SWtr>r ,Hs>U}

where the maximum is taken over all combinations of (2, g) such that the resulting
structure variable value is z.

A more refined version of this method follows the format above with certain steDs
modified as below:
1/. The probability F(z,g) -PI{SWL) n,Hs > g} is estimated as above and from this
the probability of (SW L,11s) falling in a rectangular cell [16, r1j x lAo,yt] is obtained by

Pr {26  <  SWL < r t ,yo  <  Hs <  At }  :F ( "o ,ao)  +F(q ,y )  -F( ro ,Ar )  -F( r t ,yo)

2'. Sometimes variation of the steepness of the waves is accounted for. Usually by trying
different values of S.
3'. Step 3 is unchanged.
4r. The probability of the structure variable exceeding the level u is given by the sum of
the cell probabilities over those cells for which the corresponding (SW L, Hs) pair, when
combined with the constant wave steepness value, give a structure variable exceeding z.

1.3 Comment on the Current Implementation

There are three features which may potentially limit the accuracy of results obtained
using the joint probabilities method as currently implemented. These features are not a
restriction for the structure variable method.

1 . The estimation of the joint probability Pn{SW L } r, Hs > gr} is essentially based
on statistical estimates for the separate variables combined by an empirical estimate
of the dependence between the variables. When both n and g are large it is well-
known in statistical theory that such empirical estimates can be poor.

Wave period is taken to be given exactly by the significant wave height and the
estimated constant wave steepness value. Waves with longer periods for a given
wave height can occur and these will typically produce larger values of the struc-
ture variable. Sometimes in applications of the refined method this restriction is
overcome by incorporation of variations in S.

A feature of the more basic current approach is that the failure region used to
estimate the probability of failure, Pr{X e ,4,}, is a subset of the true failure
region ,4,. Thus, even if the joint distribution of the sea condition variables was

a

2.
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accurate, the probability of failure would be under-estimated by current methods.
To illustrate this feature, ignoring wave period, the current method takes the failure
region to be approximated \, {SWL} z,Hs > y} for some suitably chosen (c,g).
All the elements of this set give a structure variable value which exceeds some level z
say. However, this set does not contain aIl (SW L,11s) values which give a structure
variable greater than z. For some SW L > r with 115 ( g, and for some SW L < x
with Ils > g, the structure variable will exceed ti. These potential failure values are
excluded from the failure region leading to a biased estimate.

I'rom work prior to the commencement of this project it was unclear how important any
ofthese deficiencies/approximations in the existing methods were. They may cancel each
other out, or they may cause additive errors. However, even if the errors are additive, the
approximation may be sufliciently good to obtain the optimal design.

The only evidence prior to the project comes from inconsistent outputs from current
implementations of the structure variable method and the joint probability method. Dif-
ferent approaches have been used from time to time, dependent on budget, availability of
input data and intended end use of the results. However, when differences have arisen it
has not been clear whether the disprecancy lies in the estimates provided by the structure
variable method, due to its poor extrapolation features, or is due to the weaknesses in
the implementation of the joint probability method. This feature has resulted in some
doubts about the eiven estimates.

L.4 Objectives

This study proposes to examine each of the two statistical methods as aids to design
assessment. The methods will be developed generally and applied, as an example applica-
tion, to the estimation of the probability of overtopping discharge rates exceeding critical
Ievels. In so doing, the study objectives are:

r To develop more fundamentally rigorous methods for analysing the dependence be-
tween still water level and wave extremes and improve the handling of the wave
steepness component of the statistical model. These modifications should remove
the statistical inadequacies in the current 'practical' approach and also lend them-
selves to application by practitioners;

r To remove any inconsistencies between the approaches in terms ofthe derived prob-

ability of failure, i.e. through using the same structure function/failure region for
each method;

l i )
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To identify and comment on situations where the two most often used current ver-
sions of the joint probability method work well and those where they are poor;

To incorporate the most up-to-date information on the separate distributions of
extreme still water level and significant wave height;

To provide statistical output directly usable by coastal engineers to assess probabil-
ity of failure for the mode of failure under consideration;

To validate the methods on simulated and observational /hindcast data sets.

The way that we shall approach a simple solution to the problem is to adopt the
rigorous framework of Coles and Tawn (1994) but instead ofusing their complex statistical
models for dependence in the extreme joint tail of the distribution we shall explore a much
simpler but more flexible approach based on use of the multivariate normal distribution
for the sea condition variables after suitable transformation. This differs from the Coles
and Tawn approach where multivariate extreme value distributional models are used after
a different marsinal transform.

1.5 Outline of the Report

The report comprises three distinct parts. In Part I the theoretical basis for the joint

probability method is given. In Part II the estimation of the joint distribution of the sea

condition variables is considered for observational and simulated data. Finally in Part III
we illustrate the use of the joint probability method to give the distribution of extreme
values ofthe structure variable by application to the problem of estimating the probability
of the overtopping discharge rate exceeding a critical level.

More explicitly, Part I contains the following: Chapter 2 gives a general review of
the two statistical methods (structure variable and joint probability) and compares their
properties. In Chapter 3 background information is given into the statistical methods used
for extreme value modelling in univariate and multivariate problems. For multivariate
problems we examine the importance of the degree of dependence and the form of the
failure region in determining the probability of failure. Chapter 4 contains the details
of the marginal and dependence statistical model components of the joint probability

method. Also in Chapter 4 the evaluation of the probability of interest from the joint

probability method is discussed.
Part II starts by introducing the study data sets in Chapter 5. Observational data

from 6 sites and 5 data sets simulated from known statistical models are described. These
data are studied throughout Chapters 6-8, where the methods developed in Chapters
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2-4 are applied to these data. Specifically, for both types of data set, in Chapter 6 each
of the separate sea condition variables is analysed with different statistical models being
considered; in Chapter 7 the dependence between extremes of the sea condition variables
is analysed; and in Chapter 8 the joint extremes of still water level and significant waves
are estimated.

Part III comprises Chapter 9 where the distribution of the overtopping discharge
variable is derived from both joint probability and structure variable methods. A key
feature in this context is the assessment of the impact of extra knowledge on the separate
sea condition variables on the estimation of the distribution of the structure variable.
This chapter compares the structure variable and joint probability methods relative to
each other and against the methods used by coastal engineers. For the simulated data
the joint distribution of the sea condition variables is known (given in Chapter 5) so the
true distribution of the structure variable (e.g. the overtopping discharge rate) can be
inferred. Thus the true performance of the methods can be assessed for the simulated
data. In Chapter 10 some conclusions are presented. Throughout, all technical statistical
details have been kept to a minimum, with details when necessary given in a technica,l
aooendix.

1.6 Good Statistical Practice

There is a recognised standard framework for good statistical practice when modelling
data using statistical techniques. This framework is

o Use of valid data

r Use of all available information

Incorporatlon of scientific knowledge

Rationally chosen statistical models

Efficient method of inference

1 7

r Assessment of sensitivity

o Quantification of uncertainty

e Variety of ways of communicating results

In many applications the quality of the data,
sometimes lead to deviations from this framework.

or the purpose of the investigation,
In this studv when we have deviated
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from the framework we have tried to follow the rationa.le behind the framework. The
particular area where this study is weak, is on the quantification of uncertainty. There
are three sources of uncertainty:

1. the data (as waves are typically hindcast)

2. the choice of statistical model

3. the estimation of the parameters in the statistical model.

The latter is given by standard errors of parameter estimates. The second is partially
assessed by comparison of different models, but we make no attempt to address the
former. Since the study was aimed at assessing whether there were gross errors in the
existing methods, rather than whether they are close to optimal in terms of mean square
error criteria, we have not given standard errors for most parameter estimates.
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Chapter 2

Outline Statistical Methods

When assessing the probability of failure for a single sea condition variable, the events
which give failures are easily characterised as failures of the structure caused by extreme
values ofthe variable, i.e. failures occur whenever the variable exceeds some level. When
the sea condition variable is inherently multivariate evaluation/estimation of the prob-
ability of failure is more problematic as there is no general ordering which determines
which are extreme values. However, given the context ofthe problem, a natural approach
is to base the ordering on the associated structure variable, since a failure is deemed to
have occurred, in a multivariate problem, if the structure variable, A(X), exceeds some
critical level.

An added complication to the problem is that a design may have to satisfy several
di{ferent design criteria, i.e. withstand the extremes of several structure variables. For
simplicity we will focus on there being a single design criterion. The work in the second
year of the project will extend this framework to more general cases.

Therefore for a structure function A, where failures occur when A(X) ) z, the extreme
values of X are the set ,4r, given by

Au :  {x :  A(x )  >  u } .

In this project A will be taken to be a general structure function until Part III of the
report where it is taken to be given by equation (1.1.1) for overtopping discharge rates.

Now, in general, the probability of failure at some time f say, is given by

Pr {X1  e  A" ) :  P I {A(X1)  >z }
: pr{y, > z},

where Y1 - A(Xr) is the structure variable. The left and right hand sides of the above
equation provide alternative formulations for the probability of failure. Starting from
each of these expressions in turn provides the basis for the derivation of the two statistical

27



CHAPTER 2, OUTLINE STATISTICAL METHODS

approaches to the estimation of the probability of failure in multivariate problems where
a design exists or has been specified. Working from the right hand side determines the
structure variable method; whereas working from the left hand side determines the
joint probabilities method.

In describing these methods below we will suppose that

r the observations of each of the processes under study are identically distributed
through time, that is the distribution of observations remains the same whatever
the time of the year.

o complete observations are available on the vector of sea conditions at each time.

These are reasonable assumptions, as

1. Observations are approximately independent as we focus on only high water levels,
so observations are separated bv 12 hours;

2. Observations are approximately identically distributed, at least over the winter
storm season. This is a better assumption for the surge variable than the still
water level as the long term non-stationarity induced by the astronomical tide is
still present (e.g. the nodal cycle of 18.61 years);

3. Complete observations are available as the wave data are hindcast over the same
time periods as the tide and surge data are available.

2.I Structure Variable Method (SVM)

The structure variable method is an approach to the estimation of the probability that
a given design fails. It is based on the statistical analysis of derived observations on
the structure variable of interest for the given design, i.e. suppose there is a variable of
interest Y which is a function A, the structure function, of the vector of sea condition
variables X,

Y, :  A(Xr ) (2 .1 .1 )

for t:1,...,n., where n is the number of observations. In practice we have observations
of X; but not Y1. Given A, the approach involves two steps:

1. Create the structure variable, Y, of interest using equation (2.1.1) for the entire
time series of sea condition observations.

2. For the time series {Yr, t : 1,...,n} ol the structure variable, use a suitable
statistical model to extrapolate the series to the appropriate return level. This can
involve either of two oossibilities:
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. Fitting a probability distribution to the entire sample ofthe structure variable.

o Fitting a statistical tail model to the extreme values of the structure variable,
using techniques of the form outlined in Chapter 3.

The choice of which of these approaches to use depends on how simple the true
distribution of the structure variable is. Clearly what is needed in practice is a good
fitting statistical model which can be accurately estimated and extrapolates well.
The method to choose is the approach which most adequately meets these criteria
in practice.

Of the two approaches discussed above, generally the second is preferable, as the former
is most influenced by observations in the bulk of the distribution which have no influence
on the form of the tail of the distribution, and so is liable to give poor fits to the tail.
An alternative viewpoint is that fitting a statistical model to the extremes of the sample
only is wasteful of data. This is certainly true if a good statistical model for the whole
distribution can be found.

For the example structure variable we consider in this study, we use the tail modelling
approach fbr the structure variable of overtopping discharge rate. A key reason for this
choice is that for most, we have Y, :0, i.e. no discharge, so it is only valuable to model
the statistical distribution of discharge conditional on there being a discharge.

Once a distributional model has been fitted to the structure variable data then ex-
trapolations can be obtained from the fitted statistical model in the standard method by
solving the equa tion

Pr { } '>  Ap}  :1 -  P

for the return leuel ye, given a suitably chosen exceedance probability p.

2.2 Joint Probabilities Method (JPM)

The joint probabilities method is an approach for estimating the probability of a structure
variable exceeding a critical level, based on the joint analysis ofthe sea condition variables,
X, from which the distribution of the structure variable can be inferred. The estimated
joint distribution of the sea condition variables, X, is of much wider use at the design
stage of a sea-wall/structure as this can be used to aid the selection of a provisional form
for the design which once selected is subjected to a more detailed probability of failure
analysis using the full JPM. Here the focus is on the use of the estimated joint distribution
of sea conditions for evaluating the probability of failure for a selected design.

If ft is the joint density ofthe sea conditions and ,4,, the failure region ofX (e.g. when
the structure variable is overtopping discharge rates this corresponds to sea condition

.re
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rates exceeding u), then the approachcombinations which give overtopping discharge
involves three steps:

1. Estimation of the joint density ft of the sea condition variables. This requires a
selection of a statistical model for

the distribution of each of the d (d:5) separate variables, X;, e =

the dependence between the components of X.

We denote this estimate of ft by f11.

2. Evaluation of the estimated probability of failure, Pr{X1 e 4,,}, from the estimated
joint density, fi6, using the relationship

er1x,e A,j: [ /r;(x)dx,
J 4,,

i.e. integration of the estimated joint density over the set 4,.

3. Conversion of this estimate of the probability of failure from an observational scale
to the annual scale. Since there are nu, (no,: 705) independent observations of X
over a year, we have that

Pr{ no structure variable exceeds z in a year} Pr{ ) t1  I  Au  fo r  t :1 , .  . . ,n r , }
t .  

"  
/  \  r  \ ? , r r

[r  
-  Jr,  /x(x)ox/

2.3 Comparison of Methods

The structure va,riable (SVM) and joint probability methods (JPM) outlined above can
be used to address exactly the same design questions, however they are based on quite
different assumptions. The validity of these assumptions compared with the simplicity of
use determine which of these approaches should be used in practice. Specifically, features
of the methods which influence selection of the anoroach are:

o Simolicitv.

Extrapolation properties,

Flexibility to cover different designs,

Requirements and exploitation of data,

Useful input and output information.

a

a
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In more detail these features are:

Simplicity
The SVM is much the simpler to use as the statistical component of the method is routine
relative to the JPM. For the SVM the analysis and extrapolation is for one variable only,
the structure variable, whereas for the JPM analysis extrapolation is required for each of
the separate sea condition variables and for the dependence between the separate variables.

Extrapolation properties
When extrapolating the distribution of the structure variable the SVM makes no as-
sumption about the form of the structure function beyond the observed data. Therefore
information about more extreme structure variable values can only be inferred from the
observed distribution of the largest structure variable values, i.e. a purely statistical ex-
trapolation. By comparison the JPM extrapolates the sea condition variables and then
builds in knowledge of the stmcture function beyond the data when integrating the joint

density. This omission of the knowledge of the structure function from the extrapolation
of the SVM can influence to the extrapolation as shown by the following example.

If A1 and A2 are two structure functions, which a.re such that A1(x1) : A2(x1) for all
t : I,... , n then the associated observations on the two structure variables are identical.
Applying the SVM to the two data sets gives identical extrapolations even though ,A1 and
A2 maj be quite different outside the observed range of the data. These differences in
A1 and A2, if known, are incorporated into the JPM through the use of different failure
regions over which the common joint density of sea conditions is integrated.

Flexibility to cover different designs
If a number of structure functions are to be considered covering a range of designs for

one site or neighbouring sites, or different modes of failure for a given design, then the

whole statistical analysis (i.e. including the extrapolation of the structure variable) has

to be repeated for each structure function for the SVM, whereas a single statistical anal-

ysis is required by the JPM with different integrations of the fitted joint distribution

(/r. j1(x)ax) as the failure region,4,, will be different for each desiga (but ft is indepen-

dent of the design). As the JPM separates statistical extrapolation from the specification

of the structure function/failure region it is much more economical on effort when many

designs are considered. Additionally, at the stage of the selection of a provisional form of

t <
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a design a detailed statistical analysis is too computationally intensive for each possible
design. Typically, infeasible designs are eliminated from consideration by applying meth-
ods such as those described in Section 1.2. Here the estimated joint distribution of the
sea condition variables is required, hence the JPM estimate of this joint distribution can
be used, so aspects of this method can be used in design selection.

Requirements and exploitation of data
To be able to create data on the structure l'ariable, s.imultaneous observations are required
on each of the sea condition variables. If, for any time period, we have observations on a
subset of the sea condition variables then these cannot be utilised by the SVM, however
these incomplete data may provide valuable information about the separate sea condition
variables which the JPM is able to exploit. An extreme example is when there are no
simultaneous observations of the sea condition variables, so no structure variable data,
yet the distribution of separate sea condition variables can be estimated, and the depen-
dence inferred from other neighbouring sites, so the JPM can still be used to assess the
probabilitv of failure.

Useful input and output information
For both waves and still water levels much independent research has provided accurate
information on the distribution of these separate sea condition variables. This information
cannot be exploited by the SVM but is a valuable input to the JPM. A by-product of
the JPM is that considerable additional information about the processes under study is
obtained in the form of return levels for each of the separate sea condition variables, and
knowledge of the dependence Etructure between the sea condition variables.

In conclusion, the SVM is much the simpler of the two methods to apply but has
drawbacks concerning the requirement to have simultaneous data on the sea condition
variables, and the necessity to assume that the form of the structure function does not
change beyond the data. The JPM is dificult to implement which has often led to
independence or complete dependence being assumed. However if it is properly applied
the JPM is preferable since it separates the statistical analysis from the oceanographic and
engineering component of the assessment of the probability that the structure variable is
extreme and hence has wider applicability.



Chapter 3

Extreme Value Methods

In this chapter we briefly overview the extreme value methods and ideas that provide a
basis for the joint probability and structure variable methods of Chapter 2. Specifically:

uniwariate methods for analvsis of

. structure variable data in the SVM,

r the separate marginal variables in the JPM;

multivariate methods for the dependence analysis in the JPM.

There is much literature on the subject but the most suitable reviews are Davison
and Smith (1990), Srnith (19B9) and Thwn (1992) on univariate extremes, and Coles and
Tawn (1994) and Ledford and Tawn (1996) for multivariate extremes.

3.1 Univariate Methods

Consider a sequence of random variables which have the same distribution at each time
point, i.e. they are identicallv distributed. Here we will consider the distribution of

the annual maximum of these variables and the distribution of exceedances of a high

threshold.

3.1.1 Annual maximum

The distribution of the maximum, after normalisation, of such a sequence of size n, as
n -+ oo, is the generalised extreme value distribution, GEV. This characterisation of the
limit distribution is subject to the minimal requirement that observations of the process
which are well separated in time are approximately independent (see Leadbetter, Lindgren
and Rootzen, 1983). These conditions will typically be satisfied by all the sea condition

27
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variables (and hence also the structure variable). If Y fotlows the GEV(p, a, {) distribution
it has distribution function

Pr{Y < y} : exp{-11 + e@ - Alrl; '/e),

where the notation s.. denotes ma"x(s,0). The three parameters of this distribution are:

r ;r a location parameter,

r o a scale parameter (" > 0),

r { a shape parameter.

The level, 9p, exceeded with probability p, i.e. which satisfies Pr{Y > yo}
bv

'u.p = tt+ o{[- log(t -  d]-t  -  I ] l€,

so yo is the return level for return period l/p time units.
The key property of the GtrV for applications is that it is the asymptotic distribution

of the maximum of a sample whatever the distribution of the original observations. Thus
if interest is only in the extreme values then this whole family can be fitted instead of
trying many candidate distributions to fit the original observations. Furthermore the
theoretica.l justification for the GEV provides a basis for extrapolation beyond the data
to long return period events

The application of the GEV distribution typically involves taking the annual maxi-
mum values in a sequence of relevant variables as following a GEV distribution. Using
annual maximum data, the three parameters ofthe distribution are fitted using maximum
likelihood, or some equivalent statistical method of fit, to give estimates ,u, d and {. The
justification for using annual maximum data is that there are a large number of obser-
vations within a year which justifies the use of the limiting distribution, the distribution
has been found to work well in practice principally due to its flexibility, and because it
removes the potential for seasonal bias. The estimated return level, with return period

l/p years, is then

1t , :  P  +  o [ [ -  Iog( ]  -  p ) l - (  -  1 ] /€ .

The biggest drawback in using the GEV applied to annual maximum data is that it
is wasteful of data: the number of data points to base the estimation on corresponds to
the number of years of data (often less than 10). An alternative approach is to use all the
large values in the sequence, not just the annual maximum observations. In the following
section we review such approaches.
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3.1.2 Threshold methods

In this section a brief description of one of the most commonly used methods for the
statistical analysis of extreme values is given. This method is referred to in the literature
as the Threshold Method (Davison and Smith, 1990, for example) and is found to be
both flexible and widely applicable. In essence, the Threshold Method consists of flxing
a threshold, u say, and fitting a suitable distribution to the values which exceed z, while
ignoring observations below z. The main components of this procedure are the threshold
u and the distribution of the exceedances of u.

Let {X;,i : 1, ..,"} denote the sequence of observations, which are assumed to be
independent and identically distributed, @ denote the vector of unknown parameters, and
g4 denote the density function ofthe distribution G4 adopted to describe the exceedances
over u. Under these assumptions, the marginal distribution of X (a typical observation
from the sequence) is

P(x  < t ) :G6@)P(x  >  u )+ { r -P(x  >  z ) } ,  fo r  r>u ' .

Letting ) : P(X > u), it follows that the likelihood function associated with the Thresh-
old Method is given by

,(I, +) : (1 - ,i;"-r"^r" Jl o4(&),
L t l

(3 .1 .1 )

where 1: {1 < i 1n X; > rr}, N is the number of elements of 1, i.e. the number
of exceedances of the threshold u. The parameters S and ) are estimated by maximum
Iikelihood, which involves maximizing the likelihood, L(^, d, with respect to the unknown
parameters. Sometimes, ,\ is unconstrained and treated as a parameter of the statistical
model (see below); in this case, the maximum likelihood estimate of ,l is -nf/n,, i.e. the
proportion of exceedances of the threshold. In other situations, ) is explicitly linked to
the parameters of the exceedance distribution (cf. Section 4.1.2).

So far no mention has been made of how to choose G 6, and, in fact, no unique
specification for G4 can be given, unless the true distribution is known.

However, based on essentially the same asymptotic arguments that justified the use
of the GEV for the annual maximum above, it can be argued that the natural family of
distributions to use in order to describe the excess levels of observations above a high
threshold is the generalised Pareto distribution (Pickands, 1975). That is, if the threshold
z is sufEciently high, the conditional distribution of a random variable X given X > z,

F(z) - F(z)
P(X <r lX >u)  :

I -F (u ) '
T ) M , (3 .1 .2 )



30

with F being the true distribution
Pareto distribution, GPD(o, {), with
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of X, can be well approximated by the generalised

distribution function

- l (3 .1 .4 )

1 - {t + {(r - u)lol l ' /4, for z ) (3 .1 .3 )

where s-; : max(s,0). The two parameters of this distribution

. o (o > 0) is a scale parameter

r { is a shape parameter.

A special case of this distribution is the GPD (a, 0), i.e. when { : 0: this is the exponential
distribution with distribution function

1- exp{-(r - 
")1"}, 

for r> u,.

To fit this statistical model we let Gq@) be the distribution function given by equation
(3.1.3) with 6: @,0 and we leave ) unconstrained. Maximum likelihood estimates of
o and { are obtained by maximising equation (3.1.1).

Despite the GPD having a theoretical justification as a distribution for the exceedances
of a high threshold, this does not exclude the possibility of employing a different para-
metric statistical model, as will be done in Section 4.1.2, where the threshold approach is
applied to wave heights, with G6 given by the Truncated Wei,bull Distri.buti,on.

3.1.3 Properties of the GPD

A key property of the GPD is that it is invariant to the threshold level.
Let X denote the values which exceed z, and suppose that X - u follows a GPD(o, {).

Then , fo rz>0 .

Pr{X-u<t lX > t } :  t - 11+{(d  +r -  u) lo l l l tq

[1+
lr + fulo.l+I/E

which corresponds to a GPD(a-, {), where o* : o + t(u - u). Thus excesses of the higher
threshold. {i. are also GPD.

There is a direct relationship between the GPD and the GEV distributions. Davison
and Smith (1990) show that if there are n observations in a year, each with the probability

) of exceeding the threshold u, and where excess values of the threshold are GPD(o, {)
then

Pr{ annual maximum I r} : exp{-)rz[l + {(z - ") l"]*t/t} for r > tr.
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This is a GEV distribution with location, scale and shape parameters

i, + o{(n.\)€ - 1}/{, o(n.\){ and {

respectively. Comparing parameters, we see that the GEV and GPD shape parameters are
identical. This property helps to explain the potential benefits of the Threshold Method
as the parameters of the GPD give the GEV parameters yet can be estimated from a1l
large values rather than just annual maximum values. Consequently the GPD approach
should provide improved precision of estimates over the GEV as all relevant data are used
in the estimation.

3.1.4 Threshold selection for GPD

The drawback with the threshold approach is that the parameter estimates are dependent
on the subjective selection of a threshold. The choice of the threshold has to be made
with considerable care, as Davison and Smith (t990) show: too high a threshold and there
are insufficient exceedances to estimate the GPD parameters with required accuracy, too
low a threshold and the asymptotic justification for the GPD will no longer hold, so it is
likely the GPD will not provide a good statistical model for the threshold excesses.

For the GPD, a tool which helps in the selection of a suitable threshold z is the
so called mean resid,ual life plot (Davison and Smith, 1990). Following the property of

threshold invariance in equation (3.1.a), i.e. if X is such that X - ulX > u is GPD(o, {),
then for all thresholds tt, > u, X - tlx > u is GPD(o + t!t'- z),{), it follows that
provided { < 1, for ii such that o + {(u, - u,) > 0,

E(X-ulx>u) : o+( iL-u) t
( J . r . J . l

1 - f

Equation (3.1.5) shows that the mean excess of X over d is a linear function of z. This

result suggests the construction of a graph in which the empirical mean excesses of are

plotted against fr, with a taken to be the smallest value of d over which the mean residual

lile plot exhibits approximately a linear behaviour.

3.1.5 Goodness-of-fit for GPD

Once a threshold z has been selected and a suitable parametric distribution fitted to the
exceedances of z via maximum likelihood, the goodness of-lit of the statistical model to
the observed data needs to be verified. Some easy checks may be carried out graphically

using probability plots (P-P plots) and quantile plots (Q Q plots). Both are based on the
same logic, that is, to compare the fitted and the empirical distributions ofthe exceedances

e 1
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either on a probability or a quantile scale, respectively. Explicitfu for the fitted statistical
model with distribution function G(z), and ordered sample values rG) < re\ I .. . 4 n61:
in the P P olot we olot

G( r1 ; ; )  aga ins t  t / (n+  t )  fo re=1 , . . . ,n ;

and in the Q-Q plot we plot

r1;y against G-r( i l (n + 1)) for i  :  l ,  .  . . ,n.

For each plot departures from the s : 9 line suggests model inadequacy. For assessing
extreme value models the Q Q plot is more informative since it highlights discrepancies
in the upper tail.

3.1-.6 Temporal dependence and non-stationarity

In the previous sections it was assumed that the observed time series are independent
and identically distributed. However, sea condition data depart from these assumptions,
demonstratins:

a short-range dependence, leading to clusters of extreme values;

non-stationarity, generally due to seasonality, trends and tides.

As far as temporal dependence is concerned, a declustering procedure is required to
produce sequences of independent observations. In multiva,riate studies, the identification
of a suitable declustering procedure is generally a difficult step (Coles and Tawn, 1994).
However, for sea condition data a natural way of declustering is to use only concurrent
meas[rements at times of high water. At U.K. sites variation in the sea-level process is
dominated by semi-diurnal tidal variation. Consequently, events which threaten to cause
coastal flooding occur only at times of high tide, approximately every 12 hours a,nd 26
minutes. This form of declustering

r is consistent with current practice in oceanographic analyses (Hawkes and Hague,
1994),

o does not differ substantially from studies on still water level (Dixon and Tawn, 1994,
iee5).

There are additional benefits of this declustering scheme as it also largely removes the

still water level (or surge) variable non-stationarity due to tide, and it enables data sites

which only possess high water level data to be analysed.
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3.2 Illustrative Dependence Examples

In this section we motivate the need for dependence models for extreme events. In par-
ticular we show the impact of the degree of dependence and the form of the failure region
on the probability of a structure failing.

For a bi yariate problem with two identically distributed variables (Xr, &) we consider
two structure variables

Y: min(Xr, Xr),

Y - ma-r(Xr, X:),

these are idealised cases to illustrate extreme design conditions. They are given to aid the

illustration of the methods in a problem where we can explicitly evaluate the probability

of failure, and do not necessarily represent realistic structure va,riables. For example, the

second structure function corresponds to failure from two unrelated failure types, in which

an extreme of one variable and/or the other leads to failure irrespective of the associated

value of the other variable.

We also consider three forms of dependence between (Xt, &)

o complete positive dependence,

o independence,

r complete negative dependence.

Again these are idealised and are presented with illustration, rather than practice, in
mind.

Throughout we take the structure to fail when Y > u, for large z, and to simplify
notation let Pr{X1 > z} - Pr{& > u} : p.

3.2.1 The structure function of the minimum

Here we will evaluate the level of protection of the design for the

min(X1, X2), for the three different dependence structures. Writing

failure in terms of an event for (X1, Xr) we have

Pr{Y > u} :  Pr{min(X',  &) > u}

: Pr{Xr } u., X2 } u}

: Pr{Xr > z} Pr{X2 > ulXl > u}

structure variable,

the probability of

(3 .2 .1 )
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where the second term in equation (3.2.1) is the conditional probability of X2 > z given
X1 ) u, see Appendix A.1. The dependence between (Xr, Xz) influences the value of the
conditional probability with

Pr{& > ulXl > u} -
1 under complete positive dependence
Pr{X, > u} under independence
0 under complete negative dependence.

(3.2.2)
Combining the expressions in equations (3.2.1) and (3.2.2) gives the probability of desrgn
failure to be

Pr{)' > u} :
under completepositivedependence

under independence

under completenegativedependence.

(3.2.3)

To illustrate what this means consider the situation when z is taken to be the 10 year
return level for each marginal variable, and there are 705 independent events per year,
the return period (in years) of design failure is

t p

\ p '

Io

see Section 3.4 for working. Similarly, for the design to have a 100 year return period, u
must be chosen to give marginal return periods (in years) for X1 and X2 of

10 under
70500 under

oo under

100 under

0.38 under

complete positive dependence

independence

complete negative dependence,

complete positive dependence

independence

Aside: note that Jor complete negati,ue dependence ang leuel is adequate for the marginal

return leuel as d,esign fai,Iure i,s impossi,ble.

3.2.2 The structure function of the maximum

Now consider the max(X1, X2) structure variable for the three different dependence struc-
tures. Writing the probability of failure in terms of an eveut for (X1, X2) we have

Pr{Y > u} : Pr{max(X', &) > u}

: Pr{Xr > u and/or Xz > u}

: Pr{Xr > u} +Pr{X, > u} - Pr{XL > u,X2> u}. (3 .2 .4)
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The joint probability in the final term in equation (3.2.\ was calculated in Section 3.2.1.
It fbllows that the probability of design failure is

Pr{Y > z} :
under completepositivedependence

- p) under independence

under completenegativedependence.

(3.2.5)

To illustrate this, consider a, to be taken as the 10 year return level for each marginal
variable the return period (in years) of design failure is

10 under complete positive dependence
5 under independence
5 under complete negative dependence,

see Section 3.4 for working. Similarly, for the design to have a 100 year return period z
must be chosen to give marginal return periods (in years) for X1 and X2 of

35
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100 under
200 under
200 under

complete positive dependence

independence

complete negative dependence.

3.3 MultivariateMethods

3.3.1 Models

This section gives a simple introduction to dependence modelling in multiva.riate extremes.
We focus on bivariate extremal dependence only and restrict attention to Pr{X2 > ulXr >
u) where (Xr, Xr) are identically distributed random variables. In Section 3.2 we consid-
ered three special cases of dependence between two variables (Xr, &), and found that for
la.rge z

complete positive dependence
independence
complete negative dependence.

Clearly many diflerent statistical models for intermediate degrees of dependence between

(Xr, &) exist, however for joint probability methods it is the dependence between the

extreme values of X1 and X2 that a,re of interest, and the form of this dependence is well

identified by considering how Pr{X2 > ulxl > z} behaves for large z, i.e. how does the

knowledge that X1 is big influence the probability that X2 is big?

Here we will give this conditional probability for two statistical dependence models

that are often used in ioint nrobabilitv studies.

( t under
Pr{X2>z lXr  >u}= jp r tx r>u}  under

[ 0 under
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Bivariate Extreme Value Distribution
Coles and Tawn (1994) propose the use of this statistical model for dependence between
extreme values. After transformation of each marginal variable to a unit Fr6chet distri-
bution (i.e. with distribution function Pr{X1 < r} : Pr{& < r) : exp(-l/r) for
r > 0) the form of the dependence between the two va,riables (X1, X2) is taken to foilow
a bivariate extreme value distribution (with logistic dependence structure) given by

Pr{X;  < z1,X2 1rz} :  exp{- ( :1""  +* ; ' t " r " t , (3 .3 .1)

where 0 ( a ( 1 determines the degree of dependence. For general (identically dis-
tributed) marginal variables with this form of dependence structure

Pr{X1 < u, X2 I u} : (Pr{Xr < ,})'" ,

where 0 < a ( 1 determines the degree of dependence with

o a: 1 corresponding to independence,

. o -+ 0 corresponding to complete dependence,

o decreasing a leading to increased dependence,

o negative dependence being impossible.

For this joint distribution it follows that

Pr{x1 > u' x2 > u} 
: l;"ii; ;1, i;.4:= l;""'t"' 

< u' x2 < u}

- (2 - 2") pr{x1 > u} + z'-1(2" - t)  pr{X1 > u}2, (J.3.2)

for large z since :

Pr{xr < u}2' -  ( t  -  P.{x, > u})"" * r -2"pt{X1 > u} +2"-1(2" - 1)Pr{X1 > z}2.

Hence the conditional probability is

P.{& > zlXl > z} x (2-2") +2a-1(2a - t)Pr{& > z} for Iarge z.

This statistical model gives a very specific class of dependence models between the vari-
ables which leads to dependence between the extreme values. To clarify this, note that
given the variable X1 is extreme (i.e u -+ oo so that P.{X, > z} -+ 0) there is a reason-
able probability, (2 - 2"), that X2 will be equally extreme. The degree of dependence in
the extreme values is determined by the value of a, so that when o : 1 the first term
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of this conditional probability is zero and the second term reduces to Pr{X, > u}. For
complete dependence (i.e. when o -+ 0) the conditional probability is 1.

FinaJIy, in Figure 3.1 we give the joint density contours for the bivariate logistic de-
pendence structure when the marginal distributions follow standard normal distributrons.
The figure shows how dependence, particularly in the joint tail region, grows a"s tr is de-
creased. When a : 1 the variables are independent and here the contours are circles. For
a < 1 the contours are elliptical in form but with a distinct pointedness on the diagonal
in the joint upper tail.

Bivariate Normal Distribution
The joint distribution and dependence structure for the bivariate normal distribution

are given in detail in Appendix A.2.2. For general (identically distributed) marginal

variables with this form of dependence structure, Ledford and Tawn (1996) show that to

a reasonable approximation

Pr{X1 > u., X2 > u) *t C, (Pr{Xy > u})2/(1+e)

for large z, where C, is a constant and -1 < p < I determines the degree of dependence

with

o 0 ( p< 1 corresponding to positive dependence,

. p :0 corresponding to independence,

o -1 ( p < 0 corresponding to negative dependence.

. It follows that

P.{& > zlXl > z} = Co (Pr{X1 > u})G-e)/o+e\ for large u. (3.3.3)

From equation (3.3.3) the conditional probability decreases to 0 as u ircreases (whatever
p), with the conditional probability increasing as p increases (for fixed u). This distribu-

tion has dependence in the extremes, but unlike the bivariate extreme value distribution,

the probability of (X1, Xr) being simultaneously extreme tends to zero as more extreme

values are considered.

Finally, in Figure 3.2 we give the joint density contours for the biva,riate normal de-
pendence structure when the marginal distributions follow standard normal distributions.

The figure shows that the contours are exact ellipses whatever the correlation coefrcient,
p. When p is negative the contours are identical to contours for -p after reflection a"round

the g: z line. When p:0 the variables are independent and the contours circular, as
for a: 1 for the bivariate logistic dependence structure above.

a 1
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Figure 3.1: Joint density contours for the bivariate logistic dependence structure when

-3 -2

alpha=0.8 alpha=0,7

-3 .2

alpha=0.5 alpha=0.3

the marginal distributions are standard normal, i.e. Z;: O-1(exp(-l/Xa)) for X; a unit
Frdchet variable and i : 1, 2. The dependence parameter a : 1, 0.9, 0.8, 0.7, 0.5, 0.3.

alpha=1

-3 -2 -1
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Figure 3.2: Joint density contours for the bivariate normal dependence structure when
the marginal distributions are standard normal, i.e. Z - O-1(exp(-l/Xr)) for X; a unit
Fr6chet variable and i : 1,2. The dependence parameter p: -0.5, -0.2, 0.0, 0.2, 0.5, 0.8.

rho=-o.5 rho=-o-2
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rho=o.0

rho=o.5

rho=0.2
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3.3.2 Diagnostics

In applications it turns out to be important to distinguish between three forms of depen-
dence structure illustrated by

1. the bivariate extreme value distribution

2. the bivariate normal distribution

3. independence.

The underlying reason is that these dependence models have different behaviour ofPr{& >
ulXl > ttl; for large u.

If, as z -+ co, Pr{X2 > olXr > tl} -+ c > 0, where c is a constant, as is the case for
the bivariate extreme value distribution, then precise dependence mode)ling is often not
important, as subsequent inference is relatively insensitive to the value of the constant c.
This suggests adopting a conservative approach of taking c: 1, i.e. taking the variables
(Xr, Xz) to be completely dependent. To clarify this, for the logistic model in the bivariate
ex t reme va lue  fami ly ,  c :2  -  2o ,  so  c :1when a :0 .

In contrast, for other dependence structures, such as the bivariate normal distribution,
Pt{Xr > zlXl > a,} -+ 0 as u -+ oo, with the rate of convergence to zero determined by
the degree of dependence. For this class of dependence structures it is important to model
the dependence structure. However, a special case ofthe bivariate normal distribution, for
which no explicit dependence modelling is required, is when the variables are independent
( i .e .  p :61

Distinguishing between these classes of dependence structure is important as it en-
ables us to identify when we can approximate the dependence by complete dependence,
independence, or need to carefully model dependence. The following diagnostic, 7(z),
enables us to identify from the data to hand which approach to take.

Specifically consider identically distributed random variables X1 and X2 with each
following a unit Fr6chet distribution, i.e. Pr{X1 > u} - Prt& > u} x u-\ for large tr,.
Define the diasnostic statisric

rtr l :-r"s{
Pr {X1  >  ' u ,X2>  u j

(3.3.4)

for large z and all z > 1. The diagnostic test is to plot ?(z), estimated by replacing

the probabilities by the associated empirical proportions, against logz for a range of .a.

If Pr{X2 > ulXr > u} -+ c > 0 then 7(z) is approximately zero for aIl z, whereas

for Pr{X2 > ulXr > z} -r 0, we have fhat T (z) is linearly increasing with log z, with

the gradient related to the rate at which P.{& > zlXl > u} -+ 0. Specifically, the

Pr{X1 > uz, X2 } uzlz
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faster the convergence of the conditional probability to zero the steeper the gradient,
with independence corresponding to a gradient of one.

To illustrate this theoretically first consider the bivariate extreme value distribution
with logistic dependence structure. For large z this distribution gives

Then for large u

Similarly, for the bivariate normal distribution, with Fr6chet ma,rginal distributions,

Pr{X1 > u,X2> u} = C ou-2/(r+o)

Then for large u

Pr{X1 > u, X2 > u} =' 
; t"

r(z) x -:'s{@{#+} : -.,1'y : o

(3.3.5)

so is linearly increasing in logz, with gradient (t - p)lQ + p) for all p < 1. When p - 0,
i.e. independence, then expression (3.3.5) gives the gradient to be one.

In Section 7.1.2 we use this form of diagnostic statistic plot prior to dependence anal-
ysis to identify the line of attack that can be taken.

3.3.3 Illustrative examples

We now return to the illustrative examples of Section 3.2 a"nd examine the impact of

the dependence models discussed in Section 3.3.1 which provide intermediate degrees

of dependence to the extreme cases (complete positive dependence, independence and

complete negative dependence) considered there.

Structure function of the minimum
For the structure function Y : min(Xr, &) the probability Pr{Y > z} is given by equa-
tion (3.2.1). Using equation (3.3.2), for a bivariate extreme value dependence structure,
with logistic form,

Pr{Y > u) :  (z - 2")p + 2'-1(2" - l )p2 ,

where Pr{X1 > u} : Pr{& > uJ : p. Similarly, using equation (3.3.3), we have, for the
bivariate normal dependence structure, lhat

?(z)r -rog 
{ ,,*e*+#} : -rog1,to-'111t+o)} -fi^"",

Pr{Y > u}:Cp'p?/( t+o)
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To illustrate these results we focus on the bivariate extreme value logistic model case with
a : 0.8 (the value used for one of the case study data sets in Chapter 5). When u is
taken to be the 10 year return level for each marginal variable, then the return period of
the design is 38.6 years. Similarly, for the design to have a 100 year return period z must
be chosen to give marginal return periods of 26 years (working is given in Section 3.4).

Structure function of the maximum
For the structure function Y : max(Xr, X2) the probability Pr{Y ) z} is given by equa-
tion (3.2.4). Using equation (3.3.2), for a bivariate extreme value dependence structure,
with logistic form,

Pr{Y > u} :  2'p-2"-1(2" -t)p2

x 2"p fot Iarge u.

Similarly, using equation (3.3.3), for the bivariate normal dependence structure

Pr{Y> u} = 2p-Cnp2l(t+o)

x 2p for large u.

Interestingly, for this structure function, whatever the degree of correlation for the bivari-
ate normal dependence structure, the probability of failure iends to zero (with decreasing
p) in the same way as ifthere were no dependence between the variables (i.e. as if p: a)

To illustrate these results we focus on the bivariate extreme value logistic model case
with cr - 0.8. When a is taken to be the 10 year return level for each marginal va,riable,
then the return period of the design is 5.7 years. Similarly, for the design to have a 100
year return peiiod, u must be chosen to give marginal return periods of 174 years (working
is given in Section 3.4).

3.4 Technical Calculations

In this section we derive the mathematical equations through which the probabilities

of joint events in Sections 3.2 and 3.3.3 are converted into annual return periods. We

consider the cases of independent and bivariate extreme value (logistic dependence model)

separately. Throughout we assume there are nq :705 independent events per year, and

z is such that

Pr{ annual maximum Xr < u} : Pr{Xr I u}nt' - 1 - Oo,
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i.e. a is the p;l year return level for variable X1 . As Xr and X2 are identically distributed,
u is the return level for X2 as well. It follows that

Pr{X1 < z} : Pr{X, S "} 
: (l - pA)'/"u' .

3.4.L Independence

First consider ]' : min(Xr, &). Then

Pr{Y < z} :  Pr{Xr < u} +Pr{X, < z} -Pr{X1 < u,X2 < u},

and from this

Pr{ annual maximum Y < ul :  fzg 
- 'y,oyt" '"  -  (7 - polt t"u'1"" '  .

Now consider the Binomial approximation

(1  -  pa) "  x ' l -ap+p2a(a-1)12  fo r  smal lp .

Applying this approximation to the above

Pr{ annual maximum Y < u} r lt 
- r'ol "'0,f"" 

x I - p2af ny,.,

which implies that the return period (in years) of the structure variable exceeding z is
nn,fpza. For the example of pa : 6.1 the return period is 705 x 102 years.

Now consider the structure variable Y : max(Xr, &). Then

Pr{Y < z} :  Pr{Xr 1 u, X2 I u'

and

Pr {  annua l  max imum Y <  u) : l l  -po1 ' t " " "1" "  :  ( t  -po) "  xL-2pn,

which implies that the return period (in years) of the structure variable exceeding z is
(2pn)-t. For the example of po :0.1 the return period is 5 years.

3.4.2 Bivariate extreme value dependence

First consider Y : min(Xr, Xz). Theo

Pr{Y < ?r} :  Pr{Xr < z} +Pr{X2 < u} -Pr{X1 < u,X2 < u},

Pr{ annual maximum Y < u} : lZlt 
- 'po1tt""' - (l - ,o12" /",'1"-

and
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Applying the Binomial approximation

Pr{ annual maximum Y < ul x [1 - (2 - 2*)ptlnn,]""'ru 1- (2 - 2")po,

which implies that the return period ofthe structure variable exceeding z is l(2-2")lrA]-1.
For the exampl e of pa :0.1, with a : 0.8, the return period is 38.6 years.

Now consider the structure variable Y : max(Xr, X2). Then

Pr{Y < u} : Pr{Xr < u, X2 ! u},

and

Pr{ annual maximum Y <u): l$-ne1t"/" ' ,1"" = (1 - pA)2" Nl-2"po,

which implies that the return period (in years) of the structure variable exceeding z is
(z"pA)-t . The example of pA : 0.1 gives a return period of 5.7 years for the design.



Chapter 4

Statistical Models used for JPM

The three components of the JPM are

r marginal statistical models

. statistical models for dependence

o evaluation of the probability of failure.

In Sections 4.1 and 4.2 we develop statistical models for both marginal and dependence
features whilst in Section 4.3 we examine methods for evaluating the integral of the
estimated joint density over the failure region required for the calculation of the estimated
probability of failure.

4.r Marginal Statistical Models

In this section we develop statistical models for each ofthe separate sea condition variables
listed below:

. Still \,Vater Level (tide and surge)

r Significant Wave Height

o Steepness

r Wave Direction

. Wave Period (via statistical models for signilicant wave height and steepness).

The suitability of these statistica.l models is assessed in Chapter 6 where they are applied
to all the observational and simulated data sets.
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4.L,1 Still Water Level

The still water level (SWL) is the sea-level after waves have been averaged out. It is the
composition of the mean sea-level, the astronomical tidal level (tide) and the meteorolog-
ical surge level (Surge). The mean sea-level component is treated as a fixed constant in
this work; therefore, variations in still water levels are considered a consequence of the
tide and surge components.

There are two approaches to the analysis of extreme still water levels: direct and
indirect (Tawn, 1992; Dixon and Tawn, 1994). The direct methods analyse explicitly
the observed extremes of the SWL process, whereas the indirect methods decompose the
SWL into the two constituent components, analyse each of these separately, and then
re-combine results to produce the distribution of extreme still water levels. There are
reasons why the indirect methods should be preferred. For example, they keep separate
the deterministic tidal component, for which no extrapolation is required as it can be
predicted exactly, from the stochastic surge component, which needs to be statistically
modelled. However, indirect methods require the dependence between tide and surge to
be statistically modelled.

As we are primarily interested in the relationship between extreme water levels and
waves in this study we essentially adopt a direct approach but consider one example where
a simple version ofthe indirect style of approach is adopted for comparison purposes. The
statistical model we use for the still water level (in the direct approach) and the surge
(in the indirect approach) is based on the Threshold Method, as described in Section
3.1.2, with the distribution of exceedances modelled parametrically through the GPD.
Additionally, in the indirect approach we take

the tide to be given by the empirical distribution of high tide values,

the high tides and surges (at high tides) to be independent.

4.1.2 Significant Wave Height

The significant wave height (/Js) is defined as the mean height of the highest 1/3 of the
waves in a period of a given duration (generally 20 minutes). The standard distribution
adopted for statistically modelling significant wave height, Ils, is the three parameter

Weibull distribution, which has distribution function

W(r): Pr{IIs 1 r} :  r  -  exp{-[(o - 
") lb]]  

for x ]  a. (4 .1 .1 )

Here the parameters a,bar:dcare respectively location, scale and shape parameters. Both

b and c are positive parametersr and since significant wave height is a positive random
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variable, we should expect a to be positive also. This distribution is widely used for wave
data and has generally been found to fit reasonably well throughout the entire range of
observed data (Carter and Challenor, 1981).

A procedure often adopted by HR for fitting this statistical model is the Threshold
Method discussed in Section 3.1.2. After fixing a suitable threshold u, they fit to the
exceedances a TYuncated Weibull distribution, defined bv

P(Hs < rlI{s > u) : w(r) -w(u)

47

1 - W(u)

r-"*n [- (?)". (T)"],  ror x > u, (4.r2)

where the parameters (4, b, c) satisfy the conditions required for the Weibull distribution,
i.e. equation (4.1.1), together with the additional constraint that z > a. This statistical
model is fitted here using the threshold likelihood (3.1.1) to the observations of I15 which
exceed z. Here the density of the values which exceed the threshold is

(  / r - a \ '  / z * 0 \ ' l  c  / : , " - a \ " - t  ^' "P1-[ a /*[  a i  i ;1,  a /  rorr>u

and.\, the probability that the threshold is exceeded, is linked to the parametric distri-
bution for exceedances by

^ = r -  w(u): ."o {-  ( '  I  ") ' }  .' t  \  b  t )

Three motivations for this approach/fitting method are:

e If extreme waves are of primary interest then fitting the wave distribution with most
attention on the quality of the fit paid to the largest observations is natural. The
choice of the Weibull distribution is more questionable, but is an obvious starting
point when moving away from the standard approach.

. Suppose waves come from a number of different populations, e.g. different classes of
waves determined by their generation which is apparent through different direc-
tions or steepness characteristics of the observed waves. Then if the wave heights
from each population follow a standard Weibull form, the mixing of the different
populations produces a complex distribution for all wave heights. However, if one
population produces wave heights which dominate the extremes in the sample, then
the tuncated Weibull distribution will fit well even when the Weibull distribution
does not.

r Hindcast significant wave height data are sometimes generated only for extreme
storms over the period of interest, for example for all storms which have significant
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wave heights over some threshold level z. Consequently, if all significant wave
heights follow a Weibull distribution, then the distribution of these observed values
is a truncated Weibull distribution.

Relative to the standa,rd Weibull distribution the Truncated Weibull is more flexible ow-
ing to the introduction of the threshold, u, which is essentially a fourth parameter of
the distribution. However, there is no theoretical argument to suggest that the Trun-
cated Weibull should be preferred to other distributions (Carter and Challenor, 1981).
By contrast, in Chapter 3 statistical models for threshold exceedances which have some
theoretical justification were discussed. For this reason, we also consider the Threshold
Method with the GPD used as the distribution for exceedances for Ifs.

To compare the Weibull and GPD threshold approaches more generally we assess
them on the basis of their stability with respect to different thresholds. As remarked in
Section 3.1.4, a property required from tail models is the non-sensitivity of the results
to threshold selection. To assess the impact of making this choice when in fact the
Weibull distribution is the true distribution of the population, 10000 samples of size 6000
(a typical sample size of the observational data) were simulated from a three-pa.rameter
Weibull distribution with parameters a, 6 and c. A range of values of c were selected to
represent typical estimates derived from applications to data. Without loss of generality,
we set a:0 and b: 1, since the corresponding behaviour for all other location and scale
parameters can be derived from this case. For each sample, the GPD and the tuncated
Weibull distributions were fitted to exceedances of the 95% empirical quantile. Bias
and mean squared error of the estimates of various extreme quantiles for the two fitted
distributions are given in Tables 4.1-4.4. As expected, the bias of the estimates provided
by the Weibull distribution is practicallv zero. For the fitted GPD the bias is low, but
the mean squared error, especially for the most extreme quantiles, is consistently bigger
than for the Truncated Weibull. This implies that even if the underlying true distribution
were the Weibull, the GPD should provide acceptable results in terms of bias, but at the
cost of greater sampling variability.

Our proposed approach in practical studies is to fit both the Tluncated Weibull and
the GPD via the Threshold Method and to assess the two methods based on their ability
to provide good estimates of return levels in the tail of the observed sample, the realism
of the extrapolations to long return periods, and the quality of fit of the models. For this
project, since the GPD tail model is robust to the underlying distribution and unbiased
when the true population is Weibull, we adopt it in preference to the Tiuncated Weibull
distribution. Hence only the GPD will be considered for the simulated data, even though
both are assessed for the observational data.
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Quantiles r -L l : .0?  1-11103 r -L l ro4 1-11105

GPD
Bias

Mean Squared Error

-0.0005 -0.0286 -0.098 -0.1989

0.0053 0.0395 0.2549 0.9491

Weibull
Bias

Mean Squared Error

-0.0045 -0.0085 -0.0177 -0.0144

0.0049 0.0263 0.0741 0.1535

Table 4.1: Results from simulating 10000 samples of size 6000 from a Weibull distribution
with known parameters a:0, b: 1 and c: 1.2.

Quantiles 1-11102 r -1 /103 1-11104 1- r l r0s

rI DT'\

Bias

Mean Squared Error

0.0004 -0.0108 -0.0595 -0.1453

0.0019 0.0125 0.076 0.2672

Weibull
Bias

Mean Squared Error

-0.0026 ,0.0042 -0.0054 -0.0062

0.0017 0.0084 0.0216 0.0418

Table 4.2: Results from simulating 10000 samples of size 6000 from a Weibull distribution
wi th  known parameters  a :0 ,  b=1andc:1 .5 .

Quantiles r - r l : .02 1-11103 r -L1rc4 1-r l t05

GPD
Bias

Mean Squared Error

0.001 -0.0107 -0.06 -0.1451

0.0012 0.0074 0.0448 0.1535

Weibull
Bias

Mean Squared Error

-0.0023 -0.0033 -0.0041 -0.0045

0.0011 0.0048 0.0118 0.0221

Table 4.3: Results from simulating 10000 samples of size 6000 from a Weibull distribution
with known parameters a:0, b = 1 and c: 1.7.
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Quantiles t - r l r02 1-1.1f i3  r -11704 r -11105

GPD
Bias

Mean Squared Error

-0.0064 -0.0269 0.1476 0.7735

0.008 0.1077 1.099 6.838

Weibull
Bias

Mean Squared Error

0.0079 0.0331 0.081 0.153

0.0009 0.0072 0.0358 0.1041

Table 4.4: Results from simulating 10000 samples of size 6000 from a Weibull distribution
with known parameters a: 0, b: 1 and c : 0.7.
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4.1.3 Steepness

We model the joint distribution of (1{s, S) instead of (Hs,Ts) for the wave characteristics.
Wave steepness, S, and Tz arc rclated by the following equation

(4 .1 .3 )

where g denotes the gravitational constant, so a statistical model for (Ils, S) determines
also the distribution of Q.

There are a number of reasons which support an analysis based on the variable S
instead of ?2.

o It is common practice in oceanographic studies to estimate extremes of wave period
by fixing a typical value of steepness and employing the distribution of ffs and
equation (4.1.3) to derive ?2 (Alcock, 1984). The average, 3", of the observed
steepness of the 1% largest wave heights is calculated and the value of Q associated
to an estimated extreme level of I{* is obtained from

rr1_ - ( a ' t  4 \

r For most of the sites analysed in this work the relationship between Hs and Tz
tends to assume a quadratic form, whereas the relationship between 1{s and ,5 is
more linear, and hence statistically modelled more easily.

e Steepness is a variable of interest in its own right, rega,rdless of its relationship to
11

r There are theoretical restrictions to the maximum value that S can assume: theory
predicts that random waves with S bigger than approximately 1:10 must break.

No parametric statistical model is proposed for the marginal distribution of steepness.
The statistical model we have adopted is based simply on the observed data; that is, the
empirical distribution. A restriction in the use of empirical models is the inability to
extrapolate beyond the observed range of data, but this is not an important issue when
modelling S, as we are mainly interested in waves characterised by high values in both
Hs and, T2, which produce mid-range/typical values of steepness. One situation in which
extrapolation with respect to S might be relevant is in the presence of swell waves, which
have relatively low significant wave heights and long periods. Historically, however, swell
waves have been omitted in studies of probability of extreme waves because:

r observations on swell waves are of limited extent, as values for this variable are not
produced by standard hindcast studies using the local wind climate;

51
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I swell waves are only important at some exposed sites;

r swell waves alone are rarely believed to pose a significant threat and, furthermore,

they are deemed to be independent of the other sea condition variables.

4.L.4 Wave Direction

As with steepness, there is no requirement to extrapolate the wave direction variable, so
again we estimate this distribution empirically. The empirical estimate of the density for
wave direction is given by the proportion of the observed/hindcast wave directions that
fall in each direction sector.

In practice, if wave direction is not explicitly in the structure function for the design
under consideration, we should take the direction sectors as large as possible, subject to
simple statistical modelling of the joint distribution of the other sea condition variables
over this sector. This is the case for overtopping discharge rates, see equation (1.1.1).
Experience at HR suggests that sectors of widths less than 30" are impractical as there
are insufficient data on the other variables within each sector for an adequate statistical
analysis.

4.1.5 Wave Period

Wave period is a key variable in the sea condition vector. Its behaviour in this study is
described by the joint behaviour ol (fu, S). So the discussion of the choice of statistical
model here should be treated as expository rather than as a basis for subsequent fitting.

Two possible approaches for developing a statistical model for the marginal distribu-
tion of wave period are:

. the use of distributions based on theoretical wave processes;

. empirical fbrms based on observed data.

The reason that neither approach is adopted in practice is that the theoretical models do
not capture important features of observational data and that the empirical models do
not provide extrapolations to wave periods beyond those observed in the data.

Instead, current practice is to develop statistical models for wave period through statis-
tical models for the conditional distribution of wave period given the associated significant
wave height measurement. The current approach HR recommend is to take wave period,

ft, as being completely determined by the significant wave height, .FIs, i.e. the value of
Tz car' be determined given the associated Ils. The statistical model recommended here
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is to link these variables via wave steepness, S. Taking a typical value of steepness, 3€, as
the average steepness of the observed 1% la,rgest signiflcant wave heights, then

(4 .1 .5 )

Consequently, the implied marginal distribution of wave period is

'Pr{Ts < r} :  Pr{(2r nslks.))1/2 5 x}

: Pr{tls < r2s3"l(2r)}.

Thus the distribution ol Ts is determined by the distribution of I15. To illustrate this, if
1Js follows a Weibull distribution, see equation (4.1.1), then

,  -  1 1 .

l 2 t r  Hs \ ' ' '
'  

\ gs " )

pr{72<r} : r -  e ' r { - ( r2gs ' / (??T}- ' ) " }  * ,  r>  (2naf  sB,)L/z .t  \  b ))
Similarly, if IIs is GPD(a,1) above the threshold u, then

/  x2os . /Zn)  -  u \ - r l (Pr{Ts < o}: r - ^ (t **t"t#)', ror r> (Zruf s3")t/2.

PlTz<d :  1*}Fr" : fu 's)  o,
Jo ds

/- dFs",s bsr,z lQlT), s) ,: 
Jn ar ""'

These derivations assume that,9 is constant. In practice S is variable and is dependent
on 115. If a statistical model for the joint distribution of (fls,S) were available then
the distribution of T7 could be obtained from relationship (a.1.5). To show this let
Fxy(r,A): Pr{X 1 r,Y 1g} denote the joint distribution functicn of general variables
X and Y. It follows from joint distribution results that

(4.1.6)

(4.r.7)

(4.1.8)

Dependence aspects of the joint distribution of (Ils, S) are considered in Section 4.2.2.
Clearly the impact of variation in 5, and the dependence of S on fls, are different factors.
Here we illustrate the impact of the former by producing a statistical model for the
distribution of wave period using representation (4.1.8) under the false assumption of
independence of I1s and S. We estimate the marginal distribution of 5 using the empirical
distribution for ,9. For the marginal distribution of Ils we use the Threshold Method with
the GPD for values greater than the threshold (taken as the 95% empirical quantile) and
the empirical distribution function for values below this threshold. By comparison with
equation (4.1.7), where ,9 is taken to be constant, we have

P{rz s"}::8","(#) (4.1.e)
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where n is the number of observations, si, i :1,. . . , n denote the observed values of S,
and Fs, is the distribution function of I!s, which is given by the GPD for values greater
than the threshold and by the empirical distribution function for values below z. This is
quite different from equation (4.1.7), where S was taken to be constant.

To illustrate these distributional models Figure 4.1 shows estimates of the distribution
function of Ts for observational data for Christchurch (described in Chapter 5). The
estimates shown are based on different approaches. These are:

r the assumption of independence of .F15 and S, i.e. equation (4.1.9);

o the empirical distribution function of 72;

r the distribution function based on the constant,9 assumption, i.e. equation (4.1.7).

The distribution of ft obtained by fixing S to be S", shows more substantial departures
from the empirical distribution for typical values of wave period, but has good performance
in the tail, reflecting the presence of dependence between high values of I15 and S. As
this feature is not present in the statistical model based on independence of S and 1J5, the
tail is quite different in that case. However, the introduction of the variation of ,9 gives
a better fit in the bulk of the distribution. This suggests that once we have developed
a suitable statistical model for the dependence between (Ils,5) we should have a good
description of the whole distribution of ?s.
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Figure 4.1: Estimation ofthe distribution function of Tz at Christchurch: estimates from
the empirical distribution of 72, constant ,9 and independence of (f/5,,S).

Christchurch Tz
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Dependence Models

In this section we describe statistical models for the inter-relationships between the sep-

arate sea condition variables. Typically the analysis of the joint distribution of the sea
condition variables will be for an offshore location (a 20m depth is the usual depth limit
to which waves can be hindcast without the use of a site-specific wave transformation
model). At such a location the sea condition variables generally exhibit, or are taken to

have, the following relationships:

r Surges and Waves ale dependent.

e Significant wave height, wave period and direction are dependent.

o Tides and Surges a,re dependent processes.

r Tides and Waves are independent.

There are essentially two physical mechanisms which generate the sea condition variables

1. astronomical

2. meteorological.

Variables generated by the different physical mechanisms are independent unless they

interact with each other. Offshore, the water depth is sufficient for the waves to be

effectively independent of tides (not exactly independent because of the effect of currents),

but the surges typically depend on the tide. In shallower water, waves become dependent

on the tide, as the water depth influences the speed of the waves and through depth-

dependent frictional effects, causes them to break.

That the tides and surges are dependent processes in shallow water areas is well known.

Prandle and Wolf (1978) discuss the nature of observed interaction, which subsequent

numerical model results show to be remarkably well captured by the known dynamical

processes of depth based friction effects (Flather, 1987). However, if only high water levels

are considered then, to a reasonable approximation, the associated tide and surge levels

are independent.

Since surge and waves (significant wave height, wave period and wave direction) are

both influenced by the wind climate, it should be expected that there is a relationship

between these variables. The form of dependence at a site depends on the coastal location

of the site, its associated fetch length and direction. For some sites positive dependence

between surge and significant wave height is expected. At other sites negative dependence

(or independence) between these variables is expected.
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Often the dependence between still water level and wave characteristics is required
the still water level is not decomoosed into its constituent comoonents of tide and

surge. Dependence is anticipated between waves and still water levels, but is almost
certain to be closer to independence than the dependence between surges and waves,
since the addition of the 'independent' tidal level masks the relationship.

We need to describe the full joint distribution of the sea condition variables, X. Each
separate variable has been widely studied, see Section 4.1, and, as discussed above, phys-
ical understanding exists for thc presence of dependence between SWLf Surge and IIs.
However, little appears to be known about the pairwise relationships between

o IIs and S,

o SWLf Surge and S,

o Surge and wave direction (9),

or of the higher dimensional relationships. Through some limited studies we have identi
fied:

t . stronger dependence between the pairs (SWL,Hs) and (ffs,,9) than between the
pair (^9I7.L, S);

stronger dependence between the pairs (SWL.,Hs) and (IIs, d) than between the
pair (SWL,0).

These features substantiate the argument that surges can only be linked to wave steep-
ness and direction through the occurrence of waves, i.e. both pairs (Surge, S) and
(Surge,0) are related through I15. This corresponds to conditional independence between
SWL/Surge and,9 given Ifs, and between SWLISurge and d given I15. A graphical
representation of the claimed dependence structure is as follows:

tides surges - wave height - wave steepness

Here lines joining the variables show a direct relationship between that pair of variables;
and a variable Iinked to a second only through a third variable is conditionally independent
of the second variable given the third variable.

Wave direction is omitted from this graphical representation. For purposes of sta-
tistical modelling we examine the above structure for separate wave direction sectors, so
separate analyses are performed for each direction sector which appears to have a different
impact on the distribution of the other variables.

A key adrantage of decomposing the joint distribution of X into the conditional in-
dependence structure shown above is that to examine the ioint distribution we onlv need

slnce

2.
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to examine the joint

we estimate the joint

o  (SWL,Hs)

o (fIs, S).
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distribution of linked pairs, i.e. conditiona,lly on the wa,ve direction
distributions of

In this case we may write the joint density of (S\U L, Hs, S) as

f sw t,ur(n,a) f  ur,s(Y, z)

fo"(a)

where the subscripts indicate the marginal and joint distribution variables. Equivalently,
the joint density can be rewritten as

f sw t',a 
" 
(t, Y) f Ea 

" 
(zlY),

where /s1s" is the conditional density of Sl//s. In Sections 4.2.1 and 4.2.2 we exam-
ine statistical models for estimating the joint distribution of (SW L, Hs) and (Hs, S)
respectively. More specifically in the latter case we describe the conditional distribution
,Slfls. Together, these distributions provide the full joint distribution of the sea condition
variables.

In the following sections it is easiest to describe the dependence between the variables
ifthe marginal variables take a standard form, such as a standard normal distribution (see
Appendix A.4.1). It is possible to transform any continuous random variable to any other
by repeated use of the probability integral transform (see Appendix A.3). Specifically,
the random variable X with distribution function F71 can be transformed to a standard
normal random variable X* bv

x-:  o-1(rx(x)) ,

where O-r is the inverse ofthe distribution function ofa standard normal random va.riable.
Thus we have that

SWL-

u*! s

r)

a-l(FswL6wL)),

o 1(Frrs(r1s)),

o-'(F"(s)),

(4.2.1)

(4.2.2)

(4.2.3)

are standard normal versions of the random variables SW L, Hs and S respectively.
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4.2.L Models for dependence between SW L

In this section three statistical models for the dependence
(SWL,Hs) are proposed. These dependence models are for
ter transformation to standard normal form (SWL.,H!):

and f/5

structure of the variables

the marginal variables af-

the bivariate normal model;

the bivariate normal threshold model;

the mixture of bivariate normals model.

The second and third models are both extensions of the bivariate normal model.

Bivariate Normal Model
Here we assume (SWtr-,14) - BVN(O, D) (for notation see Appendix A.4.1) where

' -  /  t  p l"-\o t i

This statistical model is fitted using the likelihood given in Appendix A.4.1. The maxi-
mum likelihood estimator of p, the single parameter in this statistical dependence model,
is approximately the sample correlation between (SI4zI-, Hi) pairs.

Bivariate Normal Threshold Model
The bivariate normal model above assumes that there is the same degree of dependence
between SW Lr and 1{i whatever values these variables take. However, the dependence
between still water levels and waves is expected to change as more extreme events are
observed since the larger the surge event the less the masking effect of the tide and hence
for large still water levels the true relationship between the surge and waves is identified.
This is because tides a,re independent of the other variables and so weakens any form of
dependence between the surge and waves.

Thus, to capture this potential for changing correlation, we adopt a stat.istically model
consisting of a bivariate normal dependence structure in a region where both SWL. and,
IJi are sufficiently large. Explicitly, for SWL. ) u and IIi > u for some threshold level
u, we take the joint density for (SW L.,11.i) to be identical in form to that of bivariate
normal random variables, i.e. BVN(0, D) where

/ " \
. , -  I  r  P" I--\r,  r )
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This model is only completely explicit in this joint extreme region. The known marginal
distributions and information derived from this joint extreme region impose structure on
the positions of observations in regions where one or other variable is large, and also the
region where neither is large

For a given threshold this statistical model is fitted using the threshotd likelihood
given in Appendix A.4.2. The maximum likelihood estimator of p,,, the single parameter
in this statistical dependence model, is essentially the correlation between (SWL-,Htr)
pairs which are simultaneously above the threshold z in each variable. However, the
estimation of this parameter takes into account the number of observations in each of
the four regions determined by the thresholds, and for the regions (,9W.L. > u, Hfi > u),
(SW L- > u, HI < u,) and (SI4z.L. < u, HI > u, ) the sizes of the threshold exceedance
values are accounted for.

We can treat p,, as a function of the common marginal threshold, a. For u less
than the minimum data value this estimate is approximately the estimate of p for the
bivariate normal model, i.e. the correlation coefficient, whereas for large z this measures
the dependence between the extreme pairs. If in fact the data were from a bivariate
normal distribution then p,, would be independent of a.

A threshold has to be chosen for this statistical model. What is required is that u is
high enough so that the degree of correlation does not change above that threshold. A
suitable threshold can be identified from the estimated p., function, by taking the smallest
z above which the function is constant.

Mixture of Bivariate Normals Model
A disadvantage of the bivariate normal threshold model is that the dependence is taken
to be constant above a threshold level. If the correlation function p,, shows no evidence
of constancy then fixing dependence to be constant above a threshold can lead to bias in
extrapolations of the dependence structure. Thus there is a need to model the change in
the correlation function with threshold, to increase confidence in extrapolations.

One idealised example in which the correlation function r.aries with threshold level is
as follows. Suppose

r there are two distinct 'meteorological mechanisms' which produce still water level
and waye eyents.

each different mechanism produces different Ievels of dependence between still water

level and waves.

from the (SW L, H s) data only, we cannot identify which of the different mechanisms
produced a particular data pair.
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A crude example of this is given in situations where

1. regionally generated waves and still water levels are dependent, but

2. locally generated waves and still water levels are independent.

A consequence of such a structure is that the dependence between still water level and

significant wave height is a mixture of two different dependence forms. If one component

of the mixture describes the dependence between low values and the other between high

values then the correlation function pu will change with z to give the correlation of the

second form for the largest events.

The statistical model here is more complex than for the above cases, being given by

Appendix A.4.3. For each form of dependence a bivariate normal distribution is used to

describe the variations. The overall statistical dependence model has seven parameters,

which can be fitted by maximum likelihood:

r one parameter pM: determining the proportion ofthe data of each dependence type

(pu : 0 or pt,r : 1 suggests that there is only one type of dependence and a

bivariate normal model would fit well);

. two parameters p1 and p2: which measure the correlation associated with each type

of dependence form; and

o four parameters p, = (gzt, Fzz), ozt, o22: which explain the differences in mean level

and variation between events generated by the two mechanisms after transformation

to the standard normal marqinal scale.

This statistical model has two maior benefits over the bivariate normal threshold model:

1. the model is fitted with all the data having equal weight contrasting with the thresh-

old model where the most extreme values are given most weight;

2. the model fits and extrapolates cases where the dependence continues to change

throughout the data and beyond, so the arbitrary specification of a threshold is

avoided.

On the negative side the main disadvantage is that the statistical dependence model
is more complex to fit and parameter estimates more dificult to interpret. Critical to

its application is testing whether two, or one, bivariate normal dependence forms exist.

Unless there is significant evidence for two forms, only one (i.e. the standard bivariate
normal model) should be used.
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4.2.2 Models for dependence between Hs and. S

In this section we develop statistical models for the distribution of S conditional on the
variable 115. The current approach used by practising engineers is to take this distribution
as degenerate, i.e. the steepness is given a fixed estimate, 3., irrespective of the value of
11s. The estimate 6" is given by the average steepness of the 1% largest significant wave
height values.

We propose a model for the distribution of ,9 given lls which

. depends on the value of I1s,

r has variation in S values for a given I15 value,

r contains the existing model as a special case.

In the transformed standard normal (Gaussian) random variable space (I13,,9-), see equa-
tions (4.2.2) and (4.2.3), we statistically model the conditional distribution of 5-1119 sub-
ject to Ifi being sufficiently large. Our reason for focusing on large fli, say f1j > z, is
that we are only interested in 5 conditional on IIs being large. Specifically, we take

s- l (H;  -  h)  -  l r (o  +b(h-  u) ,oz) ,  for  h> u ( l )  L \

i.e. a linear statistical regression model for ,9- with explanatory variable h - u, having
intercept, gradient and variance parameters (a,b,o2) respectively, and a Normal distribu-
tion for the error variable.

This method of describing the dependence is strongly related to the assumption of
a bivariate normal dependence model (see Appendix A.4.1) between ,9- and I1j. For
example, if (S-,14) follow a bivariate normal distribution with correlation p, then the
parameters of equation (4.2.4) would take the form

t t 2  :  I - p 2 .

Thus the statistical model we propose is slightly more general than a bivariate normal

dependence structure as our model does not require a zero intercept to the linear model

or a link between the residual variation and the gradient of the linear model.

Finally we have the problem of threshold selection again. The choice of threshold is

less important than for other aspects of the modelling of the joint distribution as results

are reasonably insensitive to threshold choice here. To aid threshold choice we produce

plots of

E(S-lIlj > z) and Var(S-lI1} > z)

a :0

b - -  p
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using equivalent sample based moments, for a range of potential threshold values. We
look for approximate linearity in the expectation and constancy in the variance as indica-
tors that a sufficiently high level has been used. These plots are best used for identifying
whether the dependence is positive, negative, or independence. Positive/negative depen-
dence is indicated by rising/falling values for E(.9- ll{i ) u), whereas for independence
both the above plots show constancy.

Strictly these are not the most useful plots for threshold selection, since for the linear
regression model to be appropriate, we need E(S-1113 : u) to be linear and Var(S- lfl! :

u) to be constant. Plots based on these features require common I{ values to be pooled,

so here we have the problem ofthe choice ofthe degree of pooling. In Chapter 7 we adopt
the simpler, though less informative approach where conditioning is based on 11$ > z.

4.3 Evaluation of the Probability of Failure using the

JPM

As described in Section 2.2 the final step in the implementation of the JPM is the evalu-
ation of the integral expression

Pr{xe A, l :  [  f t (x)dx,
JA"

where / is the estimated joint density of X and A., is the failure region. This may seem

simple, but the joint density of the sea condition variables is (4/5)-dimensional and the

set over which the integration is required (the failure region) is a complex set, so this

integration requires some care.

No analytical expression is obtainable in these problems so numerical methods of some

form need to be used. There are two approaches:

e numerical integration;

o simulation.

There are many numerical methods for integration, but in practice these are not ideal

when the dimension of the integral is relatively high and the form of the failure region is

non-linear. Therefbre the simulation approach is proposed, which involves a three stage

procedure:

1. simulation of a large number, n, say, of pseudo observations from the fitted joint

distribution of X;

2. evaluation of the structure variable, A(X), for each pseudo observationl
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3. evaluation of the integral as the proportion of the pseudo observations on the struc-
ture variable that exceed the critical level u. Letting X, denote the sth simulation
from the joint density f, then the Monte Carlo estimate of the integral is

number of the points X,, s : 1, . . . , rz, in the set ,4.,
' v s

Step 1 above is general and independent of the form of the structure function. Thus if
a wide range of designs are to be considered this step only needs to be undertaken once.
The output in the form of a series of events so is of interest for a range of design studies.
By itself this is a valuable output from the analysis for coastal engineers.

Increasing z, improves the precision of the evaluation of the estimated probability of
failure. In practice n, should correspond to 10-100 times the length of the return pe-
riod of interest, so the largest simulation sample sizes are required for the most extreme
extrapolations. This can be computationally intensive although straight forward to im-
plement. More generally, methods exist for improving the precision without increasing n".
These methods use importance sampling in the simulation stage, which involves simulat-
ing a dis-proportionate number of extreme sea condition observations at the simulation
stage and appropriately down-weighting the proportion of failures in the estimation stage.
More specifically, pseudo observations are generated from a suitably chosen joint distri-
bution with density, 9(x), giving a disproportionate number of extreme X values. The
importance sampling factor for a simulated value X is

i.e. the fitted joint density relative to the joint density used for the simulation of the
pseudo observations. So Step 1 involves generating n, values X;, from g, with importance
sampling factors ft(X6)/9(X;) for i: I,. .., n,. The estimated probability of failure, i.e.
Pr{X e ,4"}, is then given by

/x(x)
e(x)

where

1i i1x, e A,)ft(x;)/e(x,).

I IY .cA . '_ I '  i f  X ,€A,. , . - , - , , , ,_ 
I  0 i f  X,#,4, .

This method is less computationally intensive than the direct simulation method but
requires some experience in the selection of an appropriate joint density function g.

In this report we have used the importance sampling techniques in Chapters 7 and 8,
but for applications of the JPM to the estimation of the probability of failure in Chapter
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I we found the direct approach was suitable. In other applications, where the structure
function is too computationally intensive to evaluate many thousands of times, importance
sampling may be necessary.
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Chapter 5

Study Data

Within the project two formats of data were considered:

1. Observationa.l data consisting of measured data and hindcast data;

2. Simulated data - consisting of synthetically generated data from a known statistical
model.

In this chapter we describe the two different types of data sets used in the study, and for
the simulated data give the statistical model used to generate these.

5.1 Observational data

A number ofsites were identified as having interesting characteristics relevant to the study.
Primary interest was in obtaining sites which had a wide range of dependence structures,
so sites with negative dependence, independence and positive dependence between still
water levels and waves were selected. Sites with the still water level separated into tides
and surges, and where the directionality of the wave processes is influential to the joint

distribution ofthe other sea condition variables, were also selected to enable these features
to be examined. An additional criterion was that each site should have a number of years

of data available.

Six sites which possessed the relevant properties were Cardiff, Christchurch, Dover,
Dowsing, North Wales and Shoreham. Table 5.1 gives details of the data for these sites.
In each case, the wave data are hindcast values. Other sites where measured wave data
are also available were studied to a lesser extent.

69
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Site Variables Sampling Years
Cardiff
Christchurch

Dover

Dowsing
North Wales
Shoreham

SWL, Surge, Waves
SWL, Surge, Waves
SWL, Surge, Waves

SWL, Surge, Waves
SWL, Surge, Waves
SWL, Surge, Waves

High Waters
Hourly

Hourly
Hourly

High Waters
High Waters

60-87
7B-90

I  I  I Y

78-87

70-83

B1 91

Table 5.1: Information about the observational data sites: SWL - still water level, Waves
significant wave height, wave period, wave direction.

5.2 Simulated data

Five data sets have been simulated to reproduce the main features of five of the six main
data sets (excluding Shoreham). The true statistical model for the joint distribution of
the five simulated data sets (Sim1 - Sim5) is described below for each data set.

In each case we have simulated 7000 independent points, approximately equivalent to
10 years of separate high water levels. Marginal aspects of the joint distribution are taken
as either

the empirical distribution of the variable from one of the observational data sets, or

based on parametric models fitted to the observational data.

Dependence aspects are not as representative of the characteristics of the observational

data sets as the marginal features. A number of dependence models were selected to have

different, but simple, dependence forms and a range of dependence levels.

For each simulated data set we generated complete data on the vector

r still water level (SI4/Z). (In addition for Sim3, the tide and surge constituents were

separately generated) ;

r significant wave height (I15);

o wave direction (d);

r wave period (ft).

In the simulations wave period was obtained by generating Ils and the waue steepness.,

,5, and using the relationship

^ 1znl:.,r l t l '
1z: | -----;- | ,

\  gJ  J
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where g is the acceleration due to gravity.

Siml data
Marginal distributions
The marginal distribution of d is taken to be the same as the equivalent empirical distri-
bution of the Cardiff data. For both SW L ancl Hs a mixture of the empirical distribution
and parametric models are used. For ,9172 below the 95% empirical quantile of the Cardiff
SW L data, the empirical distribution is used; above this threshold, the distribution fol-
lows a generalised Pareto distribution (see Chapter 3, equation (3.1.3)) with parameters
o-0 .362and{ : -6 .264 .

Both ^9 and f15 have distributions which depend on d:

oWhen0 '<d<110" :

For f15: below the 95% empirical quantile ofthe Cardiff ffs data from this direction
sector, the empirical distribution is used whereas above this threshold, the distri-
bution follows a generalised Pareto distribution with parameters o : 0.1958 and

€ : -0.102.

For ,9 the empirical distribution of the Cardifl data in this sector is used.

o  When110 '<d<360 ' :
For ff5: below the 95% empirical quantile of the Cardiff Ils data from this direction
sector, the empirical distribution is used, whereas above this threshold, the distri
bution follows a generalised Pareto distribution with parameters o : 0.1417 and
( :  -0.0604.

For S, the empirical distribution of the Cardiff data in this sector is used.

Dependence Structure
After transformation of each marginal variable (Hs, SW L, S) to a standard normal distri
bution, the form of the dependence between the three variables is a trivariate normal dis-
tribution with zero-mean vector (see Appendix A.2.2). However the variance-covariance
matrix, X, depends on wave direction, with D given by

1 0.3 0.62
0 .3  1  0 .3x0 .62
0.62 0.3 x 0.62 1 )

)

1
0.3

0.742

0.3 0.742
| 0.3 x 0.742

whend<1 l0 " , and

0.3 x 0.742



72 CHAPTER 5. STUDY DATA

when d > 110'.

This dependence structure corresponds to positive dependence between (Hs,SWL)
and between (I1s,S), but with (SWL,S\ only related via their relationship with I15.
The directionality of the waves influences the dependence structure by increasing the
dependence between .FIs and ,S when g > 110".

Sim2 data
Marginal distributions
The marginal distributions of d and S are taken to be the same as the equivalent empir-
ical distributions of the Dover data. For both SWL and F1s a mixture of the empirical
distribution and the parametric model is used. Specifically, for SW L below the 95% em-
pirical quantile of the Dover SW L data, the empirical distribution is used, whereas above
this threshold, the distribution follows a generalised Pareto distribution with parameters

o  :0 .1866 and € :  -0 .0764.

Significant wave height has a distribution which depends on the wave direction:

For0 ' (d<110" :

below the 95% empirical quantile of the Dover Ils data from this direction sector, the
empirical distribution is used, whereas above this threshold, the distribution follows
a generalised Pareto distribution with parameters o :0.731 and { : -0.4215.

For110"<d<360 ' :
below the 95% empirical quantile of the Dover fls data from this direction sector,
the empirical distribution is used whereas above this threshold, the distribution
follows a generalised Pareto distribution with parameters o :0.46 and { - -0.112.

Dependence Structure
The direction, d, only influences the marginal distributions of the variables, but not their
dependence structure which is assumed to be constant across sectom. 'Ihe (Hs., SW L, S)
variables are taken to be dependent. After transformation of each marginal variable to
a standard normal distribution, the form of the dependence between the (11e, SWL, S)
variables is a trivariate normal distribution with zero-mean vector and variance-covariance
matrix, X, given by

F -

1 -0.2 -0.1
-0 .2  1  -0 .2x-0 .1
-0.1 -0 .2 x  -0 .1  1

This dependence structure corresponds to negative dependence between (Hs,SWL) and
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between (I{s, S), but with (SW L, S) positively dependent through their relationship with
Hs.

Finally to ensure that no artificially large values of T2 ate produced as a result of a
high .FIs value occurring with a small S value, \Me modify the simulated data set by setting
Ils to be the minimum observed f{s value when ,9 < 0.02.

SimS data
Marginal distributions
The marginal distributions of d, ,9 and tides are taken to be the same as the equivalent
empirical distributions of the North Wales data. For both Su,rge arrd /1s variables a
mixture of the empirical distribution and the parametric model is used. Specifically, for
botrh Surge and IIe below the 95% empirical quantile of the associated North Wales data,
the empirical distribution is used, whereas above these thresholds the distribution follows
a generalised Pareto distribution, with parameters o :0.L446 and { : 0.0803 for ,9urge
and o: 0.6119 and {: -0.1583 for I /s.
Dependence Structure
The wave direction and tide are taken to be independent ofthe (Hs,Surge,S) variables,
which are taken to be dependent. After transformation of each marginal variable to a
standard normal distribution, the form of the dependence between the three variables is a
trivariate normal distribution with zero-mean vector and variance-covariance matrix, D.
given by

This dependence structure corresponds to positive dependence between (Hs,Surge) a,nd.

very weak positive dependence between (fls, S), and with (Surge, S) almost independent.

Sim4 data
Marginal distributions
The marginal distributions of I and S are taken to be the same as the equivalent empirical
distributions of the Christchurch data. For both SWL and. /{s values a mixture of the

empirical distribution and parametric models is used. Specifically, for both SW L and
,I/s below the g5% empirical quantile of the associated Christchurch data, the empirical
distribution is used, whereas above these thresholds the distribution follows a generalised

Pareto distribution, with parameters o : 0.126 and {: -0.15 for SWL and o:0.6685
and { : 0.15 for fls.

/ . )

( t 0.16 o.o49T \
x: l  0.16 1 0.16xo.oaezl.

\ 0.0497 0.16 x 0.0497 | l
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Dependence Structure
The wave direction and ,9 variables are taken to be independent of the (Hs,SWL) vari-
ables, which are taken to be dependent. After transformation of each marginal va.riable
to a unit Fr6chet distribution, (i.e. with distribution function Pr{X < r} : exp(-I lr)
for r > 0) the form of the dependence between the two variables (X, Y), is taken to be a

bivariate extreme value distribution (with logistic dependence structure) grven by

Pr{X < r,Y < a} - exp{-(r-1l" +a-t1o1"}, (5 .2 .1 )

where0<a{ lde te rm ines thedegreeo fdependence .Wetooka :0 .8 .Th isdependence

structure ccrresponds to a strong form of positive dependence between (Hs,SWL) wifh

particularly high levels of dependence between the most extreme values of each variable,

see Sect iou 3.3.1.

Finally, to ensure that no artificially large values of Ts ate produced as a result of a

high /1s value occurring with a small ,9 value, we modify the simulated data set by setting

.I1s to be the minimum observed I{s value when S < 0.014.

Simb data
Marginal distributions
The marginal distributions of d and ,9 are taken to be the same as the equivalent empir-
ical distributions of the Dowsing data. For both ,SWtr and f15 values a mixture of the
empirical distribution and parametric models is used. Specifically, for both SWL and Hg
below the 95% empirical quantile of the associated Dowsing data, the empirical distribu-
tion is used, whereas above these thresholds the distribution follows a generalised Pareto
distr ibution, with parameters o:0.2091 and {: -0.0711 for SWL and o:0.8091 and

{ - 0.1121 for I1s.

Dependence Structure
The wave direction and S variables are taken to be independent of the (Hs,SWL) var\-
ables, which are taken to be dependent. After transformation of each marginal variable
to a standard normal variable, the joint distribution of these variables is given by by the
mixture of bivariate normal distributions described in Appendix A.4.3. The parameters

of this dependence model are

p2 :  ( 0 .3 ,0 .3 ) ,  o21  - - ozz :1 ,p :0 .9 ,  h :0 ,  a1d  pz
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5.3 Principal differences between the simulated data

sets

The key differences between the simulated data sets are summarised in Table 5.2. These
differences are largely self explanatory, with

c the SWL and 1{5 tails determined by the value of the shape parameter, {, used to
simulate values from the GPD distribution for the tail of the variable,

r the distorted tails for Sim4 are a consequence of the way that the tails of /{s and
Sll/.L have been deliberately lengthened and shortened respectively from values
estimated at Christchurch to illustrate how the SVM and JPM compare when the
two variables have quite diflerent tail forms. The simulated data do not reproduce
the hindcast data well at this site.

data key feature SW L tajl I{s tail Dependence

Siml
Sim2
Sim3
Sim4
Sim5

directionality important

directionality of fls

tide and surge data
distorted tails

complex dependence

short
medium

long

short
medium

medium
short/medium

short
Iong

long

* medium
- medium

* medium

+ high
medium/high

Table 5.2: Differences in the statistical models for the simulated data sets Siml-Sim5.
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5.4 Comparison of observed and simulated data

Figures 5.1-5.22 show various aspects ofthejoint distribution ofthe sea condition variables
for both the observational and the simulated data sets in the report. Specifically, joint

scatter plots of the data are shown for

o still water level (SWL) and significant wave height (fI5)

. snrge and 115

e -I15 and wave period (77)

r SWL and 72.

In addition, for both Cardiff and Siml data sets, wave direction is plotted against F/s and

Features of interest are:

For Cardifr and SimL Larger Ts values occur in Siml than the observational data. The
reason for this is that the simulation model for dependence between f/s and ,9 has
not sufficiently restricted small ,S values to occur only with small I15 values. Other
than this the simulated data reproduces the key characteristics of the Cardiff data
well, possibly with the exception of not giving large enough Tz v^ltes for directions
less than 100". The probable explanation of this is our use of 110" rather than 190'
as a basis to separate direction types when setting up the Siml data. Later analysis
of the Cardiff observational data takes the split at 190'.

For Dover and Sim2 The agreement here is very good. Figure 5.8 shows some appaxent
difference in the relationship of (IIs,Ts) but this is primarily due to ties in the
observational data which appear as a single point on the plot.

North Wales and Sim3 There is a good agreement with the observational data. Note
the outlier in the observational surge data.

Christchurch and Sim4 Here the key difference is in the scale of the 7z upper tail,
which is much longer (almost twice as long) for Sim4 than the observational data.
This is due to the (fls,,9) values being taken to be independent, thus allowing small
,9 values to occur with large Ils values (to produce very large T2) in the simulation
model. The ft values are unrealistically large for Sim4. Sim4 was the simulated
data set where the ,[1s tail was deliberately lengthened. However, this does not seem
to have made a notable change from the observational data set (as seen from Figure
5.15). As a result of these features, Sim4 cannot be considered to be a realistic
representation of sea conditions at Christchurch.
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For Dowsing and Sim5 The main difference between these sets is that the simulated
data have a few much larger values of f15 (almost twice as large) than appear in

the observational data. Correspondingly, these observationS produce a few larger

ft values for Sim5 than the Dowsine observational data.
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Figure 5.1: Cardiff observational data and Siml data: fls vs SWL
Observational data Simulated data
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Figure 5.2: Cardiff observational data and Siml d.at a: Hs vs Tz
Observational data Simulated data
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Figure 5.3: Cardiff observational data and Siml data: SWL vs ft
Observational data Simulated data
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Figure 5.4: Cardif observational data and Siml data: Ils vs d
Observational data Simulated data
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Figure 5.5: Ca,rdif observational data and Siml data: T2 vs 0
Observational data Simulated data
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-F'igure 5.7: Dover observationai data and Sim2 data: fls vs SWL
Observational data Simulated data
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Figure 5.8: Dover observational data and Sim2 d,ala: Hs vs Tz
Observational data Simulated deta
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Figure 5.9: Dover observational data and Sim3 data: SWL vs ?z
Observational data Simulated data
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Figure 5.10: Dover observational data: I1s vs Surge
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Figure 5.11: North Wales observational data and SimS data: IIs vs SWL
Observational data Simulated data
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Figure 5.12: North Wales observational
Observational data
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Figure 5.13: North Wales observational data and Sim3 data: SWL vs Tz
Observational data Simulated data
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I'igure 5.14: North Wales observational data and Sim3 data: F1s vs Surge
Observational data Simulated data
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Figure 5.15: Christchurch observational data and Sim4 data: f1s vs SWL
Observational data Simulated data
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Fiqure 5.17: Christchurch observational data and Sim4 data: SWL vs T"
Observational data Simulated data
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Figure 5.18: Christchurch observational data: 115 vs Surge

1 41 0

Christchurch

Surge



5.4. COMPARISON OF OBSERVED AND SIML|LATED DATA 87

Figure 5.19: Dowsing observational data and Sim5 data: f/5 vs SWL
Observational data Simulated data
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Figure 5.20: Dowsing observational data and Sim5 data: H5 vs 1'7
Observational data Simulated data
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Figure 5.21: Dowsing observationai data and Sim5 data: SWL vs ft
Observational data Simulated data
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Figure 5.22: Dowsing observational data: //s vs Surge
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Chapter 6

Marginal Estimation

In this chapter we apply the models proposed in Chapter 4 to each of the marginal

variables of the sea condition vector.

6.1 Still Water Level

6.I-.1 Observational Data

The threshold method of Section 3.1.2 is now applied to the still water level data from the
observational sites (Cardiff, Christchurch, Dowsing, Shoreham, North Wales and Dover).
To eliminate time dependence, observations at Dowsing, Christchurch and Dover were
declustered by means of the procedure described in Sectioa 3.1.6. This step was unnec-
essary for time series at Cardiff, Shoreham and North Wales, as they consist only of high
water data.

Threshold Choice and Estimation
For threshold selection, a mean residual life plot was constructed for each of the 6 sites.
Except at Cardiff, for which no linearity could be detected, a threshold fixed at the 95%
quantile of the empirical distribution seemed a reasonable choice for all sites. Figures

6.1-6.3 contain plots of maximum likelihood estimates of the shape pa,rameter { of the
GPD plotted against the threshold u (expressed as the non-exceedance probabiliiy, f(u),
ofz) for each site. For all sites the estimate of( is a negative value, which indicates short-
tailed distributions with finite upper end point. Again, with the exception of Cardiff, a
stability of the estimates can be seen to hold above the 95% empirical quantile. Thus,
this value of z is used at all sites with the associated maximum likelihood estimates of
the GPD parameters { and o given in Table 6.1.
Goodness-of-fit
To assess the goodness-of-fit of the fitted GPD tail model to still water level, probability
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90 CHAP'IER 6. MARGINAL ESTIMATION

(P-P) and quantile (Q-Q) plots were constructed. Figure 6.4 contains results obtained
for Cardiff and North Wales. As expected from the preliminary analyses on the threshold,
Cardiff presents a poor fit, as indicated in the quantile plot by the observed upper tail
being shorter than the fitted GPD model. For North Wales the goodness-of-fit of the
GPD is satisfactory, as the probability and quantile plots exhibit no systematic departure
from linearity. The other sites exhibit a quality of fit which is similar to that of North
Wales. Overall) we can conclude that the GPD model gives an acceptable description of
the observed tail of SWL at most sites, though for extrapolation beyond the range of the
data, estimates based on an indirect method may be preferable, as discussed in Section
4 .1 .1 .

Site Shape Parameter { Scale Parameter a

Cardiff

Christchurch

Dowsing

Shoreham

North Wales

Dover

-0.264 (0.0124)

-0.05e3 (0.0474)

-0.0711 (0.0371)

-0.1324 (0.0486)

-0.0457 (0.0482)

-0.0764 (0.0537)

0.362 (0.0121)

0.126 (0.00863)

0.20e1 (0.0141)

0.1796 (0.01325)

0.2246 (0.015)

0.1866 (0.0151)

Table 6.1: Maximum likelihood estimates of the parameters cf the GPD fitted to SWL
data at observation sites (standard errors in parentheses).



6.1. STILL WATER LEVEL

Figure 6.1: GPD shape parameter estimates versus the empirical distribution function cal-
culated in u fot SW L data at Ca,rdiff and Christchurch. Dots denote maximum likelihood
estimates. Lines..denote lower and upper bounds of the 95% confidence intervals.
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Figure 6.2: GPD shape parameter estimates versus the empirical distribution function
calculated in z for SW L da,ta at Dowsing and Shoreham. Dots denote maximum likelihood
estimates. Lines denote lower and upper bounds of lhe g5% confidence intervals.
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STILL WATER LEVEL

Figure 6.3: GPD shape parameter estimates versus the empirical distribution function
calculated in u for SWL data at North Wales and Dover. Dots denote maximum likelihood
estimates. Lines denote lower and upDer bounds of the g5% confidence interva.ls.
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Figure 6.4: Probability and quantile plots for the GPD fiited to SWL data at Cardiff
and North Wales. Also shown in each plot is the o: gr hne.
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STILL WATER LEVEL

6.1.2 Simulated Data

For the simulated still water level data the 95% empirical quantile is used as a threshold
to fit the GPD model to the exceedances. It follows that for all data sets the exceedance
probability estimate is 0.05. Table 6.2 gives estimates of the GPD parameter estimates
for the five simulated data sets. For Sim1. Sim2. Sim4 and Sim5 the statistical model
that is fitted is of the same structure as the model used to simulate the data. For Sim3
however the data were generated as independent tide and surge, so the still water level is
not guaranteed to fit well above the selected threshold.

For Siml and Sim2 the parameter estimates are very close to the true values used to
simulate the data (see Chapter 5). For Sim4 and Sim5 the two parameters differ from
the true values, but the change in the tail form due to the two mis-estimations largely
cancels out as one error lengthens the tail while the other shortens it. Little can be said
about Sim3 at this stage except that the shape parameter estimates for the still water
level/surge correspond to an upper endpoint existing/not existing respectively. This is
consistent with the errors found by Dixon and Tawn (1994, 1995) for direct analysis of
still water levels.

Data Shape Parameter { Scale Parameter o

Siml

Sim2

Sim3

Sim4

Sim5

-0.2246 (0.041,)

-0.1284 (0.054)

-0.11 (0.045)

-0.1811 (0.05)

-0.1166 (0.049)

0.3402 (0.023)

0.1843 (0.014)

0.24 (0.0167)

0.1344 (0.00e8)

0.2151 (0.016)

Table 6.2: Maximum likelihood estimates of the parameters of the GPD fitted to SW L
simulated for the synthetic data sets (standard errors in parentheses).
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6.2 Surge

CHAPTER 6. MARGINAL ESTIMATION

6.2.1 Observational Data

The Threshold Method was applied also to declustered surge data. Figures 6.5-6.7 contain
sensitivity plots on the basis of which a threshold equal to the empirical g5% surge quantile
was chosen for all sites. Maximum likelihood estimates are shown in Table 6.3. With the
exception of Christchurch, estimates of the shape parameter tend to be higher than the
va.lues obtained from still water level. This is consistent with the Sim3 data results
above. Dixon and Tawn (1994, 1995) noticed that for sites at which still water level is
dominated by the tidal variation, extreme value models applied to extreme surge data
indicate longer tail distributions than the same models when fitted to extreme still water
levels. In contrast, they observe an agreement in the results for sites in which the surge
variation is dominant. Christchurch belongs to this latter class of sites, and as seen from
Tables 6.1 and 6.3, the shape parameters are of the same sign in each case. Graphical
assessments of goodness-of-fit for Cardiff and Christchurch are contained in Figure 6.8.
For still water level, some depa,rture from linearity is observable in the Cardiff Q-Q ploi.
At the other sites, the GPD seems to provide a reasonable fit to the surge exceedances of
u -

Site Shape Parameter { Scale Parameter o
Cardiff

Christchurch

Dowsing

Shoreham

North Wales

Dover

0.0123 (0.0293)

-0.0954 (0.049)

0.0158 (0.058)

0.02691 (0.0468)

o.o8o3 (0.048)

0.2 (0.072)

0.137 (0.0061)

0.142 (0.01)

0.1473 (0.012)

0.104 (0.0076)

0.1446 (0.0097)

0.131 (0.0122)

Table 6.3: Maximum likelihood estimates of the parameters of the GPD fitted to Surge
level data at various sites (standard errors in parentheses).
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Figure 6.5: GPD shape parameter estimates versus the empirical distribution function
calculated in z for Surge level data at Cardill and Christchurch. Dots denote maximum
Iikelihood estimates. Lines denote lower and upper bounds of the 95% confidence intervals.

Cardiff

0.90 0.92 0.94 0.96 0.98 1.00

Christchurch

0.94

F(u)

97

a,l

6 c.'l

(E

o.
x , . . i
( ! '

E

-

F(u)

.:

o
(I)

E^,
. i  - ' :

dY

o

,n

0.90 0.92 0.96 0.98



CHAPTER 6, MARGINAL ESTIMATION

Figure 6.6: GPD shape parameter estimates versus the empirical distribution function
calculated in u for Surge level data at Dowsing and Shoreham. Dots denote maximum
likelihood estimates. Lines denote lower and upper bounds of the 95% confidence intervals.
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Figure 6.7: GPD shape parameter estimates versus the empirical distribution function
calculated in z for Surge level data at North Wales and Dover. Dots denote maximum
likelihood estimates. Lines denote lower and upper bounds of the 95% confidence intervals.
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Figure 6.8: Probability and quantile plots for the GPD fitted to Surge level data at Cardiff
and Christchurch. Also shown in each plot is the r: g line.
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6.2.2 Simulated Data

The only simulated data set with surge data is Sim3. The parameter estimates obtained

by applying the threshold method with threshold corresponding to the 95% empirical
quantile, and GPD for exceedances, are given in Table 6.4. From this table we see that

the parameter estimates are close to the true values (see Chapter 5).

Data Shape Parameter { Scale Parameter o

Sim3 -0.026 (0.052) 0.167 (0.012)

Table 6.4: Maximum likelihood estimates of the parameters of the GPD fitted to simulated
Surge level data (standard errors in parentheses).

6.3 Significant Wave Height

6.3.1 Observational Data

In this section we fit three distributional models to the hindcast fls wave data from
the sites Cardiff, Christchurch, Dowsing, Shoreham, North Wales and Dover. All six
time series consist of hindcast data where the temporal dependence has been removed by

applying the declustering procedure of Section 3.1.6. Since for these sites water level data
are also available. The three statistical models considered are:

1 .

2.

J .

Weibull;

Truncated Weibull;

GPD,

the latter two being fitted through the threshold methods, but all fitted using maximum

likelihood. The first two models can be compared by examining their parameter estimates,
the latter two by comparing estimate stability to threshold level. In each case P-P and

Q Q plots are used to assess goodness of fit.
First consider the Weibull distribution fitted to all /1s values. Table 6.5 shows max-

imum likelihood estimates of the Weibull distribution parameters (o, b, c) for each site.
The goodness of fit at each site is most easily assessed using the Q-Q plots shown in
Figures 6.9 6.11. The model fits well for the Dover data; for Cardiff and Christchurch

the fitted model has a slightly longer upper tail than the empirical upper tail, with the
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reverse behaviour observed at North Wales. However, for both Dowsing and Shoreham
the fit is exttemely poor. In one case the Weibull model over-estimates the upper tail, in
the other it under-estimates the upper tail. Clearly, for these two sites the basic Weibull
model is inadequate.

Now consider the Truncated Weibull distribution. Table 6.6 contains maximum like-
Iihood estimites of the parameters (a,b,c) for the same sites, obtained by applying the
Threshold Method with the distribution of exceedances given by the Tluncated Weibull
distribution, c.f. equation (a.1.2), with the threshold taken at the 95% empirical /1s quan-
tile. If the Weibull distribution were the true underlying distribution, then the estimates
of (a,b,c) would be similar to those {rom the previous Weibull model fit to the whole
data set. This only seems true for the Dover data. The worst agreement occurs with
the Dowsing and Shoreham data. These findings confirm the obsenations made from the
Weibull model fit above. Probability plots and quantile plots for the Truncated Weibull
a,re shown in Figures 6.12-6.74.

We can conclude that the Weibull distribution, while providing an acceptable fit to the
bulk ofthe data, is a poor description ofthe upper tail for lls at these sites. In some cases,
as for Dowsing and North Wales, it leads to shorter tailed distributions than is indicated
by the observations, whereas for Cardilf, Christchurch and Shoreham, it overestimates the
empirical extreme quantiles. Only Dover demonstrates a reasonable fit. As a consequence,
for most of the sites considered, the Weibull distribution will produce unreliable estimates
of values associated with long return periods.

Now consider the GPD threshold model using the same threshold as for the Truncated
Weibull model. The GPD has the potential advantage over the Truncated Weibull model
that it is asymptotically justified. However, this does not gua,rantee that it will fit better
to data in practice, so we must assess how well it describes the data relative to the
Truncated Weibull mode1.

Results obtained by maximum likelihood estimation of the shape and scale pa.rameters
of the GPD are given in Table 6.7. The parameter estimates show that with the exception
of Dowsing we estimate an upper ondpoint to the 115 distribution for each site. Probability
plots and quantile plots are contained in Figures 6.15-6.17. The GPD model seems to
perform well in each case there is a strong similarity with the associated Truncated
Weibull plots. Discrimination between the Tluncated Weibull and the GPD, based only
on this graphical tool, is difficult.

A further comparison between the two tail models may be made on the basis of their
stability with respect to different thresholds. As remarked in Section 3.1.4, a property re-
quired from tail models is the non-sensitivity ofthe results to threshold selection. Figures
6.18-6.23 show estimates, for each of the six sites, of two fixed quantiles, one within and
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one be]'ond the range of the data, as functions of threshold under each tail model. For
both quantiles the GPD seems more stable, giving empirical support for the preference
of this tail model. Furthermore, with the exception of Dowsing (which was the site for
which we estimated no upper endpoint), the GPD leads to lower quantile estimates than
the Truncated Weibull, suggesting that the latter is unduly conservative.

Site Location Parameter a Shape Parameter c Scale Parameter b
Cardiff

Christchurch

Dowsing

Shoreham

North Wales

Dover

0.00532 (0.0293)

0.00827 (0.00057)

0.0565 (0.00158)

0.00598 (0.001)

0.00873 (0.0006)

0.0271 (0.00141)

276 (0.01)

1194 (0.0106)

563 (0.0149)

144 (0.01286)

4e3 (0.0118)

61 (0.016)

0.3069 (o.oo2oe)

0.972 (0.0107)

1.443 (0-0126)

0.e45 (0.01124)

1.032 (0.0077)

1.231 (0.0104)

Table 6.5: Maximum likelihood estimates of the parameters of the Weibull distribution
fitted to -FIs observations at various sites (standard errors in parentheses).
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Site Location Parameter a Shape Parameter c Scale Parameter b

Cardiff

Christchurch

Dowsing

Shoreham

North Wales

Dover

0 .0861(0 .133)

0.234 (0.5145)

1.417 (0.486)

0.0006 (0.0182)

0.0003 (0.0096)

0.0235 (0.0102)

1.1166 (0.197)

r.25r (0.212)

0.658 (0.14)

1.585 (0.0744)

1.363 (0.0527)

1.683 (0.0821)

0.2227 (0.088)

1.04e6 (0.3667)

0.28e5 (0.1e2)

7.267 (0.0479)

1.015 (0.0367)

1.312 (0.048e)

Table 6.6: Maximum likelihood estimates of the parameters of the Truncated Weibull
distribution fitted to Hs exceedances at various sites (standard errors in parentheses).

Site Shape Parameter { Scale Parameter o
Cardiff

Christchurch

Dowsing

Shoreham

North Wales

Dover

-0.0375 (0.0373)

-0.0474 (0.0511)

0.1121 (0.0693)

-0.1703 (0.044)

-0.1583 (0.0433)

-0.237 (0.0513)

0.1793 (0.0091)

0.6685 (0.0489)

0.80e1 (0.073e)

0.5788 (0.0411)

0.611e (0.0386)

0.56B9 (0.0435)

Table 6.7: Maximum likelihood estimates of the parameters of the GPD fitted to lls
exceedances at various sites (standard errors in parentheses).
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Figure 6.9: Probability and quantile plots for the Weibull distribution fitted to.F/s obser-
vations at Cardiff and Christchurch. Also shown in each plot is the r : ? line.
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Figure 6.10: Probability and quantile plots for the Weibull distribution fitted to 115
observations at Dowsing and Shoreham. Also shown in each plot is the r = g line.
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Figure 6.11: Probability and quantile plots for the Weibull distribution fitted to 115
observations at North Wales and Dover. Also shown in each plot is the z: z line.
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Figure 6.12: Probability and quantile plots for the Truncated Weibull distribution fitted
to lls exceedances at Cardiff and Christchurch. Also shown in each plot is the r : gr line.
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Figure 6.13: Probability and quantile plots for the Tfuncated Weibull distribution fitted
to FIs exceedances at Dowsing and Shoreham. Also shown in each plot is the r: g line.
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Figure 6.14: Probability and quantile plots for the Truncated Weibull distribution fitted
to Ils exceedances at North Wales and Dover. AIso shown in each plot ir trhg s : E line.
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Figure 6.15: Probability and quantile plots for the GPD fitted to I{s exceedances at
Cardiff and Christchurch. Also shown in each plot is the r : rr line.
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Figure 6.16: Probability and quantile plots for the GPD fitted to I{s exceedances at
Dowsing and Shoreham. Also shown in each plot is the z: E line.
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Figure 6.17: Probability and quantile plots for the GPD fitted to IIs exceedances at North
Wales and Dover. Also shown in each plot is the r: y line.
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Figure 6.18: Cardiff: Estimates of two extreme quantiles under the Weibull and the GPD
models versus the empirical distribution function calculated in u.
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Figure 6.19: Christchurch: Estimates of two extreme quantiles under the Weibull and the
GPD models versus the empirical distribution function calculated in z.
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Figure 6.20: Dowsing: Estimates
GPD models versus the emoirical

CHAP'IER 6. MARGINAL ESTIMATION

of two extreme quantiles under the Weibull and the
distribution function calculated in z.
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Figure 6.21: Shoreham: Estimates of two extreme quantiles under the Weibull and the

GPD models vercus the emDirical distribution function calculated in z.
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Figure 6.22: North Wales: Estimates of two extreme quantiles under the Weibull and the
GPD models versus the empirical distribution function calculated in z.
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Figure 6.23: Dover: Estimates of two extreme quantiles under the Weibull and the GPD
models versus the empirical distribution function calculated in z.

Dover Quantile= 99.9%

Weibu
GPD

0.90 0.92 0.94

F(u)

0.98

Dover guantile= 99.99%

- Weibull
GPD

+
( t ) ^ ,

cv
J

+

+

q
ro

. ;o * ,=
c @g+

+
ns

0.96

0.92 0.94

F(u)

0.90 0.96 0.98



r20

6.3.2

CHAPTER 6. MARGIAIAL ESTIMATION

Simulated Data

For the simulated /1s data we only fitted the GPD threshold model. In each case we took
the 95% empirical quantile of fls as the threshold. From Section 5.2 we can see that for
Sim3-Sim5 this is the correct specification of the distributional form, whereas for Siml
and Sim2 the marginal distribution of Ile is more complex than this as, in each case, the
distribution of I/s depends on the associated wave direction. Table 6.8 gives estimates of
the fitted GPD parameters for each simulated data set. For Siml-Sim3/Sim4 Sim5 the
IIs distribution is estimated to have a finite/infinite upper endpoint respectively, which is
consistent with the true simulation models. For Sim3 and Sim4 the estimates are close to
the true values (see Chapter 5) whereas for Sim5 the shape parameter estimate is slightly
too large, corresponding to an over-estimated upper tail. Comparisons for Siml and Sim2
are more difficult. For Sim2. the fitted model approximately is an average of the models
for the two directional IIs distribution. This is reasonable, as each direction sector is
approximately equally likely to produce extreme I1s values. For Siml the fitted model
closely resembles the lls distribution for d > 110". Again this is reasonable, as most
waves, including the largest waves, come from this direction sector.

Data Shape Parameter { Scale Parameter o

Siml

brmz

Sim3

Sim4

Sim5

-0.0727 (0.061)

-0.2712 (0.063)

-0.136 (0.05)

0.132e (0.071)

0.2i08 (0.067)

0.1e42 (0.016)

0.5125 (0.042)

0.605 (0.044)

0.6506 (0.057)

0.802 (0.068)

Table 6.8: Maximum likelihood estimates of the parameters of the GPD fitted to simulated
Ils threshold exceedances for the synthetic data sets (standard errors in parentheses).

6.4 Steepness

Figure 6.24 contains histograms of steepness for Cardiff, Christchurch, Dowsing, Shore-
ham, North Wales and Dover. Our approach for modelling the distribution of 5 is to



STEEPI{ESS L21

use the empirical distribution of ,9, i.e. the observed histogram with no extrapolation of
,S beyond the largest or smallest observations of S. For the simulated data we used the
empirical distribution of ,9 from the associated site (cf. Section 5.2).

For all sites, the most likely values of steepness lie between 0.04 and 0.06. With the
exception of Cardiff, all histograms are uni-modal, exhibiting either positive or negative
skewness. At Cardiff, the empirical distribution of ,5 is bimodal, with peaks approximately
corresponding to 0.01 and 0.05. The explanation of this feature is that for Cardiff the
hindcast wave model predicts two types of wave:

1. locally generated (steeper waves), and

2. externally generated (shallower waves) which have only been able to reach Cardiff
due to refraction.

As specified above, all six data sets consist of hindcast wave data. Despite the hind-
casting model complexity, there remains the risk that some aspects of the actual observed
S process may be missed. To illustrate that the distributions of measured and hindcast
steepness are not substantially different, histograms of measured ,9 at Morecambe, Lyme
and Boygrift are shown in Figure 6.25. They seem consistent with the corresponding
plots of hindcast steepness, possibly showing more variability and longer tails, but this
difierence was not considered imoortant for this studv.



r22

Cardiff

0.0 0.02 0.04 0.06 0.08

Dowsing

,l!!t
0.0 0.02 0.04 0.06 0.08

E

North Wales

,xXXXXxx,,,
0,0 0.02 0.04 0.06 0.08

S

CHAPTER 6. MARGINAL ESTIMATION

Figure 6.24: Histogram of Sleepness at various sites.
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Figure 6.25: Histogram of measured steepness at Morecambe, Boygrift and Lyme.
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Wave Direction

Figure 6.26 shows histograms of wave direction for Cardiff, Christchurch, Dowsing, Shore-
ham, North Wales and Dover. Our approach for statistically modelling the distribution
of 0 is similar to that of S, i.e. through the empirical distribution of d. For the simulated
data we used the empirical distribution of d for the associated data site (cf. Section 5.2).

The distribution of d seems quite different at Dowsing compared with the other sites.
At Dowsing all directions are is approximately equally likely, whereas at other sites the
distribution is bi-modal, with peaks at 80'- - 100" (the secondary peak) and 200' - -300'

(the dominant peak). A possible reason for this difference is that Dowsing is further
offshore than the other sites. For Cardiff, the mode around 200" includes the externally
qenerated waves with lower S values.
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Figure 6.26: Histogram of Wave Direction at various sites.
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Chapter 7

Dependence Estimation

In this chapter we examine the suitability ofthe statistical dependence models proposed in
Chapter 4 when applied to observational/hindcast data and the five simulated data sets.
Because of the structure of the statistical models proposed we can separately examine the
dependence between (II s, SW L) and (II5, S). In Section 7.1 we examine both types of
data when applying statistical models for (Hs, SW L), whereas we only give results for
the simulated data sets when examining (Hs, S) in Section 7.2.

7.L (SW L,115) Dependence

7.I.L Observational data

First we estimate the correlation function, p,, given by the bivariate norma,l threshold
model of Section 4.2.1. Constancy of this function above a given level suggests that a
bivariate normal model can be used above this level to describe the dependence structure.
However, if the function is

r constaut for all u: this suggests the bivariate normal dependence model is appro-
priate for all the values;

r not constant above any z: then a more complex statistica,l dependence model, such
as the mixture of bivariate normals dependence model, is required.

Figures 7.1 and 7.2 show the correlation function, p", plotted against the threshold
non-exceedance probability p : Pr{IIs < u} : Pr{SWL < z} for (Hs,SWL) and
(Hs,Surge) respectively (note on the plots p, is shown as p(p)) The main features of
these plots are:

1. the weaker correlation between (Hs,SWL) than between (Hs,Surge);

727
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all sites show a limited increase in the (IIs,,Szrge) values of pu as u, or equivalently
p, is increased;

greater stability of p",, with respect to z, is seen fot (Hs, SW L);

Christchurch has a strong correlation of 0.6 in the extreme Surge and I1s levels,
whereas for Dover (Hs,Surge) are generally negatively correlated, with extreme
levels possibly being independent;

5. in all cases, as the threshold is increased, the confidence intervals (not shown on

these plots) grow so any irregular changes in the function for large z can be ignored.

For Cardiff the direction of the waves is known to be important to the form of the
joint distribution of the other sea condition variables, so in Figures 7 .3 and 7.4 the cor-

responding correlation function plots are produced conditionally on the wave direction

variable, d, being 0 < I90" or d > 190". Here we see a distinct difference in the degree of

dependence found, with strongest dependence for 0 > 190', and that the feature of rising

correlation at more extreme levels observed in Figures 7.1 and7.2 is retained.

These findings suggest that the mixture of bivariate normals model should be consid-

ered as a feasible candidate at all sites. Tables 7.1 ard 7.2 give the pa.rameter estimates

of this statistical model for each site.

Although the parameters of the dependence model are of some interest, it is really

how they combine to produce a changing degree of dependence when looking further into

the joint tail of the distribution that is important. To examine this we evaluat e lhe pu

function for this dependence model. This cannot be evaluated in closed form so we use

simulation techniques. Figures 7.5 7.10 show the resulting pu plots for the mixture of

bivariate normals model together with the threshold model estimate of p, for compa,rison.

These plots are shown for each site and for both (Hy,SWL) and (-FIs, Surge) d.ata. ln

each case the mixture model gives a very good approximation to the pu curve. This

suggests the use of the mixture of bivariate normals model, as this has the added benefits

of:

1. the inference uses all data, not just the values of threshold exceedances and down-

weighted (censored) values of other observations;

the fit does not depend on an arbitrary/subjective selection of a threshold level;

the fit provides extrapolations for dependence which allow for an increased, or de-

creased, degree of dependence beyond the data.

4 .

3.

The disadvantases of the mixture of bivariate normals model a,re:
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1. that it is indicative of a dependence structure which is more complex than the
bivariate normal, or the threshold bivariate normall

2. if may be an approximation to a situation in which a mixture of diferent types of
dependence apply, but a mixture of two types of dependence structure may be too
simplistic;

3. if doesn't provide a relationship between the un-mixed dependence forms and the
other wave variables (period and direction);

4. it is quite highly parametrised with the parameters (for the variables with Gaussian
marginals) not easily interpretable from practical considerations.

Of the data sets, the parameter estimates for Dowsing, Dover, and Cardiffsuggest that the
simpler bivariate normal dependence structure is appropriate as a dependence model in
these cases. We have subsequently used the simpler model for dependence, but if we had
continued with the broader family, given by the mixture model, we would have obtained
similar results.

129
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Figure 7.1: Correlation function, p.,, between (Hs,, SW L) versus the threshold (in proba-

bility of non-exceedance) for the different sites
Rho(Hs-SWL)

, - - - - - - " ' )

0.0 0.2 0.4 0.6 0.8 | .0
p

Figure 7.2: Correlation function, p",, between (Hs., Surge) versus the threshold (in prob-

ability of non-exceedance) for the different sites
Rho(Hs-Surge)

D.O O.2 0.4 0.6 0.8 1.0
p



7.1. (SW L, Hs) DEPENDENCE 131

Figure 7.3: Cardiff: Correlation function, pz, between (Hs,SWL) versus the threshold
(in probability of non-exceedance) separately for 0 < 190" and d > 190'

Cardi{f: Rho(Hs-SWL)

Figure 7.4: Cardiff: Correlation function, pa, between (Hs,Surge) versus the threshold
(in probability of non-exceedance) separately for I < 190" and d > 190"

Cardiff: Rho(Hs-Surge)

{
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Parameters Christchurch Dowsing Dover North Wales Cardiff Shoreham

PM

Pt'

Pz

P2r

Pzz
o2r

o22

0.51
-0 .13

0.52
0.7

0 .6
0 .9
1 . 1

0.05
0.32

0.03

0.0
0 .6

0 .3

0.3

0.50
0.13
-0.12

1 .1
-0.4

0 .5

0 .7

0.968
0.02

0.48
1.8

0.3
0 .8

0.52
-0.05
-0.09

0.1
0.4
1.2

0.88
-0.048

0.36
0.7
7 .2

0 .6
1 .0

Table 7.1: Parameter estimates for the mixture of bivariate normals applied to observa-

tional (I{s, ,9tr7.L) data.

Parameters Christchurch Dowsing Dover North Wales Cardiff Shoreham

Pu

Pt
P2

ltzt

IL22

621

o22

0.47
-0.17

0.56
0.8
0.7
0.9

0.33
-0.40

0.28
0.0
1 . D

l -2
1 .0

0.27
-0.48
-0.05

0.0
t .7
0.7
0.8

0.25
-0.28

0.31
0.0
1.1
1 .3

0 .9

0.45
-0.42

0.33
0.0

0 .5
t .2

0.76
-0.04

0.3
0 .8
1 . O

0.6
1.0

Table 7.2: Parameter estimates for the mixture of bivariate normals aDDlied to observa-
tional (fls, ,9zrge) data.



7.1. (SW L, HS) DEPENDENCE

Figure 7.5: Christchurch: Estimated correlation function, p,,, between (Hs,SWL) and
(Hs, Surge) versus the threshold (in probability of non-exceedance) for the fitted mixture
of bivariate normals and the threshold bivariate normal

Christchurch: Rho(Hs-SVVL)

Figure 7.6: Dowsing: Estimated correlation function, p.,, between (Hs, SW L) and
(Hs, Sur ge) versus the threshold (in probability of non-exceedance) for the fitted mixture
of bivariate normals and the threshold bivariate normal
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Figure 7.7: Dover: Correlation function, p,,, between (Hs,SWL) and (IIs,,9arge) versus
the threshold (in probability of non-exceedance) for the fitted mixture of bivariate normals
and the threshold bivariate normal

Dover: Fho(Hs-SWL)

Figure 7.8: North Wales: Estimated correlation function, pn, between (Hs, SW L) and
(Hs, Surge) versus the threshold (in probability of non-exceedance) for the fitted mixture
of bivariate normals and the threshold bivariate normal

f -

oover: Rho(Hs-SurgB)

Nodh walesi Rho(Hs-swL)

Nodh wales: Rho{Hs'suee)
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Figure 7.9: Cardiff: Correlation function, p?,, between (Hs,SWL) and (I/s, Szrge) versus
the threshold (in probability of non-exceedance) for the fitted mixture of bivariate normals
and the threshold bivariate normal

cardift Rho(Hg-SWL)

3

f !

Carditl: BholHs-Surge)

Figure 7.10: Shoreham: Estimated correlation function, p,,, between (Hs, SW L) and
(Hs., Surge) versus the threshold (in probability of non-exceedance) for the fitted mixture
of bivariate norma.ls and the threshold bivariate normal

Shoreham: Bho(Hs-SWL)
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7.L.2 Simulated data

In this section we consider estimation of an appropriate dependence structure for the five
Sim data sets. The section is split into tlvo stages: diagnostic assessment and dependence
modelling. In the diagnostic subsection we try to identify for which, if any, of the data
sets we can adopt a conservative approach for by taking the variables (SWL,Hs) tobe
completely dependent, without badly over-estimating the dependence. When complete
dependence is a poor representation of the dependence, we are also interested in testing
whether taking the variables to be independent is an over-simplification.
Diagnostics for dependence form
We use the diagnostic statistic, ?(e), given by equation (3.3.4), applied to Siml-Sim5
in turn. The statistic, with associated pointwise confidence intervals, is shown for the
respective data sets in Figures 7.I1-7.I5.

For Sim1, the gradient of the diagnostic plot is approximately j and, judging by the
confidence intervals, the gradient of this plot is significantly greater than zero and less
than one. This suggests that careful modelling of the dependence is required for these
data. The gradient is in line with the simulation model, which is essentially a bivariate
normal distribution with p : 0.3, so following equation (3.3.5) should have gradient
(1  -  0 .3 ) / (1  +  0 .3 )  :0 .54 .

The diagnostic plots for Sim2 and Sim3 are similar to that for Siml. The respective
gradients are approximately 1.5 and 0.75, and are significantly greater than zero. For
each data set, the confidence interval includes a gradient of one, so independence is not
inconsistent with the observed dependence. These findings suggest that careful modelling

of the dependence is required for these data, but that the dependence is weak, so inde-
pendence may be an adequate approximation. The gradient is in line with the simulation
models, which are in essence a bivariate normal distribution with p: -0.2 and 0.16, so
following equation (3.3.5) should have respective gradients (1 + 0.2)/(1 - 0.2) : 1.5 uo6
( r  -  0 .16) / (1+  o .16)  :0  72

Sim4 has a notably difierent diagnostic plot than the other simulated data sets as the
confidence interval for the diagnostic statistic ccntains zero for all log z, and the gradient of

the plot is not significantly different from zero (this is consistent with the bivariate extreme
lalue dependence rnodel we have used to simulate the Sim4 data). For these data we can
take the dependence to be complete dependence without being overly conservative. In the

subsequent analyses we will try to model the dependence for these data and comment on
differences between estimates based on these models and the complete dependence model.

Independence is a very poor description of the observed dependence.

The dependence model used to generate the Sim5 data was more complex than the

others, being a mixture of independence for low levels, and high correlation (0.8) for
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high levels. The diagnostic plot identifies this transition in dependence with a gradient of
approximately 1 up to log e : 0.5, and a gradient of approximately 0.12 subsequently. The
plot has a gradient significantly different from zero and one, so the positive dependence
needs modelling.
Dependence Models
We start by fitting the mixture of bivariate normals model to each simulated data set and
examining the correlation function p,,. For selected dependence models we continue by
evaluating the fitted joint density function, and compare it to the true joint density (used
for the simulation) via comparison of contours of equal joint density function.

Table 7.3 gives parameter estimates of the mixture of bivariate normals model. For
Siml Sim3 we find p,y * 1, i.e there is only one bivariate normal dependence structure
in the data, so that the bivariate normal model is sufficient. For Sim4, p1a is large, but p1
and p2 are quite different, suggesting that the extreme observations have a different degree
of dependence from the bulk of the distribution. Note, p2 : 0.7 effectively measures the
correlation in the extremes here. Finally, for Sim5 the fitted dependence model is in the
same statistical family as was used to simulate the data, and from Section 5.2 we can see
that the dependence model gives parameter estimates very close to the values used for
the simulation.

To confirm these findings we now estimate the correlation function, p,, for each simu-
lated (fls, SWL) data set. This function is shown in Figure 7.16, where we see stability
for Siml-Sim3, but rising correlation levels for the joint extreme values in Sim4 and Sim5.
For Sim3 we additionally estimate the correlation function for (Hs, Surge), shown in Fig-
ve 7 .17 . This has the property, noted earlier, of weaker dependence between (H s, SW L)
than between (Hs, Surge). In each case, for Sim3, the correlation function appears to be
independent of z.

To assess the fit of the mixture of bivariate normals model for Sim4 and Sim5, we
also evaluate the p,, function for this dependence model by fitting the bivariate normal
threshold model to simulated data from the fitted model. Figures 7.18 and 7.19 show that
the corresponding functions capture the pu curves extremely well. Of course, in Figure
7.19 this fitted model is of the same form as the simulation model.

Based on the findings above, for the remainder of the report we consider only the
following dependence models estimated for Siml-Sim5:

Siml bivariate normal dependence with correlation coefficient 0.24;

Sim2 bivariate normal dependence with correlation coefficient -0.21;

SimS for (Hs, Surge) a bivariate normal dependence with correlation coefficient 0.14,
whereas for (f15, SWL) a bivariate normal dependence with correlation coefficient
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Figure 7.11: Siml: Diagnostic test for the form ofthe dependence in the extremes of IIs-
SWtr. The solid line is the test statistic and the dotted line its pointwise 95% confidence
interval.

Figure 7.12: Sim2: Diagnostic test for the form ofthe dependence in the extremes of f15-
SW.L. The solid line is the test statistic and the dotted line its pointwise 95% confidence
interval.
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Figure 7.13: Sim3: Diagnostic test for the form ofthe dependence in the extremes of Ils-
SW L. 'Ihe solid line is the test statistic and the dotted line its pointwise 95% confidence
interval.

?

1
log z

Figure 7.14: Sim4: Diagnostic test for the form of the dependence in the extremes of 11s-
SWL. The solid line is the test statistic and the dotted line its oointwise 95% confidence
interval.
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0.03;

Sim4 bivariate normal threshold model with p,, : 0.588 for z equal to the 95% threshold,
and the fitted mixture of bivariate normals (parameter estimates in Table 7.3);

Sim5 bivariate normal threshold model with p, - 0.335 for u equal to the 97.5% thresh-
old, and the fitted mixture of bivariate normals (parameter estimates in Table 7.3).

Figures 7.20 and 7.21 show the fitted and true/simulation joint density contours for
Siml and Sim2 respectively. In each case the bivariate normal model is of the correct form
for the dependence modelling, so inconsistencies in the estimates are due to parameter
estimation rather than mis-specification of the statistical model. The agreement is very
good for Siml, and reasonable for Sim2. In the latter the upper tail of the fls variable is
a bit short in the estimated joint density model.

For SimS we have dependerce models for borh (H5,SWL) and (I15, Szrge). Joint
density contours are shown in Figures 7.22 and 7 -23. "the agreement is good in both cases,
with the only obvious disagreement arising from the estimated joint distribution having
a shorter upper tail for Surge and SWL than the simulated values.

For Sim4 we have two fitted statistical models to compare. Figures 7.24 and 7.25 show
joint density estimates for the threshold and mixture bivariate normal models respectively.
For the former the estimation of the dependence structure is extremely poor, with the
contours in poor agreement over most of the distribution. By comparison, the mixture
model is in good agreement, with the exception of the SW L upper tail, which is under-
estimated.

Finally consider estimates for SimS shown in Figures 7.26 and 7 .27. Again the thresh-
old based dependence model fits poorly, and the mixture model is a marked improvement.
However, whatever dependence model is fitted the joint density estimate is poor as the
marginal models over-estimates/under-estimate the tails of .FIs and SW L respectively.

In Chapters B 9 we examine how important these discrepancies are when considered
from the design perspective, and by taking the margins to be both known and estimated,
we examine the importance of marginal and dependence modelling/estimation.
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Figure 7.15: SimS: Diagnostic test for the form of the dependence in the extremes of f15-
SWL. The solid line is the test statistic and the dotted line its pointwise 95% confidence
interval.

F

log z

Parameters Siml Sim2 Sim3 DI]nJ Sim4 Sim5

PM

Pt

P2

Lr21

ltzz

o2r

o22

1.00

0.24
0.99
-0 .21
-0.78

0.0
t .2

0 .5
0 .1

1 .00
0.034

1.00
0.14

0.85
0.15

0.70
0.9
0.8
1 .0

1 .1

0.90
0.00
0.76
0.5
0.3
0.9
0.8

Table 7.3: Parameter estimates for the mixture of bivariate normals applied to the simu-
Iated (11s, SW L) data and for Sim3- to (Hs, Surge).
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Figure 7.16: Correlation function, p,,, between (Hs, SW L) versus the threshold (in prob-
ability of non-exceedance) for the different simulated data sets.

Simulatsd dara: Rho(Hs.SWL)

Figure 7.17: Sim3: Correlation function, p,,, between (Hs, SW L) and (Hs, Surge) versus
the threshold (in probability of non-exceedance)

sina (Nodh walesl: Fho(Hs.swl) and Fho(Hs-surge)

a ;
E
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Figure 7.18: Sim4: Correlation function, p,,, between (Hs,SWL) versus the threshold
(in probability of non-exceedance) for the fitted mixture of bivariate normals and the
threshold bivariate norma,l

Sim4 (Chrisrchurch): Bho{HS-S!VL)

Figure 7.19: SimS: Correlation function, p,,, between (Hs,SWL) versus the threshold
(in probability of non-exceedance) for the fitted mixture of bivariate normals and the
threshold bivariate normal

Sim5 (Dowsing)i Bho(HS-SWL)
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Figure 7.20: SimT Hs-SWL joint density contours: the contours of joint density value
0.01, 0.001, 0.0001, 0.00001 ale shown. The estimated model is the bivariate normal model.

I

Figure 7.21: S1m2 H1-SWL joint density contours: the contours of joint density value
0.01,0.001,0.0001,0.00001 are shown. The estimated model is the biva,riate normal model.
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Figure 7.22: Sirn3 I{5-Surge joint density contours: the contours of joint density value
0.01,0.001,0.0001,0.00001 are shown. The estimated model is the bivariate normal model.

L45

I
Surgo

Figure 7.23: Sirr'J Hs-SWL joint density contours: the contours of joint density value
0.01, 0.001, 0.0001, 0.00001 are shown. The estimated model is the bivariate normal model.

1 1  1 2  1 3  1 4  1 5
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Figure 7.24: Sim4 Hs-SWL joint density contours: the contours of joint density value
0.01,0.001,0.0001,0.00001 are shown. The estimated model is the threshold bivariate
normal model.

I F

0.0 0.5 1.0 1.5 2.O
WL

Figure 7.25: Sim4 Hs-SWL joint density contours: the contours of joint density value
0.01, 0.001, 0.0001, 0.00001 are shown. The estimated model is the mixture of bivariate
normals model.
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Figure 7.26: Sim5 fIs-SWl, joint density contours: the contours of joint density value
0.01, 0.001, 0.0001, 0.00001 are shown. The estimated model is the threshold bivariate
normal model.

Figure 7.27: Sim5 11s-.9trV2 joint density contours: the contours of joint density value
0.01, 0.001, 0.000f ,0.00001 are shown. The estimated model is the mixture of bivariate
normals model.
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(5, Hs) Dependence for Simulated Data

Scatter plots of the (S, IIs) data for the five simulated data sets are shown in Figures
7.28-7.32. From these plots we see that there is a strong positive dependence between the
variables for Siml (Figure 7.28) and weak dependence/independence between the variables
for Sim2-Sim5. This is consistent with the simulation models for these variables (see
Chapter 5), for which Sim2 and Sim3 have small degrees of negative/positive dependence
respectively, while Sim4 and Sim5 have independent variables.

To estimate the dependence between the variables we fit the linear regression model,
given by equation (4.2.4), after transformation of each variable to a Gaussian scale, i.e.
(S.,113) with the variables defined by equations (4.2.2) and (4.2.3). First we plot the
(S,.F15) data after transformation to the Gaussian scale in Figures 7.33-7.37. In the
Gaussian scale (once ties in the data and modified Ils values for small ,9 levels are ac-
counted for) we see a clear linear relationship between the variables for Siml and little or
no evidence of linear relationships in the other cases.

To assess what threshold level to use for lls (or equivalently for IIi) in the regressron
model we now consider plots of E(S.l/1j > z) and Var(S-lHi > z) against the threshold
u in Figures 7.38-7.42. These plots show that for

SimL the rising mean shows a strong positive relationship between the variables. The
variance stabilises above a threshold z:0.5, so this level is taken for subsequent
analvsis.

Sim2 the falling mean with threshold shows a weak negative relationship between the
variables. The variance is stable above a threshold level of u : -0.5, so this level is
used in the subsequent analysis.

SimB the rising mean shows a weak positive relationship, with stability of the variance
obtained above a threshold of u : 0.5.

Sim4 and SimS There is no evidence of non-constant mean or varia,nce here, indicating
independence of the variables. It is therefore unnecessary to adopt a threshold.

Now we fit the linear regression threshold model to ,S* given I1}. Estimates of the
intercept, a, gradient, b, and residual variance, o2, for Siml-Sim5 are given in Table 7.4.
The estimates confirm the empirical evidence found above: highly significant dependence
for Siml, significant (but small) dependence for Sim2 - Sim4, and independence for Sim5.
Sim4 is surprising as the data were generated using an independence statistical model,
while the estimated dependence is non-zero but still very weak.
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We now examine the quality of the fitted regression model by plotting the estimated
regression function (transformed back to the original space shown in Figures 7.28-7.32),
and by comparing a sample simulated from the fitted model with the original sample
(shown in Figures 7.43-7.47).

The fitted mean function is difficult to assess for Sim2-Sim5 due to the small varia-
tions in the mean relative to the high variability ofthe data. By contrast the mean
function for Siml provides a very good model for the substantive variations of ,9 on
HS.

For Siml the data simulated from the fitted model reproduce the main features of
the original data very well. The corresponding plots for Sim2-Sim5 are less easy to
assess, but in each case the original data structure appears to be well replicated.

L49

Data Threshold z a b 02

Siml

Sim2
Sim3
Sim4
Sim5

0.5
-0.5

0.5
-oo
-oo

0.43 (0.02)

0.16 (0.02)
-0.02 (0.03)
0.00 (0.01)

0.00 (0.01)

0.67 (0.03)
-0.11 (0.02)

0.11 (0.04)

0.05 (0.01)

0.00 (0.01)

0.43 (0.03)
0.80 (0.06)
0.8e (0.12)
0.93 (0.10)
1.oo (0.10)

Table 7.4: Parameter estimates for the linear regression of S* on I{ applied above a
threshold z (on the Gaussian scale). Standard errors are given in parentheses. For Sim4
and Sim5 the value of u used in the resression model is u : 0.
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Figure 7.28: Siml: S versus ff5 and regression curve (plotted on the original scale).

0.0 0.5 1.0 1.5
HS

Figure 7.29: Sim2: S versus 115 and regression curve (plotted on the original scale).

0 1 2 3 4



(5, HS) DEPENDENCE FOR SIMUL,+TED DATA 151

Figure 7.30:SimS: ,9 versus fIs and regression curve (plotted on the original scale).

Figure 7.31: Sim4: 5 versus Ils and regression curve (plotted on the original scale).
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Figure 7.32: Sim5: S versus .t15 and regression curve (plotted on the original scale).

Figure 7.33: 5 versus 1/5 (plotted on the Gaussian
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Figure 7.34: Sim2: S versus fI5 (plotted on the Gaussian scale).

.t a :r:i1-riJ:i.-::'-:-.i:::i,:jj:i.lii:i..r;.:l.l j,

- 2  - 1  0 1 2  3

Figure 7.35: SimS: ,9 versus f1s (plotted on the Gaussian scale).
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- 2  - 1  0 1 2  3
HS

Figure 7.37: Sim5; S versus l{5 (plotted on the Gaussian scale).

Figure 7.36: Sim4: S versus f/5 (plotted on the Gaussian scale).
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Figure 7,38: Siml: Mean and Va,ria,nce of S (on the Gaussian scale) versus threshold for
I/s (on the Gaussian scale). Dotted lines give 95% confidence interval.

Mean versus Threshold Variance versus Threshold
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Figure 7.39: Sim2: Mean and Variance of .9 (plotted on the Gaussian scaie) versus thresh-
old for 1y'5 (on the Gaussian scale). Dotted lines give 95% confidence interval.
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Figure 7.40: Sim3: Mean and Variance of ̂ 9 (plotted on the Gaussian scale) versus thresh-

old for lls (on the Gaussia;r scale). Dotted lines give 95% confidence interval.
Mean versus Threshold Variance versus Threshold
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Figure 7.41: Sim4: Mean and Variance of .9 (plotted on the Gaussian scale) versus thresh-
old for IIs (on the Gaussian scale). Dotted lines give 95% confidence interval.
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Figure 7.42: Sim5: Mea,n and Variance of S (plotted on the Gaussian scale) versus thresh-
old for 1{s (on the Gaussian scale). Dotted lines give 95% confidence interval.

Mean versus Threshold Variance versus Threshold
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Figure 7.43: Siml: ,9 versus /1s for the original data and the data simulated from the

fitted resression.
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Figure 7.44: Sim2: S versus f1s for the original data and the data simulated from the
fitted reEression.

Original data

2
t"1s

Figure 7.45: Sim3: S versus 115 for the original data and the data simulated from the
fitted resression.
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Figure 7.46: Sim4: .9 versus I1e for the original data and
fitted regression.
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Figure 7.47: Sim5: S versus Ils for the original data and the data simulated from the
fitted resression.
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Chapter 8

Simultaneous Extremes of (SW L,, H S)

In this chapter we focus on the estimation of the joint probability

Pr {SWL>r ,Hs>g l :

Probabilities of this form, thought of as a function of c and g, are termed the joi,nt sur-
uiuor Junction of the joint distribution ol (SW L, H s). Here we are particularly interested
in finding all the possible combinations of (r,y) such that the joint survivor function is a
small fixed probability, i.e. extrapolation from the sample is required. We present these
combinations as curves, which correspond to contours of equal joint survivor function.
These contours are the main output of the standard approach of the current implemen-
tation of JPM (see Section 1.2) and are often used for initial design calculations. The
refined version of current implementation uses this information to derive the probability
of failure.

In Sections 8.1 and 8.2 we present the contours of the estirnated joint survivor function
for Siml-Sim5 for cases where

r both the marginal distributions are knou'n, and

e no knowledge of the marginal distributions is accounted for,

respectively. Throughout these sections, contours are shown corresponding to 5, 10, 50, 100
and 1000 year return periods (i.e. for each point (2, g) on the associated contour curve,
the probability of the event {SW L > n, Hs } g} is such that this event occurs on average
once in the specified return period). Such contours are shown for

1 .

2.

the fitted joint distribution mode1, and

the joint distribution of the actual simulation model used to generate the Sim data

sets.

161
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Before we consider the estimated joint survivor function contour plots, we outline the
possible forms that these contour curves are to be expected to take. For generality, here
we consider arbitrary variables (X, Y).

Limit values

The limits of the joint survivor function as either r -+ -cc with g fixed, or y -+ -cc with
r fixed, are important special cases as

,l im Pr{X > r,Y > g} :  Pr{Y > y}

nl im 
Pr{X > n,Y > a) - P4X > r},

i.e. the limit values are the marginal exceedance probabilities.

Complete positive dependence
When the variables follow complete positive dependence, the joint survivor function sim-
plifies as

Pr{X > r,Y > s}: min (Pr{X > r},  Pr{Y > s}) .

In addition, ifX and Y have the same marginal distribution, i.e. Pr{X > c} : Pr{Y > r}
for all o, then X: Y always.

Independence
When the variables are independent, the joint survivor function simplifies as

Pr{X > r ,Y > a}  :  Pr{X > z}Pr{Y > s} .

These three features are helpful in assessing the contour curves of the joint survivor
function as:

r limit values give marginal return level/return period combinations;

o for complete positive dependence, the 7 year contour consists of the values of (r, g)
which give

min (Pr{X > z}, Pr{r > s})

where No6, is the number of observations per year.

I
Ar . .r'

Defining r" and g/" by

I
Pr{X > or} :  Pr{} '> g"}
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i.e. they are the marginal ? year return levels for the two variables, we have that
the contour takes the form:

{@,A), y,= E7 for r < :tr,, and z : ry for y < y7'}.

This is just two perpendicular lines at the marginal T year return levels for X and
Y. For practical purposes, it is suficient to consider only the intersection point for
these two lines, i.e. (rr,Ur).

o for independence the contour of equal joint survivor function is simple to obtain.
It is not possible to give a general description of the form of contour shape as it is
influenced by the form of the marginal distributions of the variables.

8.1 Marginal distributions known

In this section we treat the marginal distributions as known. The situation is not un-
realistic as often we are able to incorporate additional knowledge about the marginal
variables into the JPM. A consequence of including this extra information is that, in this
section, the only unknown feature of the ioint distribution of the sea condition va,riables
is the dependence structure. This allows a better comparison of our proposed dependence
models with the current methods.

We incorporate the extra information through use of the joint density ft using the

1. known ma,rginal distribution for each element of X,

2. estimated dependence structure (i.e. as estimated in Chapter 7).

This joint density estimate is modified from the full fitted form to have the same marginal
densities as those used to simulate the data. From this estimated joint density the associ-
ated joint survivor function, PI{SWL ) r,Hs > gr} is evaluated by integration over the
region {,SW-L > r,Hs > y}.

In practice, had contours of the joint survivor function already been estimated before
incorporating the knowledge of the marginal distribution then the modification to the
joint survivor function contours is simply obtained by re-calibrating the marginal scales
of the previous estimate. For example, changing the 100 year marginal retutn level from
the estimated value to the known value. Consequently, estimated contours of equal joint

survivor function should agree exactly with the contours from the simulation model at
the limits (c -+ -oo and also g -+ -oo) of the curves.

Unfortunately, in this study some inconsistency arose in the evaluation of these known
marginals so that the values used in the current implementation were slightly incorrect in
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a few cases. The reason for this was a change in the handling of small wave heights which
the removal of resulted in extra observations being generated in some cases (lengthening
the tail of .I{5. Nevertheless this error does not substantially detract from the inter-
comparisons.

Figures 8.1-8.8 show contours of equal ioint survivor function estimates from the fitted
model and derived from the simulation model. Any significant discrepancy between the
two sets of contours would show that either

1 .

2.

the statistical estimation, using the correct dependence mode1, is poor, or

the fitted families of dependence models are not sufficiently general to fit these data
well.

We discuss the fits for each data set in turn before drawing general conclusions.

Siml The two sets of curves, shown in Figure 8.1, exhibit excellent agreement.

Sim2 The two sets of curves, shown in Figure 8.2, also exhibit an excellent agreement.

SimS Here we have plots for (Surge, Hs) and (SW L,11s) in Figures B.3 and 8.4 re-

spectively. The contours again seem well reproduced by the fitted model. Some
discrepancies occur for (SWL,H1\, due primarily to the fact that as we have not
modified lhe SWL marginal distribution to follow the simulation model (which is
complex as it arises from the combination of independent tide and surge).

Sim4 Here we have plots for two different fitted dependence structures: in Figure 8.5
the threshold bivariate normal model is used, in Figure 8.6 the mixture of bivariate
normals model is considered. In both cases the Iitted statistical dependence models

under-estimate the contour curves. For the threshold model the contours are further
from the contours given by the simulation model than for the mixture of bivariate
normals model. This is particularly obvious at the more extreme contours. For

these data the diagnostic plots suggested the variables could reasonably be taken
as completely dependent. From Figures 8.5 and 8.6 we see that a very close agree-
ment with the simulation model is given by perpendicular lines - corresponding to
complete dependence, and that complete dependence is a better model than either

of the fitted models.

Simb Here we have the same two figrres as given for Sim4. We see that the threshold
model averages the two forms of dependence that occur in the simulation model,
the compromise leading to a poor fit (see Figure 8.7). In contrast, the mixture of

bivariate normals gives an excellent fit. Note that here, although the dependence
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is strong, taking the variables to be completely dependent would be a substantial

over-estimate.

Once the marginal features have been corrected for, the main source of error in estimat-

ing contours of equal joint survivor function arises from not having a sufficiently flexible
parametric dependence model. The bivariate normal (and threshold fitted version) were

fine for Siml-Sim3 when this was the correct family of dependence structures, but were
poor for both Sim4 and Sim5. On the other hand, the mixture of two bivariate normals

(which includes the bivariate normal as a special case) gives good fits in Sim4, when it

is not the correct form, as well as for Sim5, when it is the correct family. Note a.lso that

differences that have been observed between the contours of the estimated and simulation

models occurred for combinations (r,g) where r > maxSWL and g > max Hs, and so

were due to long range joint extrapolations.
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Figure 8.1: Siml: H1-SWL curves of equal joint survivor probability expressed in return
periods (in years) when the marginal distributions are known

Figure 8.2: Sim2: Hs-SWL curves of equal joint survivor probability expressed in return
periods (in years) when the marginal distributions are known

I v

2 3 4 5



8.1. MARGINAL DISTRIBUTIOIIS KI\rOm\r

Figure 8.3: Sim3: fI5 Surge curves of equal joint survivor probability expressed in return
periods (in years) when the marginal distributions are known

Surge

Figure 8.4: Sim3: 115-SW,L curves of equal joint survivor probability expressed in return
periods (in years) when the marginal distributions are known
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Figure 8.5: Sim4: H;-SWL curves of equal joint survivor probability expressed in return
periods (in years) when the marginal distributions a,re known. Here the dependence model
is the fitted bivariate normal threshold model

-- 5flfi31"${P"dfJ,

Figure 8.6: Sim|: H s-SW L curves of equal joint survivor probability expressed in return

periods (in years) when the marginal distributions are known. Here the dependence model

is the fitted mixture of biva,riate normals model

-._ Eliii[]EBnY,r*o-Jr

!



M ARGIN AL DISTRIBUTIONS KNOWN

Figure B.7: Sirn5: -[{5 SWL crtwes of equal joint survivor probability expressed in return

periods (in years) when the marginal distributions are known. Here the dependence model

is the fitted bivariate normal threshold model

Figure 8.8: SimS: fls SWL strves of equal joint survivor probability expressed in return

periods (in years) when the marginal distributions a,re known. Here the dependence model

is the fitted mixture of bivariate normals model
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8.1.1 Comparison with current implementation

HR have modified their estimates of the joint survivor function contours to incorporate
the extra marginal knowledge by manual modification of the marginal scales. Results
have been given for return periods of 1, 10, 100 and 1000 years. For comparison with the
plots in Figures 8.1-8.8, we show only the 10 and 1000 year contour values; these are
tabulated in Tables 8.1 8.5 and given in Figures 8.9 8.12.

The comparison with the simulation model values and the fitted model are given below:

Siml Comparison is not directly possible here as HR have separately estimated the
joint survivor function for waves from two direction sectors. For direction sector
0' < e < 110", the 10 year and 1000 year contours lie just above the respective
contours for the simulation mode1, whereas for direction sector 110" < d < 360"
they lie much below. As the first sector is slightly more likely, and the one most
likely to produce the extreme combinations, this provides a good estimate.

Sim2 The HR contour estimates agree very well with the simulation and fitted model
contours.

SimS The HR contours significantly over-estimate the (SW L, Hs) contours as given by
both the simulation and fitted model. Some element of this over-estimation is due
to the inconsistency in the known marginal distributions for IIs, with the same
marginal being used for the simulation and fitted models but slightly larger values
provided to HR for use.

Sim4 The HR contours seem poor in this case. The strong form of dependence in the
simulated data has not been captured, and the contours have been badly under-
estimated. For the 1000 yea.r contour, it is worrying that the error is so large in the
HR estimated contour within the range of the SW L data. Specifically, the contour
decreases rapidly in the Il5 value. This feature was not observed in either of the
statistically fitted models, or for the other four Sim data analyses.

SimS The HR estimated contours appear to be good for low return periods but signifi-
cantly under-estimate for high return periods.

In two cases the HR implementation of current methods has produced a good estimate
of the dependence structure of extreme SWL and I1s combinations. In three other cases
the estimates are poor) one in which there is a slight over-estimation (which would lead
to conservative design), and two cases of substantial under-estimation (leading to under-
design).
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Figure 8.9: Sim2: H1-SW L curves of equal joint sur-vivor probability expressed in return
periods (in years) when the marginal distributions are known. Curves shown are 10 and
1000 year return period for Estimated model, Simulation model and HR estimates

- 5Pilfl3lfJ"{f$"J
Hti cslrmates

Figure 8.10: Sim3:fls SWZ curves of equal joint survivor probability expressed in return
periods (in years) when the marginal distributions are known. Curves shown are 10 and
1000 year return period for Estimated model, Simulation model and HR estimates
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Figure B.11: Sim4: H1-SWL curves of equal joint survivor probability expressed in return
periods (in years) when the marginal distributions are known. Curves shown are 10 and
1000 year return period for Estimated model (Mixture Model), Simulation model and HR
estimates

Figure 8.12: SimS: Hs-SWL curves of equal joint suryivor probability expressed in return
periods (in years) wher the marginal distributions are known. Curves shown are 10 and
1000 year return period for Estimated model (Mixture Model), Simulation model and HR
estimates

- Estimated Model- -- Simulation lvlodel--- HR Estimates
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SWL 10 year 1{5

(0' < p s 110") | (110" < p < 360.)
1000 year .FIs

(0. < d < 110") |  (110" < d < 360')
6.00
6.25
6.50
6.75

7.00

7.25
7.50

1.52
r .43
1.32

1.16

0.s4

1.11
1.08
1.01

0.95

0.86
0.67

2.04

2.02
2.00
L.94

1.82
1.48

7.49
r.46
1.43
1.41

t.37

r.28
1.09

Table 8.1: HR estimates of points on the 10 and 1000 year contours of the joint survivor
function of (SW L, Hs) for Siml: separate estimates conditional on the wave direction, d,
satisfying 0" < 0 < 110' and 110" < 0 < 360'.

SWL 10 year I/s 1000 year Il5

2.25
2.50

3.00

3.25

3.50
A  ? E

4.00

4.22
4.0B

3.93
3.50

3.00
2.06

5.13
5.04

4.83
4.65

4.39
3.93

3.15
2.45

Table 8.2: HR estimates of points on the 10 and 1000 year contours of the joint survivor

function of (SW L,Ils) for Sim2, when the marginal distributions are known.
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Table 8.3: HR estimates of points on the 10 and 1000 year contours of the joint survivor
function of (SW L,.FIg) for Sim3, when the marginal distributions are known.

SWL 10 year Ils 1000 year Ils

12.00
L2.25
12.50
12.75
13.00
13.25
13.50
14.00
t4.25
14.50
r4.75

4.56
4-48
4.3r
4. t7
3.50
2.97
2.10

J.  Oi)

5.65
J . O J

J . O I

5.59
5.52

5.40
5.35
5.03
4.69

2.50

SWL 10 yea.r lls 1000 year I1s

0.2
0 .3
0 .4
t t .  i )

0.6

0 .7
0 .8

0 .9
1 .0
1 .1
1 .2

8.90

B.B5
8.47
7.86
6.98
5.92

79.2

19.0
18.8
18.1
r  t . o

l o . 1

t6.2

15.3

14.0
12 .1
10.1

Table 8.4: HR estimates of points on the 10 and 1000 year contours of the joiut survivor
function of (SW L,Ils) for Sim4, when the marginal distributions are known.
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SWL 10 year II5 1000 year /Is
5.50

6.00
o .J t ,

7.00
7.50
8.00
8.25

9.51
9.50

9.48
9.18

8.66
6.68

3.60

18.1
r7.8

16.9

13.6

9 .5
4 .3

Table 8.5: HR estimates of points on the 10 and 1000 year contcurs of the joint survrvor
function of (SI4zL, fls) for Sim5, when the marginal distributions are known.

8.2 Marginal distributions unknown

Figures 8.13-8.20 show contours of equal joint survivor function from the fitted model and
derived from the simulation model. If the statistical model we have used to describe the
sea conditions fits well then these contours should be in good agreement. Discrepancies
between the two sets of contours show that at least one asDect of the statistical estimate
is poor. Possible sources of inadequacies of the fit are;

1 . Poor marginal fits: the statistical family is correct each time (except for Sim3 SW.L),
but a poor fit results from a poor fit of the GPD to the upper tail (details of these
fits are discussed in Chapter 6).

Poor dependence structure fits: the statistical family of fitted dependence models
is not always that from which the data were simulated, but even when it is, the
estimated parameters may be poor. This feature was studied in isolation in Section
B.1 where the marginal distributions were treated as known, but contributes here
when the marsina,l distributions are also unknown.

We discuss the fits for each data set in turn before drawing general conclusions.

Siml The two sets of curves (shown in Figure 8.13) exhibit good agreement. The only
obvious small difference is in the extrapolation of the f/5 variable, with the fitted
model over-estimating marginal return levels.

Sim2 The two sets of curves (shown in Figure B.i4) exhibit moderate agreement. The
most obvious differences stem from poor marginal estimates (for each variable the

2.
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fitted model under-estimates return levels). The basic shape of the contour curves
seems reasonable, corresponding to the good fit of the dependence structure found
in Section 8.1. For these data the fitted model is from the same dependence model
family as used to generate the data.

Sim3 Here we have plots for (Surge, Hs) and (SWL,Hs) in Figures 8.15 and 8.16 re-
spectively. The basic shape of the contours again seems fine, following from the
good estimation of dependence in Section 8.1, but the return levels for Surge and
SW L are under-estimated, whereas the ffs return levels are over-estimated.

Sim4 Here we have plots for the two different fitted dependence structures: in Figure 8.17
the bivariate normal threshold model is used, whereas in Figure 8.18 the mixture of
bivariate normals model is considered. In each case the same marginal distribution
fits are used, so differences between these figules are due to differences in the fitted
dependence structure. In Section 8.1 we found that the mixture model fitted much
the better. That is still apparent here despite the marginal return levels being
under-estimated for each margin (most notably for I1s which has the contrived
longer tail here). The dependence features are best considered by comparing the
shape of the contour curves in the region of greatest curvature. Most notable is
that in Figure 8.17 this part of the curve is further from the true form derived from
the simulation model than in Figure 8.18. This is particularly obvious at the most
extreme contours. The general shape of the contour of the fitted model in Figure
8.18 seems to represent the dependerce well (recall that the simulation model here
had a stronger form of dependence in the extreme values than any of the models we
are fitting).

SimS Here we have the same two figures as given for Sim4. The most striking feature of
these figures is the very poor estimate of return levels for "I1s, with the tail being
substantially over-estimated (although within the uncertainty of the estimates it is
not statistically significantly different). The likely reason for this over-estimation
can be seen in the figures, as the data show that the 300 year return level occurred
by chance in the sample (corresponding to a 10 year sample). For ,9Wtr, return
levels are slightly under-estimated. This large distortion of the ma.rginal features
makes dependence aspects of the fit hard to assess.

In conclusion we have found that the main source of error in estimating contours of
equal joint survivor function is from marginal estimation (a feature largely outside the
remit of this current project). If no additional information were available, then relative
to the marginal estimation uncertainties, the dependence modelling proposed here for
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(SW L, Hs) seems reasonably good. Qualitatively, what this means is that to estimate
such contours it seems reasonable to recommend that we need

r More than 10 yea,rs of data for each of the marginal variables;

r Simultaneous observational data for (SWL,Hs) covering a 10 year period,

to be able to estimate 100 year contours and beyond with any confidence.
In practice, simultaneous observational data are difficult to obtain for longer than 10

year periods, but separate information on SW L and IIs is available based on longer time
periods of data. As the marginal and dependence estimation has been separated into a
two stage procedure, additional marginal data can easily be incorporated into the JPM.
This marginal information may take the form of

r extra data for the site: for example when .FIs is hindcast for a longer period,

r an estimate ofthe distribution for the variable obtained from a larger scale analysis:
for example estimates of SW L extremes produced by a spatial analysis as in Dixon
and Tawn (1994, 1995).

This correction for ma,rginal features is particularly important for SW L as a direct ana.l-
ysis, using a period of less than 18.61 years, is likely to produce poor extrapolations as
features of the nodal cycle of the tide are ignored. Incorporating extra marginal informa-
tion overcomes such potential weaknesses. In Section 8.1 we showed how such information
can be incorporated into the analysis to give improved contour curves.

Finally we compare the estimates given by the approach developed here with those
obtained by the current methods implemented by HR. There are two differences between
the HR methods and ours:

. marginal models and estimation techniques,

r dependence estimation.

Thus in addition to the differences found in Section 8.1, where the marginal distribution
were treated as known, here we have additional differences due to marginal uncertainty.
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Figure 8.13: Siml: .fls-.9W.L curves of equal joint survivor probability expressed in return
periods (in years)

Figure 8.14: Sim2: Hs-SWL curves of equal joint survivor probability expressed in return

periods (in years)

I

I
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Figure 8.15: Sim3: fls-Szrgre curves of equal joint survivor probability expressed in

return periods (in years)

1
Surge

Figure 8.16: Sim3: 115-SWI curves of equal joint survivor probability expressed in return

periods (in years)
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FigureB.lT: Sim4: ,[1s SIU.L curves ofequaljoint survivor probability expressed in return
periods (in years) for the fitted bivariate normal threshold model

- Esllmated lrodel--- Simulation Model

Figure 8.18: Sin4: Hs-SWL curves of equal joint survivor probability expressed in return

periods (in years) for the fitted mixture of biva.riate nolmals model

- 5f'lllEif,n{&da"J'

0.5

r

0.5
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Figure 8.19: Sim5: fI5-,9WL curves of equal joint survivor probability expressed in return
periods (in years) for the fitted bivariate normal threshold model

Figure 8.20: Sim5: ,I15 ,914/-L curves of equal joint survivor probability expressed in return
periods (in years) for the fitted mixture of bivariate normals model
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Comparison with current implementation

HR have implemented the current methodology for estimating the joint survivor function,
and produced contours of equal value of this function for return periods of 1,10, and 20
years. For comparison with the plots in Figures 8.13-8.20 we only give the 10 year contour
values, these a,re tabulated in Tables 8.6-8.10. For larger return periods the differences in
the marginal extrapolation methods dominate, so such comparisons a,re outside the remit
of this project. The estimation of marginal distributions and dependence structure by
HR uses different methods to those described in this report (for details see Harvkes and
Hague, 1994). The comparison with the simulation model values and the fitted model
described above for this contour curve are given below:

Siml Compa.rison is not directly possible here as HR have separately estimated the joint

survivor function for waves from two direction sectors (these direction sectors do not
exactly tie in with those used to simulate the data). Despite the distribution of Str4r.L
being in a conditional form, dependent on 0, the estimated marginal distribution of
SW L \s found to agree very well with the simulation model.

Sim2 The HR contour estimates give return levels for .FIs which over-estimate to the
same degree as our estimated model under-estimates in Figure 8.14. For SWL lhe
HR estimates are similar to our marginal return level estimates. The dependence
features are well captured.

SimS Here the HR contour estimates give return levels for I15 which substantially over-
estimate (our estimates, given in Figure 8.15, also over-estimate but to a lesser
extent), and are similar to our estimates for SWL. The dependence features seem
to be adequately captured.

Sim4 Here the HR contour is good at this return period. In Section 8.1 the strong
form of dependence for these data was not captured by the HR approach, so we
know that this good estimate is not sustained for larger return periods. Also the
marginal return levels for I19 at higher return periods are under-estimated. The
SWl marginal distribution seems to fit well.

Sim5 Again the HR contour is adequate at this return period. However, from Section 8.1
we know that the strong form of dependence has not been captured (the curvature
of the contour is not sufficiently peaked). The Ils return levels have been under-
estimated (with the estimated marginal 10 year level the same as the simulation
model 5 year level) but is still - better than our estimate (given in Figure 8.19)
which is an over-estimate (corresponding to the simulation model 50 year level).
The SW L marginal distribution seems to be well fitted.
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SWL
(0"sd<1e0")

Hg

(1e0 '<d<270")
4.0
4 .5

5 .0
D . O

6.0
D.J

6.75
7.0
7.25

1.82
r .82
1.80
1..77

1.69
7.52
1.41

L.23

0.68

r .25
r.24
! . z o

1-22
r .77
1.09

0.97
0.88
0.73

Table 8.6: HR estimates of points on the 10 year contour of the joint survivor function for
Siml: separate estimates conditional on the wave direction, d, satisfying 0" < d < 190'
and190 '<0<270" .

si4/, | 1.50 r.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Hs | +.or 4.bT 4.4s 4.28 4.06 z.zg 3.48 8.01 2.r7 o.sg

Table 8.7: HR estimates of points on the 10 year contour of the joint survivor function
for Sim2.

sw,  |  11.00 11.50
H5 | 5.25 5.19

12.00 12.25 12.50

5.00 4.87 4.70
12.75 13.00

4.38 3.61

Table B.B: HR estimates of points on the 10 year contour of the joint survivor function
for Sim3.
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SWL I 0.4
H5 | 7.42

0.5 0.6 0.7
7.34 7.27 7.23

0.8  0 .9  i .0  1 .1
7.t5 6.88 6.48 5.86

1.2
4 .L4

Table 8.9: HR estimates of points on the 10 year contour of the joint survivor function
for Sim4.

sw L | 6.00 6.50 6.75 7.00 7.25 7.50 8.00
H5 18.52  8 .20  8 .03  7 .62  7 . r3  6 .56  3 .77

Table 8.10: HR estimates of points on the 10 year contour of the joint survivor function
for Sim5.
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Chapter I

Analysis of Overtopping Discharge

Rates

The methodology developed in the first two parts of this report can be applied to any
design problem. In this chapter we examine an application where the mode of failure is
an extreme overtopping discharge rate, and the analysis is required for an existing design.
We fbcus on the problem of estimating return levels of extreme overtopping discharge
rates, which can be rephrased in terms of estimating the probability that the overtopping
discharge rate exceeds some critical level.

In this chapter we consider five application sites (corresponding to the five simulated
data sets, Siml Sim5). For each hypothetical sife, the overtopping discharge rate, Q6:, is
given by equation (1.1.1), with the sea-r,r'all design characteristics (a1, a2, o) given in Table
9.1. This specification of the problem may be unrealistic, as the sea condition data are
offshore data (as the waves have been hindcast), whereas the overtopping discharge rate,
equation (1.1.1), presumes the waves to be as measured at the sea-wall. Asaresultasmall
number of high wave heights, with very low steepness, tend to dominate the overtopping
results. On the other hand, the analysis is primarily to

illustrate the application of the JPM to a design problem;

enable a comparison between the SVM and JPM;

enable comparison between the methods developed in this report and methods cur-

rently implemented, such as the two different levels of analysis described in Section

In this chapter we first describe special features of the methods as applied to overtop-
ping discharge rates (Section 9.1), before applying these methods to the simulated data.
A benefit of usine simulated data for the sea condition data is that we ca^n derive the

187
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associated distribution of extreme overtopping rates exactly, thus simplifying the com-
parisons between the methods. To clarify our presentation of results, we focus on the
estimation of the 100 year overtopping discharge rate, giving estimates and compa"risons
for each data set, from Siml in Section 9.2 to Sim5 in Section 9.6. Finally in Section g.B,

for cornpleteness, we give estimates for the 10 and 50 year overtopping discharge rates for
each of these simulated data sets.

Simulated data Ul A2 u
Siml
Sim2
SimS
Sim4

Sim5

0.0192
0.0192
0.0192
0.0192
0.0192

46.96

46.96
46.96
46.96
46.96

8.5
5.0
14.5
2.5
9.0

Table 9.1: Information on the structural design for the simulated data. Here the sea-wall
is a simple sloping wall with a 1:4 slope, n1 and a2 dimensionless constants and u is the
crest elevation in metres (relative to ODN except for SimB and Sim5 which are relative to
Chart Datum). See equation (1.1.1) for details of how these design parameters influence
overtopping discharge rates.

9.1 Background Methods

We apply five different methods of analysis of extreme overtopping discharge rates,

two applications of the structure variable method,

three levels of application of the joint probability method.

First we outline special features of these methods in their application to the specific
problem of estimating extremes of overtopping discharge rates, Q6:.

SVM applied to Qs
The standard SVM, as described in Section 2.1, is applied directly to the structure vari

able, Q" the overtopping discharge rate. The results were derived by applying the GPD
threshold model to a range of thresholds (corresponding to upper quantiles over the range
e0 - ee.5%).
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SVM applied to )ogQg
The SVM is applied indirectly, by statistically analysing a transformed structure variable,
log Q5r, and extrapolation. The return level estimates on the Qc,scale are given by taking
the exponential ofthe estimates on the logQc' scale. The results were derived by applying
the GPD threshold model to a range of thresholds (corresponding to upper quantiles over
the range 90 - 99.5%).

Of the two SVM, this is the closest in spirit to the general approach HR use for
univariate extrapolation to estimate return levels. We have applied our methods in a
routine approach, whereas in practical studies subjective choice, such as threshold choice,
and assessment of fit, would be carefully taken. The HR approach requires a greater
number of cho'ices to be made, which protects against physically unrealistic extrapolations,
but potentially may force the extrapolation to be inconsistent with the extremal data.
The HR estimates for these Sim data sets will be given in the HR report which describes
the practical implementation of the methods.

This all acts as a note of warning not to extrapolate without at least assessing the
sensitivity to the aspects of the model that are subjectively chosen, and evaluating the
estimation uncertaintv.

JPM applied using statistical model
The joint distribution of (SW L, Hs;,7.7) is given by the joint distribution of (SW L, Hs, S)
through the joint distribution ot (SWL, Hs) and the conditional distribution of SlHs
(due to the conditional independence of ,S and SWL given I15). The estimate of the joint

distribution of (SW L,11s) is given in Chapter 6 and Section 7.1, whereas the estimated
conditional distribution of S l,FIs is given in Section 7.2. We have applied two versions of
this method, based on

r the fully estimated joint distribution of (SWI, I/s, S),

r the joint distribution of (SW L, ils,,9) estimated with the marginal distributions of
SWL and I1s taken to be known.

In each case the results are obtained using the general methodology described in Section
2.2 .

Current implementafion of JPM: basic method
This method corresponds to the basic method described in Section 1.2. The estimated
joint survivor function values for (SWL,H1) are given in Chapter B. HR repeated the
analysis in each application using two different constant wave steepness values: one being
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S: 0.06 (common to all analyses), and the other a value derived for each individual data
set. Two versions of this method have been applied; these a,re

r estimates of 1, 10, 100 and 1000 year return levels of overtopping discharge rates
based on the estimated joint survivor function of (SWL,H1) with the marginal
distributions of SW L and ffe taken to be known,

o estimates of 1, 10 and 20 year return levels for overtopping discharge rates based on
the fully estimated joint survivor function of (SWL,Hs).

Current implementation of JPM: refined method
This method corresponds to the refined method described in Section 1.2, in which the
exact failure region (with respect to Hs and. SWL, but not with respect to 72 as steepness
is treated as fixed) is used. Here the joint density of (SWL,H;) is derived from the
estimated joint survivor function given in the basic method (i.e. from the estimates given
in Chapter 8) by suitable differencing over a grid (interval lengths of 0.5m). In each
application a value of constant wave steepness is used (here S: 0.06 and a value derived
from the data). This choice was made for consistency with the basic method, but is not
always made in current 'risk analysis' studies. This method has only been applied to
Sim2, where two levels of implementation were undertaken:

r estimates based on the estimated joint density of (SW L, fle) with known marginal
distribution,

o estimates based on the exact joint distribution of (SWL,Hs).

9.2 Application to Siml

For this hypothetical site, the five largest overtopping discharge rates, and the associated
combinations of (SWL,H;,T7), from a hypothetical 10 year period are given in Table

9.2. It is seen that the largest observed rate is an order of magnitude greater than the
next largest values. This has a signilicant impact on extrapolations applied directly to the

Qg data, producing massively over-estimated return levels. The estimate is not shown
in Figure 9.1 which illustrates the other estimates of the 100 year overtopping discharge
rate. The target return levels for Q5r, from the simulation model, are given in Table 9.3.
The other estimates are discussed below:

SVM the estimated level is shown against the threshold for the SVM applied to log 8c.
The level is under-estimated for thresholds below the 96% quantile, but above this
threshold level the return level is well estimated.
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JPM statistical model the estimate is a slight over-estimate of the level (giving the
actual 140 year level). Here the statistical model is based on estimated ma.rginal
distributions. Known marsinal distributions are not used because of the direction-
ality.

JPM current implementation estimates of the 100 year level are given for two drrec-
tion sectors only, so direct comparison is not possible for these data. Here we report
only estimates obtained using known marginal distribution for fls and SWL. For
the 0' < d < 110" direction sector, HR take ,9 : 0.06 which gives the estimated 100
year overtopping discharge rate of 0.016 (corresponding to the actual 30 yea.r rate).
Also for the 110' < d < 360" direction sector HR take S:0.025 obtaining the 100
year overtopping rate of 0.019 (corresponding to the actual 40 year rate).

For this site each of the methods appear to produce equally acceptable estimates (with

the exclusion of the SVM to Qc'). This is not too surprising as

1. for this site, the estimated joint survivor function given by the statistical model and
current implementation seems adequately estimated,

2. the dependence between (SWL,Hs) is moderately. strong, so the error in the failure
region of the current implementation is not large, and

3. the variation of ̂ 9 given I1s is large, is relatively small, so taking this value as fixed
is a reasonable approximation.

SWL HS rn alc

7.28
7.48
6.59

6.98
o . J 1

7.47

0.99
l . D 4

1.25

0.59

3.66

3.10
J . / O

3.45
6.82

0.01676

0.00397
0.00237
0.00221
0.00142

Table 9.2: The largest five sea condition values for Siml in terms of the structure function,
overtopping discharge rate Qs given by equaticn (1.1.1). Here SWL.is in terms of metres
relative to ODN, I1s is in metres, arrd T2 in secs. Overtopping discharge rate, Q6:, is in
metre3/sec/metre.
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Return period

(yearsJ
Return level

Qc

Return period

(yearsJ

Return level

Qc
5
10

20

30
40

50
60
70
80

90

0.0040

0.0075
0.0127

0.0161
0.0192

0.0213
0.0232

0.0251
0.0270

0.0288

100
200

300
400
500

600
700

B00
900
1000

0.0300

0.0455
0.0533

0.0632
0.0694

0.0727
0.0782

0.0829
0.0856
0.0874

Table 9.3: Siml: Return levels for Q6 (in metre3/sec/metre) from simulation model.

Figure 9.1: Siml Q6 100 year return value for the SVM applied to log Q5' and the JPM
based on the bivariate normal dependence model for (SWL,Hs). The threshold axis is
related to applications of the SVM

E
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9.3 Application to Sim2

For this hypothetical site, the five largest overtopping discharge rates, and the associated
combinations of (SWL,Hs,Ts), are given in Table 9.4. As the largest observed 8c rates
are consistent with the other large levels, we can apply the SVM to Q6r directly, but also
apply the SVM to the log Qc, data. The target return levels for Q6 for the simulation
model are given in Table 9.5. Estimates of the 100 yea,r overtopping discharge rate are
shown in Figure 9.2. Additionally, we have estimates from current implementation at the
basic and refined levels of application. All these estimates are discussed below:

SVM the estimated level is shown against the threshold for the SVM applied to Q6 and
to log Q5,. For Qs, the level is grossly over-estimated for all thresholds up to the
99% quantile. Alternatively, for logQ6, levels are consistently under-estimated for
all thresholds (giving the actual 25 year rate).

JPM statistical model the estimate given for the statistical model very slightly over-
estimates the rate (giving the actual 140 year rate). Here, the statistical model is
based on estimated marginal distributions.

JPM current implementation: basic method If the standard value of S : 0.06 is
taken then the estimated 100 year value is 0.56 (corresponding to a value less than
the actual 5 year rate). In contrast, taking ,9 : 0.03 (determined from the Sim2
data) ihe estimate is increased to 1.5 (the actual 35 year rate). Here, the known
marginal distributions are used.

JPM current implementation: refined method Using ,9 : 0.06 the refined method
gave equally poor estimates. However taking S - 0.03 leads to a slight over-estimate
(corresponding approximately to the actual 200 year rate).

Of all the methods applied to the data, only the JPM statistical model and the JPM
current implementation (with ,9 specially chosen) appear to produce acceptable estimates.
Possible reasons for this poor performance of the other estimators are that

1. the negative correlation of (SWL,H1) means that the basic rnethod of current
implementation is likely to under-estimate.

2. the high variability of S for large values of /{s means that estimates based on fixing
S at some value, a feature of all currently implemented methods, will give biased
estimat€s.

For this hypothetical site we compare the importance of each of the above features.
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For the current implementation the refined method gives a higher overtopping dis-
charge rate than the basic method, as it includes a wider range of loading conditions
which contribute to the failure region. There is a degree of coarseness in the refined
method due to the coarseness of the grid used for converting the estimated joint

survivor function into a joint density function. More refinement would be possible,
but is time-consuming, since it relies on manual interpolation of return periods from
the estimated contours ofjoint survivor functions. This stage ofthe refined method
is made more difficult when the known marginal distributions are used, since the
marginal axes are a non-linear transformation of marginal axes when the marginal
distribution is estimated.

A feature of the coarseness is that the refined method will tend to overestimate
overtopping (if ,9 is really a constant value), because central values of wave height
and water level are used for each 'cell', whereas the probability density function is
concentrated towards the lower corners of the cell. This feature is seen in the above
estimates.

SWL IT
t t s r z Qc

2.38

2.18
2.46
1.88

3.26

3.34
3.22
3.42
3.89
3.64

10.31

9.28
10.44
11.00

7.65

1.1465
1.0920

0.939
0.9314

0.8798

Table 9.4: The largest five sea condition values for Sim2 in terms of the structure function,
overtopping discharge rate Qc given by equation (1.1.1). Here SWLisintermsof metres
relative to ODN, fIs is in metres, and 7s in secs. Overtopping discharge rate, Q6r, is in
metre3 /sec /metre.
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Return period

(years)
Return level

Qc

Return period

(years)

Return level

Qc
5
10
20
30
40
50
60
70
80
90

0.9476

1.1516
7.3640
1.4881
r.5745

1.6308

1.6991
r.7613
1.8036
1.8357

100

200
300
400
500

600

700
800
900
1000

1.8673

2.L462
2.3205
2.4042
2.4703

2.5544
2.6169

2.7049
2.7498
2.7517

Table 9.5: Sim2: Return levels for Q6 (in metre3/sec/metre) from simulation model

Figure 9.2: Sim2 Q6 100 year return value for the SVM applied to Q6 and logQc, and
the JPM based on the bivariate normal dependence model for (SWL,Hs\. The threshold
axis is related to applications of the SVM
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Application to SimB

For this hypothetical site the five largest overtopping discharge rates, and the associated
combinations of (SW L, Hs,T2), are given in Table 9.6, and the target return levels for Qc,
from the simulation model, are given in Table 9.7. The largest two observed overtopping
discharge rates are twice the size of the fourth and fifth largest observations, which leads.
to the SVM based on the Q6 data producing a long estimated tail resultiug in over-
estimated return levels. The 100 year overtopping discharge rate estimates are shown in
Figure 9.3, these are discussed below:

SVM the estimated level is shown against the threshold for the SVM applied to Q5, and
logQ5'. The level is badly over-estimated for Q5' for all thresholds, and slightly
over-estimated for log Q6r data.

JPM statistical model the estimate is very good (the estimated value is the artual 90
year rate). Here, the statistical model is based on estimated marginal distributions.

JPM current implementation For ,9 : 0.06 the estimate of the 100 year rate is 1.86
(corresponding to the actual 25 year rate), whereas for the derived value ofS : 0.048
the estimated 100 year rate is 2.3 (corresponding to the actual 70 year rate). Here,
the known marginal distributions were used.

With the exclusion of the SVM applied to Qc,lhe methods agree to a reasonable degree.
In comparing these methods we should note that:

1. For the current implementation, known marginal distribution have been used whereas
for the statistical model estimated marginal distribution were used;

2. The estimated joint survivor function is slightly over-estimated in the current im-
plementation but not in the statistical model. This should lead to over-estimated
overtopping discharge rates using the current implementation;

3. The failure region used in the current implementation (basic method) always leads
to under-estimation of overtopping discharge rates;

4. The omission, in the current implementation, of the large variation of S, given that
I15 is large, leads to under-estimation.

These features seem to have balanced each other for these data to produce an acceotable
estimate for the current implementation of the JPM.
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SWL Hg Tg Qc
13.11
12.88
12.45
12.78
11.83

4 - J  I

4.95
4.30

3.62
5.05

8.57

7.92

8.70
7.76
7 ( : )0

2.20413
1,8589
r.2745
0.9231
0.8149

Table 9.6: The largest five sea condition values for Sim3 in terms of the structure function,
overtopping discharge rate Qc given by equation (1.1.1). Here SW L is in terms of metres
relative to ODN, lls is in metres, and Tz in secs. Overtopping discharge rate, Q6r, is in
metre3 /sec/metre.

Return period

(years)
Return level

Qc

Return period

(yearsJ

Return level

Qc
5
10

20

30
40
50
60

70
80
90

1.1171
1.4094

7.7253

1.9158
2.0449
2.1698
2.2977
2.3685

2.4291
2.4986

100
200

300
400

500
600
700

800
900
1000

2.5782
2.9652

3-3309

3.6324
4.7264
4.5034
4.5779

5.4004
5.5087
5.7691

Table 9.7: Sim3: Return levels for Q6 (in metre3/sec/metre) from simulation model.
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Figure 9.3: Sim3 8c 100 year return value for the SVM applied to Qc' and log Q5r and
the JPM based on the bivariate normal dependence model for (SWL,Hs). The threshold
axis is related to applications of the SVM
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9.5 Application to Sim4

For this hypothetical site the five largest overtopping discharge rates, and the associated
combinations of (SWL,H;,T7), are given in Table 9.8, and the target return levels for

Q6, from the simulation model, are given in Table 9.9. Relative to the previous hypothet-
ical sites (Tables 9.2, 9.4 and 9.6) the overtopping discharge rates are much larger. This
feature is due to the extreme wave height and wave period data being much larger- Here,
variations in SWL are largely unimportant in affecting the overtopping rate. Correspond-
ingly, the dependence between (SWL,Hs) is also unimportant. This is disappointing as
these data have strong dependence for (SWL,Hs) which is generally poorly estimated).
This hypothetical site has exceptionally large waves, for two reasons

1. the data on which this hypothetical site was based is Christchurch, which has large
offshore waves,

2. we chose to lengthen the tail of the wave height variable (for overtopping studies
this was clearly an inappropriate choice).

The simulated waves ard completely unrealistic as inshore waves, so the resulting overtop
ping given by equation (1.1.1) is quite false. Nevertheless, asan assessment of performance
under varying conditions, the comparison still has va.lue. The 100 year overtopping dis-
charge rate estimates are shown in Figures 9.4 and 9.5, these are discussed below:

SVM the estimated level is shown against the threshold for the SVM applied to Qs and
logQ6. The level is badly over-estimated for 8c at thresholds less than the 98%
quantile and under-estimated for higher thresholds. No stability with threshold is
seen, so this method is poor. For log Q6' data, the estimates are stable with respect

to threshold but under-estimate badly, (the estimated rate corresponds to actual 10
year rate).

JPM statistical model Four estimates are siven here:

o an estimate based on the threshold bivariate normal dependence model for

(SW L, H s) with estimated marginal distributions (shown in Figure 9.4),

. an estimate based on the threshold bivariate normal dependence model for

(SWL, Hs) with known marginal distributions (shown in Figure 9.4),

. an estimate based on the mixture of bivariate normals dependence model for

(SW L, Hs) with estimated marginal distributions (shown in Figure 9.5),

r an estimate based on the mixture of birariaie normals dependence model for

(SW L, Hs) with known marginal distributions (shown in Figure 9.5).
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Three features emerge from considering these figures:

2 .

1 . all four estimates are reasonable bv comparison with the SVM. When the
marginal distributions are estimated, the actual return period of the estimated
rate is 200 years, whereas when the known marginal distributions are used, the
return period of the estimate is 400 years;

the choice of dependence model makes almost no difference here (this was
explained above from an intuitive standpoint, the estimates here confirm this);

the use of known marginal distributions has made the estimates worse than the
estimates based on unknown marginal distribution. This is counter-intuitive,
but results from the Q variable dominating this extrapolation with this com-
ponent of the model unaffected by treating the distributions of fls and 5l4/tr
as known. Hence, any error in its modelling (i.e. the modelling of ,9l}/s and
11s) outweighs other aspects of the joint distribution model. Recall, this is the
site for which a false relationship between S and fls was found in Section 7.2.

JPM current implementation For ,5 : 0.06 the esti.mate of the 100 year rate is 15.0
(corresponding to the actual 18 year rate), whereas for ,5 - 0.04 (derived from the
data) the estimate is 20.8 (corresponding to the 45 year rate). Here, the known
marginal distributions were used. Holding ,S constant has been beneficial, as the
sensitivity to Ts has been reduced.

For these data, in Section 7.1.2 we identified that without being overly conservative
(SWL,Hs) could be taken to be completely dependent. However increasing the depen-
dence makes the JPM statistical model estimate worse. In contrast for the JPM current
implementation, with S:0.04, with these variables taken to be completely dependent
the actual 100 year rate is estimated almost perfectly.

Detailed comparison of methods is unjustified here. Again the JPM (at a1l levels of
implementation) seems to be preferable to the SVM.

2
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Table 9.8: The largest five sea condition values for Sim4 in terms ofthe structure function,
overtopping discharge rate Q6 given by equation (1.1.1). Here SWLisintermsof metres
relative to ODN, 1/s is in metres, and 7z in secs. Overtopping discharge rate, Q5r, is in
metre3 /sec/metre.

SWL Hs I Z Qc
I . I 7

0.50
0.75
0.89
0.97

6.64

6.38
6.54
6.89

5.75

12.13
t4-75
72.t5
7t.22
12.24

8.003
7.924
6.444

6.413
O.UOJ

Return period

(yearsJ

Return level

Qc

Return period

(years)
Return level

Qc
5
10
20
30
40

50

60
70
80
90

8.6723
11.7261
15.5245
17.8495
t9.9222

21.6399

23.0572
24.3832
25.6450
26.3787

100

200
300
400
500

600

700
800
900
1000

27.1627

33.5968
35.9757
3B.0409
40.8586

44-3648
46.2059
47.9264
48.3332
48.8283

Table 9.9: Sim4: Return levels for Qs (in metre3 fsec/metre) from simulation model.
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Figure 9.4: Sim4 Q6 100 year return value for the SVM applied to Q6 and logQg and

the JPM based on the bivariate normal dependence model fot (SW L, Hs) with estimated

and known marginal parameters. The threshold axis is related to applications of the SVM

.?
g

o

6
E
; V

0.94. 0.96
Threshold

Figure 9.5: Sim4 8c 100 year return value for the SVM applied to Qs and log Q6 and the
JPM based on the mixture of biyariate normals depeldence model for (SWL,H1) with
estimated and known marginal parameters. The threshold axis is related to applications
of the SVM
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9.6 Application to SimS

For this hypothetical site, the five largest overtopping discharge rates, and the associated
combinations of (SW L, Hs,Tz), are given in Table 9.10, and the target return levels for

Qs, from the simulation model, are given in Table 9.11. The large overtopping discharge
rates for Sim5 are similar to those for Sim4 (see Tabte 9.8). This feature is again due to
the long tail of the extreme wave height distribution. This results in variations in SWL
being largely unimportant in determining the overtopping rate. The dependence between
(SW L, Hs) is also unimportant. The simulated wave data, although consistent with data
at Dowsing, represent offshore waves, and are unrealistic as inshore waves, so the resulting
overtopping, given by equation (1.1.1), is dominated by their values. This reduces the
value of the comparison at this site, as the care given to modelling dependence between
(SW L, H s) in Chapters 7 and 8 is not exploited when (Hs,Ts) dominate the variation in

8c values. The 100 year overtopping discharge rate estimates are shown in Figures 9.6
and 9.7; these are discussed belorv:

SVM the estimated level is shown against the threshold for the SVM applied to Q6: and
Iog Q6'. The level is badly over-estimated for Q6, with the degree of over-estimation
reduced for larger thresholds. No stability with threshold is seen, so this method
is poor. For logQ6 data, the estimates are stable with respect to threshold, but
under-estimate the rate (corresponding to the 50 year rate).

JPM statistical model Four estimates are given here:

e an estimate based on the threshold bivariate normal dependence model for
(SW L, Hs) with estimated marginal distributions (shown in Figure 9.6),

o an estimate based on the threshold bivariate normal dependence model for
(SWL,Hs) with known marginal distributions (shown in Figure 9.6),

r an estimate based on the mixture of bivariate normals dependence model for
(SW L, Hs) with estimated marginal distributions (shown in Figure 9.7),

o an estimate based on the mixture of bivariate normals dependence model for
(SW L, Hs) with known marginal distributions (shown in Figure 9.7).

Three features emerge from considering these figures:

1. The use of known marginal distributions has improved the estimates, as the I1s

upper tail was badly over-estimated which led to over-estimated overtopping

return levels;

2. The choice of dependence model makes some diflerence here, with the ml.<ture

of bivariate normals producing the best estimates;
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3. All four estimates are reasonable by comparison with the SVM applied to Qc.
By comparison with the SVM applied to log Qg, only the known ma.rginal
distributions cases are better. For known marginal distribution, with either
dependence model, the JPM statistical model estimate is very good.

JPM current implementation For S : 0.06 the estimate of the 100 year level is 10.32
(corresponding to the actual 20 year level), whereas for ^9 - 0.05 (derived from the
data) the estimate is 15.1 (corresponding to the actual 45 year rate). Here, the
known marginal distributions were used.

The statistical modelling used in the JPM gives the best estimates here. As Ils dominates
the overtopping discharge rate distribution, the choice of dependence model has only a
small infuence, with the most critical component of the JPM being accurate estimation
of the marginal distribution of f15. Again, the JPM performs better than the SVM.

SWL HS 41 Qc
5.89

7.64
5.90

6.01
6.47

10.48

7.02

9.83
8.63
7.64

11 .31

9.87
11.34

10.34
ooo

6.236
5.982
5.680
3.845
3.650

Table 9.10: The largest five sea condition values for Simb in terms of the structure func-
tion, overtopping discharge rate Qs given by equation (1.1.1). Here SWL is in terms of
metres relative to ODN, Ifs is in metres, and Q in secs. Overtopping discharge rale, Qs,
is in metre3 /sec /metre.



9.6. APPLICATION TO SIM\

Return period

(years)
Return level

Qc

Return period

(yearsJ
Return level

Qc

10

20

30
40

50
60
70
80

90

5.9903

8-2648
11.0693

12.9900
14.44B8

15.6470
16.6410
17.4921
18.2494
18.9181

100

200

300
400

500
600
700
800
900
1000

19.4855
23.8109

26.7994

29.5869

30.7396

32.4526
33.5968
34.3186
35.7950
37.4294

Table 9.11: Sim5: Return levels for Q6 (in metre3/sec/metre) from simulation model.

Figure 9.6: SimS Q5' 100 year return value for the SVM applied to Qs and log Q5 and
the JPM based on the bivariate normal dependence model for (SW L, Hs) with estimated
and known marginal parameters. The threshold axis is related to applications of the SVM
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Figure 9.7: Sim5 Q6 100 year return value for the SVM applied to Q6 and log Qc' aud the
JPM based on the mixture of bivariate normals dependence model for (SWI, f/s) with
estimated and known marginal parameters. The threshold axis is related to applications
of the SVM
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9.7 Comment on Current Implementation Results

The estimates of extreme overtopping rate given by the basic method of the current
implementation of the JPM for the 100 year level were found to be under-estimates in
Sections 9.2 9.6. Here we briefly look to see if this under-estimation is consistent over
data sets. In Table 9.12 we give the actual return period for the levels predicted by the
basic method to be the 100 and 1000 year levels. Two return periods are given for each
data set, corresponding to estimates with S: 0.06 and with a fixed value for ,9 derived
for each data set. For these hypothetical sites, the typical level of protection offered by a
design to the 100 year rate would actually be approximately 25 years (if S : 0.06 is used),
or more realistically 45 years (when ,S is derived from the data). This is a reasonably
consistent bias. The estimates for the 1000 year level show that this degree of under-
estimation is similar for other return levels, although is not as consistently observed over
the data sets. This suggests that a rough re-calibration rule is to double the estimated
return period ofreturn levels estimated using the current implementation (basic method).

To give some mea,sure of the performance of the current implementation relative to the
JPM statistical model we also summarise estimates for the JPM statistical model. For
Siml-Sim5 the actual return period of the overtopping level estimated to have a 100 year
return period are 140, 140, 90, 200 (400) and 1000 (85) respectively (where the numbers in
brackcts are estimates obtained using the known marginal distributions). These estimates
are not directly comparable with those from the current implementation as here the known
marginal distributions have not been used. For Siml-Sim3 the performance of the JPM
statistical model is better than the current implementation. Sim4 and Simb are completely
unrealistic data sets, particularly in relation to the structure function, hence comparison
is essentially meaningless. For completeness the methods compare as follows: for Sim4
the current implementation is best, yet this is in contra.st to the estimates in Chapter 8,
so is totally due to the modelling of S; and for Sim5, when we are comparing like with
like, i.e. 85 v 45 year return periods the JPM statistical model appears best.

9.8 Other Figures

For completeness, we also give the estimated return levels for return periods of 10 and 50
years. Generally these values, shown in Figures 9.8-9.21, show the same features identified
for the 100 year level of overtopping discharge rate.

The comparisons so far have excluded estimates for the JPM applied using the basic
current implementation with estimated marginals. Table 9.13 gives estimated 10 year

Qc values based on the current implementation of the JPM. We see there is a reason-
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Site s:  0.06
100 year I lOO0 y.u.

Derived 5
100 year I tooo y.u.

Siml

Sim2
Sim3

4J

<5
750

5
2000

40
JD

70

550
250
2000

Sim4
Sim5

25
20

150

100

45
45

480

350

Table 9.12: Actual return period of design levels estimated by the current implementation
(basic level) of the JPM: for S :0.06 and when S is derived from the data. For Siml
these results correspond to the dominant direction. Owing to the dominance of wave
period for Sim4 and Sim5 these estimates should be largely ignored.

ably consistent pattern of improvement in the estimated levels when the known marginal
distribution are used.

site S : 0.06
estimated I kno*o

Derived ,5

estimated I koo*n
actual values

Siml
Sim2

Sim3
Sim4
b lmD

0.005
0.298
0.902

3.95

3.88

0.003
0.347
0.763
o . J  /

0.0035/0.0117

0.97
1..22

5.9
4 .7

0.0021/0.0043
1.06
1.05

6.5

0.0075
1.151
1.48

11..7

8 .3

Table 9.13: Estimated 10 year return levels for Qc obtained using estimated and known
marginals via the current implementation (basic level) of the JPM. For Siml (.9 : 0.06)
these results correspond to the dominant direction, whereas for derived,9 each direction
sector is eiven.



9.8. OTHERFIGURES

Figure 9.8: Siml Qc 10 year return value for the SVM applied to logQ6 and the JPM
based on the bivariate normal dependence model for (SWL,11s). The threshold axis is
related to applications of the SVM
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Figure 9.9: Siml Q5' 50 year return value for the SVM applied to logQ6, and the JPM
based on the bivariate normal dependence model for (SWL,Hs). The threshold axis is
related to applications of the SVM
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Figure 9.10: Sim2 Q6 10 year return value for the SVM applied to Q6 and logQg and
the JPM based on the bivariate normal dependence model for (SWL,,11s). The threshold
axis is related to applications of the SVM

Figure 9.11: Sim2 Qc 50 year return value for the SVM applied to QL- and 1og Q6 and
the JPM based on the bivariate normal dependence model for (SWL,Hs). The threshold
axis is related to applications of the SVM
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Figure 9.12: Sim3 Q5, 10 year return value for the SVM applied to Q6 and log Q6r and

the JPM based on the bivariate normal dependence model fot (SW L, H s). The threshold

axis is related to applications of the SVM

Figure 9.13: Sim3 Qc 50 year return value for the SVM applied to Qg and 1og Q6, and
the JPM based on the bivariate normal dependence model fot (SWL,Hs). The threshold
axis is related to applications of the SVM
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Figure 9.14: Sim4 Q6 10 year return value for the SVM applied to Qg and log Q5, and
the JPM based on the bivariate normal dependence model for (SW L, /1s) with estimated
and known marginal parameters. The threshold axis is related to applications of the SVM

3r

Figure 9.15: Sim4 Q6' 10 year return value for the SVM applied to Qs and log Q6' and the
JPM based on the mixture of bivariate normals dependence model for (SWL,Hs) with
estimated and known marginal parameters. The threshold axis is related to applications
of the SVM
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Figure 9.16: Sim4 Qg 50 year return value for the SVM applied to Q6 and logQ6 and

the JPM based on the bivariate normal dependence model for (SI4I L,.I15) with estimated

and known marginal parameters. The threshold axis is related to applications of the SVM

0.90

Figure 9.17: Sim4 Qc 50 year return value for the SVM applied to Qg and 1og Q6 and the
JPM based on the mixture of bivariate normals dependence model for (SWl, t15) with
estimated and known marginal parameters. The threshold axis is related to applications
of the SVM
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Figure 9.18: SimS Qc 10 year return value for the SVM applied to Q5' and logQ6 and
the JPM based on the bivariate normal dependence model for (SW L, Hs) with estimated
and known marginal parameters. The threshold axis is related to applications ofthe SVM
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Figure 9.19: Sim5 8c 10 year return value for the SVM applied to Qg and.IogQs and the

JPM based on the mixture of bivariate normals dependence model for (SWL,H) wifh

estimated and known marginal paramete$. The threshold axis is related to applicatrons
of the SVM
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Figure 9.20: Simb 8c 50 year return value for the SVM applied to Qs and logQs and
the JPM based on the bivariate normal dependence model for (SW L, Hs) with estimated
and known marginal parameters. The threshold axis is related to applications ofthe SVM
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Figure 9.21: Sim5 Qc 50 year return value for the SVM applied to Q6r and log Q6r and the
JPM based on the mixture of bivariate normals dependence model for (SI71,,t15) with
estimated and known marginal parameters. The threshold axis is related to applications
of the SVM
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Chapter 10

Comparisons and Conclusions

In this report we have developed new statistical models and procedures for joint proba-
bility methods applied to design problems where the environmental variables which cause
failures are extreme sea conditions.

The new statistical methods developed in Part I involve:

o Extreme value models for the marginal variables ol Hs and SWL.

o A range of dependence models for (SWL,H;), which enable flexible modelling of
different dependence structures between these variables.

r A technique for explaining variations in Q through wave steepness and associated
f15 values.

o An objective modelling procedure and diagnostic tests allowing aspects of the mod-
elling assumptions to be checked.

o A move towards a model-based method for extrapolations, rather than the current
methods which rely in part on subjective extrapolation by eye.

r Statistical models that enable probabilities for events of interest to be evaluated.
The main technique for this is thiough simulation of.a series of pseudo sea condition
data. Two options were developed: a continuous time simulation of the conditions
at high water levels and direct simulation of extreme events.

Together, these techniques provide a general/flexible framework for addressing the prob-
lem of evaluating the probability of failure of a structure.

The applications of the joint distribution fits in Part II show that:

r The statistical models have sulficient flexibility to capture the features of the joint

distribution of sea conditions which produce extreme loading conditions for a range
of observational and simulated data sets.
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The proposed methods appear to perform better than current methods in estimating
the joint extremes of (SW L.,I{s) and the behaviour of S for extreme waves.

Dependence modelling of (SW L,, fls) appears to be less important than marginal
modelling. Methods for including extra marginal distribution were discussed and
illustrated.

The illustration of the techniques to the problem of estimating extreme overtopping
discharge rates in Part III of the report revealed:

In general, the newly developed joint probability methods are better than structure
variable methods. This was not the case with existing methods as the JPM, unlike
the SVM, ignored variation in 72.

Currently implemented versions of the JPM, aimed at calculating the joint survivor
functions with given return periods, tend to under-estimate overtopping discharge
rates. The main reason fol this under-estimation is the exclusion of variation of ,9
in the analysis. By selecting an appropriate fixed value for ,5 the impact of this is
reduced.

The simplilication of the failure region tor (SW L, Hs) causes relatively little contri-
bution to any under-estimation (typically the return period of an overtopping level
is over-estimated by a factor of 1.5-2.0, which may be important in some applica-
tions). Conversely, the refined version of the current implementation, which re-uses
results from the basic method to produce a better estimate of overtopping, has po-

tential for some over-estimation due to the methods used to evaluate the probability
of failing in a rectangular region.

The importance of careful marginal modelling. This feature proved particularly im-
portant in this study, as the wave heights and periods domlnated the extrapolations
of overtopping discharge rates. This was probably due to the use of'olfshore' wave
conditions as if they were 'inshore' waves, so that they were often unrealistically
large.

The need for future comparisons of the methods, based on a range of carefully
implemented design problems.
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Appendix A

Background information

A.1 Joint Distributions

Consider the situation where there is a d-dimensional vector of random variables, X :

(Xr,...,Xa)- For continuous random variables the extension ofthe probability density
function for a single variable to the vector variable case is the joint probability density
function, Jx(rt,,. .. ra), which satisfies the following properties:

.  " f x ( r r ,  . . . ro ) :  / x (x )  l 0  fo r  a l l  x :  ( rL ,  . . . ,na ) .

r The rlfold (d-dimensional) integral

E l:ft(x)do1 ...d,ra: I: I : /x(x)dx:1
r The probability of some event, E say, is given by

Pr{Xe i l :  [ /x (x )dx .
JE

The probability density function of the separate variables, known as the marginal vari-
ables, can be derived from the joint probability density function by summing the joint

density over the other variables. For example, for variable X,, this is given by the (d- 1)-
fold integral

rm rco

" f x ,  ( r1 )  :  |  |  f 7$ )d4 . . .  r l n i -1d , r i 1 ;1  . . . d r ; ,  f o t  i : 7 , . . . , d .
J -co J -co

That is, marginal distributions are obtained by summing over all the possibilities of the

other random variables. Similarly, by summing over a set of the random variables, the

joint probability density function of the subset of the remaining variables is obtained, i.e.

the joint density function of (&+r, . . . , Xa) is given by

" f x ( r ; * ' ,  . . . , r a ) :  [ *  .  . [ *  1 ; * ) d .q . . . dn i .
J  -c<r  J -m

221
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An important concept for joint probability problems is that of conditional proba-
bility. The conditional probability of an event occurring given another event is known
to have occurred arises frequently when working with dependent random variables. The
conditional probability of event E2 given .81 is known to have occurred is defined by

Pr{X e E2lX e E'} -

where -E : Et 1 Ez is the intersection of events E1 and E2. Similarly, the conditional
probability density function for (X1, . . . , X;) given (X,+t = r;+t,. ..Xa: ra), is given by

where the denominator is the joint probability density function of (X,;+r, . . . , Xa)

AII the information about the variation of the vector of random variables is contained

in the joint probability density function. Summaries of this function are helpful in compar-

ing different distributions, so summary statistics a.re often evaluated. The most common

summa.ries are the marginal mean and variance of each individual variable and, as mea-

sures of dependence between the variables, the couariance and, correlation between each

pair of variables.

Correlation and covariance are measures of linear dependence between two va,riables.

Let J (r;, r) denote the joint probability density function for the pair (X', X ) Let p; and

oo2 denote the marginal mean and variance of variable e, then Cov(X;, Xi), the covariance

of (&, Xj), is given by

Cov(X,, X7)

and the correlation between

(rn - t"o)(ri - p)f (t;,n)dr;dri,

these two variables is given by

: I:I:

correlation(x,, y,1 = Co"(x' '  xi)
"  o io  j

The correlation, p, is a non-dimensional quantity always lying in the range -1 < p < 1.

When p:0 there is no linear dependence between the variables; when p > 0 there is a
positive linear association between the variables, with large values in each variable (and

small values in each variable) coinciding more often than if there were no relationship

between the variables; and when p < 0 there is a negative linear association between the

variables, with large values in one variable coinciding with small values in the other van-

able, and vice-versa, more often than if there were no relationship between the variables.

Pr{X e E1}'

"f"(*)
f  6r*r , . . . ,xo1(r;+t ,  .  - . , ,o)



4.2. THE NORMAL DISTRIBUTION

4.2 The Normal Distribution

In this section we give the distribution and properties of a univariate normal distribution

(i.e. one dimensional variable) and a multivariate normal distribution (i.e. a vector of

univariate normal random variables).

4.2.1 lJnivariate Normal Distribution

The probability density function of a normal random variable Y is given by

|  (  / , ,  - , r ) ? ' lpt ' , r )  -  - ----- ; -  exp {  _i_f , |  } ,  for  al l  -co<y<ooJ \y/  (2n1rtro_.. ,  ,  2o2 J 
,  -" .  -

where o > 0. The expectation of the variable is p and the variance is o2, hence the

standard notation V - N(p,,oz). The distribution function for this random variable

cannot be evaluated analytically, but symbolically is expressed as

Pr{Y< * : I:_#^*'{-#}*,
: o[(s - r")1"].

When p:0 and o: l then the distribution is said to be in standard form, i.e. Y -

1r/(0, 1). To transform Y - N (p,, o2) to Z - N(0,1) we use the relationship

Z :
Y-p.

o

4.2.2 Multivariate Normal Distribution

First we give results for Z : (2t,. ..,2;), a random variable which follows a multivari-
ate normal distribution with standard normal marginal distributions, i.e. each marginal
distribution is Zo * ^719,1). It follows that Z has joint density function

fz (z ) :d (z ) : - . - - * - . . - *e*p r  
1 - -  '  )

"t  
-  

en)d/\der(D))U2'- i 'p\- iz- 
L 'zJ 1

where the range of zi, for i : L,. ..,d, is -m ( z;.--cr.). Here det(D) is the determinant
of the d x d matrix X, termed the variance-covariance matrix,

l o t t

":l
I
\ oar
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with (z,j)th element corresponding to the pairwise covariance of variables Zi, and, 2,1.

Thus, as

p,; : Correlatio n( 2,. Z,\ - 
Cov(z;' zi) - --ru r '  (var(Z;)Yar(2,)) ' t '

we have

( '  "  "  n ra)

s ' - | " ' " 'P i j  "  I'-l^ 0" ;J\ Par " " L )

where p;3 is the correlation of Z; and 27. Therefore, the diagonal of D is a series of entries

of ones and the matrix is symmetric.

To illustrate the notation, we now give this joint density in the bivariate case:

f z r , z " (21 ,22 ) : ( (21 ,22 ) :  
1  (  1  )

G$: t ;+/,exr{-4f -a1tz!-2p2""+ A} '  r l '2 '1)

where -oo < (zr, zz) < m. Here p: prz: p21, wilh -l < p ( 1, is the correlation
between 21 and 22, so in terms of D,

' - / t  o \
" -  

\ ,  t  )

F- r -  t  (  t  -P \
'  - ( r - t " ) \ -P 

1)

Property l: An important special case is when p: 0, i.e. no correlation. Then

lz,,z"(zy, z2): # *o {-t t": * "3)\ 
= f ,,(",)f ,,("r),

so (fi, 22) are independent.
Property 2: The marginal density of Zt - 11719,1). This result follows from

I z,kt) : l*,- I ",.r,lr,, 
rr)d 

"r.

Property 3: The density ol Z1lZ2 : 22 is

1r7,. , ' l
@F4W 

'"P 
t-41 - l)\zt 

* Pz2)'J

so that z1lz2: zt * N(pzt, (1 - pt)) The result follows from

f  -  -  ( t .  z  \

f z,lz,=,"(zrltr) : 4i#(!.
l  221r'21

and
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Now consider the more general situation where Y : (yr, ...,Yi, a random variable
which follows a multivariate normal distribution with marginal distributions being [ -

N (t"0, 
"?) 

for i : 1, .. .,d. It follows that Y has joint density function

/Y(y) : 
6V+rE r*o {-}r" 

- p)rL tv - r)},

wi th  gq  :  - *  l  A t  <  oo  fo r  i : 1 , . . . , d .  He re  p :  (h , . . . , pa ) r  and  X  i s  t he  va r iance -

covariance matrix with (rt,j)th element corresponding to the pairwise covariance of vari-

ables )t and Yi. Thus, as

nri: Con(Yu,Yt) :
Cov({, Y3)

: oijl@ioi),
(Var(4)Var(r1))1/'?

we have

where p;7 is the correlation ofY; and Y7. To illustrate the notation we again give this joint

density in the bivariate case:

(  t  (1y, , -  u ,1 '  _ro(ar-  pt \ ( !2-  t r , \+  f?,  
- / i , ) '?) ] ,

JYty ' r  : rPx l l -211-pe1  
q r  o t  /  \  o t  / \  02  /  \  02  /  / )

with
1

c: 
21To1oil1 - p'Y

and -co < (Ayyz) < cc. Here p: pr2: p21 is the correlation between Yi and Y2. Now,

Yrl(Y":  at)  -  N(tL,r+!pfu,  -  t i ,o?(t  -  p ' ) ) .

We often denote the distribution of Y by

Y - MVNa(p, D)

where pr : (U,. .. , p;)z is the vector of mean values of Y, and D is the variance-covariance
matrix of Y. Note MVN6 denotes multivariate normal distribution of d-dimensions. When
d, : 2 the notation is often simplified to

("t
D: I

t
\ olodqd|

Y -  BVN(p,x) .
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The Probability Integral Tlansform

In studying dependence between variables, it helps to have all the variables follorving the
same marginal distribution, as then marginal and dependence properties of the statistical
models can be easily separated. However, in any problem the random variables cannot
be expected to follow the same distribution, so some transformation is required before
such an assumption can be made. In this section we give the transformation necessary to
transform a random variable, Y, with distribution function, F(y), to a random variable,
7, with distribution function G(l). The approach we use is the probability integral trans-
form, which is a standard general approach to transformation of random variables. The
transformation we use is

T  :  G- l@(Y) ) , (A .3 .1 )

where G-1 denotes the inverse of the function G. The transformed random variable ?
has distribution function G, since:

Pt{T <t} : P|{G-1(F(1,)) < 4
:  Pr{F(Y)< c(4}
: pr{y < r-,[G(r)]]
: F(F-tlG(t)]) as the distribution function of Y is -F
: G(r).

4.4 Likelihoods for Dependence Models

Here we give the likelihood function which is required in fitting the dependence models
for significant wave height and still water level. The likelihood is the probability of the
data for a given set of parameter values, regarded as a function of the parameters. As the
data are independent pairs, the likelihood is a product of the likelihood contributions for
the separate data pairs, hence we give only the likelihood contribution of a typical pair.

Throughout, we use the notation (Xt, Xr) to denote the pair of still water level and sig-
nificant wave height variables in the original space, and (Xi, X;) to denote these variables
after each variable has been transformed to follow a standard Norrnal random variable, i.e.
using equation (A.3.1) in Section A.3. We denote the distribution function of a unilariate
standard Normal random variable by O(z). i.e.

Pt(xi < z) :Pr(xi < z) - a(z)

Similarly we let O(21, e2) denote the joint distribution of bivariate Normal variables, i.e.
if (Xi, X;) follow a bivariate Normal distribution, with joint density given by equation
(A.2.1), then

Pr(Xi ! zu Xi < zz) : Q(n, zz).
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4.4.L Bivariate Normal Model

The likelihood contribution for the observation (rj, ri) is

A2d\1."r ."+ \"i##{: d@i,o)
where /(ri,ri) is the joint density function of the bivariate Normal distribution with
standard marginal distributions.

4.4.2 Bivariate Normal Threshold Model

Under the threshold model described in Section 4.2.7, we have a full model for the joint

distribution of observations having both variables above suitable thresholds, but otherwise
have an incomplete model. As a consequence) points which have one or both marginal
variable values below the respective threshold are censored at the threshold. Here we con-
sider two cases, the first where the observations are of standard Normal random variables,
i.e. observations of (Xi,Xi), with thresholds ("I,"i), and the second where (X1,X2) are
observed, these being taken to have GPD margiuals above thresholds (u1,u2).

Normal Marginals

For an observation (rj, ri), the likelihood can take one offour forms depending on whether
the two thresholds are exceeded or not:

r If zj < ui and r\ ( zj then the likelihood contribution is

o(zl, uj);

r If oj > ui and. r\ ( u| then the liketihood contribution is

}a@\,u) .
0'i

o If ri < ui and ri > ui then the likelihood contribution rs

r If ri > u\ and r) > z| then the likelihood contribution rs

d@i,"\) .
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Original Marginals with GPD Tails

Consider Xi ('i : 1,2) to be modelled by a GPD over suitable thresholds ui U : 1,2),
so that the distribution function of X is taken to be

FyJ.x;) :1 - ,\c{1 + {,(rn - uu) loo}n'/tn , for r; > u,6,

where .\; : Pr(d; > u;), and o,; ) 0. Then for ri > ui, the marginal variables are
transformed to normality through the probability integral transform (A.3.1), giving

x;:  o- ' ( r" , (&))  for  i : r ,2,

and in particular,

u i :  Q  1 (Fx , (ue ) )  f o r  i : 1 ,2 ,

represent the thresholds mapped onto the normal scale. For an observation (21,12) the

Iikelihood can take one of four forms depending on whether the two thresholds are ex-

ceeded or not:

r If 11 { u7 and. fr2 ( z2 then the likelihood contribution is

o(ul, uj);

r If 11 ) u1 and 12 ( z2 then the likelihood contribution is

)a(ri,u)) d,rI.
)r i  drt '

. If zr ( ur and 12 ) u2 then the likelihood contribution is

la(ui, r\) d,ri .
lxi dr2'

r lf 11 > ur and r,z ) u2 then the likelihood contribution is

,b@;,';)##

In the above expressions, for i : 1, 2,

H 
: 

#rr 
+ &(zr - u;) I o,jl'-r/e';
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4.4.3 Mixture of Bivariate Normals

Here the variables are taken to be modelled by standard Normal marginal random vari-
ables, but with dependence structure which arises from the mixture of two bivariate
normal random variables. For the construction, we take T - (71,72) to be a mixture
of two bivariate ncrmal random variables. We first construct the joint distribution func-
tion of T and then, via marginal transformation of T, obtain the joint distribution of
T- : ("i,?lj), where the marginal distributions are standard normal random variables.

The vector random variable T is defined by:

T :eZ t+ (7 -e )22

Le.

Tj  :  eZt i  + ( I  -  e)221 fot  j  :1,2

where

1. e :0 with probability 7 - pv, and e : l with probability py;

2. 21 * BVN(prr, D1) where Ft: }try, lt tz) and.

, , - (  o? ,  P to ton
"' 

\ Ptottotz o1z

3. Zz - BVN(prr, D2) where Ft: Qrn, tL,zz) and

- ( 03, pzoztotz \
"': 

\ Prorrorz oEz )

It follows that the joint density function, ft, of T is

)

fr(t) : o, tr'rt) + (1 - Pv) f7"ft)

where /2, and fz2 arc the joint densities of 21 and 22 respectively.

We now derive the marginal distribution ol T1 (j : 1, 2). As

p,{4 s t} : Fr,Q) : era (t--Jti) * tt - trto (t---'.z.) ,'  
\ oti / \ ozt )

it follows that

r; : a-r (Frj(]:j)) for j : 1, 2

are standard normal random variables.
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For likelihood calculations we now give the joint density of T- - (Ti,T)):

/'. ft') : {lz,(t1(ti),t2fti))p + fz,(tt(tj), t,(t;))(1 - oll , ,, 9jlil9(t?] ,rr,,
J 7'1 \t/ | \t/ | ) ) J '112 

\12 \r'2 ) )

where t3(i j) : IE'(o({)).
In practice this statistical model is over-parametrised for statistical purposes. To avoid

parameter redundancv we take

!4  =  0 ,on  =  1  and  on  :7 .
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