MEASUREMENTS OF WAVE DIRECTIONAL SPECTRA

AT SEA - A wave direction processor

M Towers BA

Cottezasn L rtice

Report No. SR 16
January 1985

Registered Office: Hydraulics Research Limited,
Wallingford, Oxfordshirc OX10 8BA.
Telephone: 0491 35381, Telex: 848552

Crown Copyright 1985

This report describes work carried:out under
Contract DGR/465/32, funded by the‘Department
of Transport from April 1982 to March 1984 and
thereafter by the Department of the
Environuent. Any opinons expressed In this
report are not necessarily those of the funding
Departments. The DoE (ES5PU) nominated officer
was Mr A J M Harrison. The work was carried
out by Mr M Towers in the Technical Services
Department of Hydraulics Research, Wallingford,
under the management of Dr A J Brewer. This
report {s published with the permission of the
Department of the Environment.

CONTENTS

Bage
1 Introduction 1
2 Design considerations 3
2.1 General processing requirements 3
2.2 Cholce of programming language 4
3 Hardware 5
4. Development facilities 7
4.1 BBC micro 7
4.2 Interface between BBC micro
and TMS59995 processor board 7
4.3 Text editor 7
4.4 ASMY9995 8
4.5 BLINK 8
4.6 WDL 8
4.7 WDD B
4.8 WDPL : 9
4,9 EPROY programmer _ ; 9
5. Example showing use-of develbpment
system 10
5.1 Edit source file 10
5.2 Assemble source file 10
5.3 Object code linkage 11
5.4 Loading the code 11
5.5 Testing the code 11
5.6 Putting the code in EPRCOM 12
6. Comments on development systen 13
7 Software 14
8. Test results 16
9. The data acquisition processor 18
10. Interfacing the two processors 19
11. Conclusions 22
12. Acknowledgements 23
13. References 24
APPENDIX A

Specification of field processor for proposed velocity/pressure
gauge.

ABSTRACT

The development of the microprocessor system
described in this report was prompted by an
evaluation made by Hydraulics Research of methods
for the measurement of wave directional spectra at
sea. This earlier study suggested the need for a
low—powered processing unit suitable for
incorporation in a compact field gauge recording
horizontal water motions and depth fluctuations at
the sea-bed. The operational requirement is that,
given the signals from the velocity and pressure
sensors, the microprocessor calculates the
necessary parameters for describing the directional
properties of the waves. Storage of the
descriptive parameters instead of the raw velocity
and pressure data drastically reduces the quantity
of information that has to be logged and hence
offers prospect for gauge deployments of several
months duration.

The present report outlines the reasons for basing
the development on the 16-bit Texas TMS 9995
microprocessor; the circuit and scoftware design;
and initial testing of the processing routine using
simulated signal inputs. The present stage 1s only
one in the development of an overall recording
system that will find application whenever data on
wave directions have to be collected, provided that
water depths are not too great to prevent the
influence of surface waves penetrating to a
measurable degree at the sea—bed. It follows that
it will be particularly valuable for studies of
bottom water procesges such as sediment transport
under waves or for problems associated with
subnarine pipelines and platforms. The choice of
sultable velocity and pressure sensors together
with the design of low-powered driving circuits,
data quality monitoring, general system control and
the recording of the processed data will be the
subjects of future work on the overall project.

1.

INTRODUCTION

A review (Ref.l) undertaken by Hydraulics Research
in 1983 into methods for measuring wave directional
spectra at sea recommended the development of a
self-contained sea—bed recording gauge. The
requirement is for a compact device that can bhe
deployed simply from a small fishing vessel or
launch without any need for elaborate mooring pro—
vision. The small wave orbital bucy made by the
American Company Endeco Inc was a possible candi-
date to meet this need. However in a field trial
of that device, fully reported in Ref.l, the Endeco
buoy failed to produce sensible directional data.
On the same trial a make-shift velocity and pres-—
sure gauge lald on the sea-bed yielded consistently
credible records. This promising result justified
the injection of further funds into the alternative
of a sea-bed gauge. The aim was to extend the time
between servicing such a gauge to three months or
more.

The principle of extracting wave directional spec-
tra from simultaneously measured horizontal water
motions and water depth at the sea-bed has been
employed elsewhere. Aubrey (Ref.2) has evaluated
the performance of a sea—bed gauge incorporating a
two—component electromagnetic current meter and
pressure sensor. In this instance each record
comprised 2048 scans at one second intervals with
three readings per scan belng written to cassette
tape with unusually high density of data packing.
In common with other deployments of similar gauges
the logged data is returned to a shore base for
fast fourler transform (FFT) analysis to derive the
various descriptive parameters of the sea.

The large quantities of data produced when the
velocity and depth signals are sampled and stored
directly limits severely the time such a device can
be left between tape changes. Even with the data
compaction obtainable on the cassette logger used
by Aubrey the deployment time was restricted to
about six weeks with 34 minute records every six
hours, a total of 180 records. The objective of
the present project is to reduce the data storage
demand by performing the spectral analysis in situ
and recording only the results. These are consid-
erably more compact than the raw data. The general
specification for the required gauge was glven as
an appendix to Ref.l and for convenience it is
repeated in Appendix A. 1In brief the minimum
requirement is to achieve 34-minute records every
three hours throughout three months, or a total of
720 records.:

The flrst stage of the project is the developwment
of a microprocessor-based circuit capable of
undertaking data analysis within the sea-bed
package. Software for executing the numerical data
analysis already exists in the form of a main-frame
Fortran program but needs to be adapted so that the
computation is made on a suitable microprocessor of
low power consumption. It has been decided to
split the functions of data acquisition and data
processing between two microprocessor subsystems.
One will be concerned with handling the various
peripherals such as controlling the operation of
the transducers and recording of results together
with system and data checking. The second will be
dedicated to the numerical processing function.

The present report is primarily concerned with the
development of the latter although some leads are
given for the implementation of the data
acquisition subsystem which will be the subject of
future work.

2.

2.1 .

DESIGN
CONSIDERATIONS

The location of the logger on the sea-bed means
that it must carry 1its own power supply and low
power consumption becomes an important design cri-
terion. However the numerical processor need only
be turned on when there is data to be analysed, so
its working current consumption is not too impor-
tant, if it is only active for a small fraction of
the time. This allows greater freedom in its
design than if a low working power consumption was
vital. Another important consideration is how the
software will be developed; this is likely to
present the greatest cost factor in the design of
the system. Finally the processing requirements
themselves will place some restrictions on both the
hardware and software which can be considered for
the job.

General processing

requirements

The data to be processed are three channels (two
veloclty components and one pressure) of 4096
values, each value occupying perhaps twelve bits.
These values are probably most easily handled as
sixteen-bit integers, which would imply a storage
requirement of 24 Kbytes. The processing is likely
to be conceptually simpler if floating point
representation is adopted for calculations, thus
effectively eliminating the concern about overflow
and loss of precision which would be a concomitant
of selection of a fixed point representation. This
sugpests that four bytes per value would be
optimal, using a standard floating peoint format.
During the calculations the largest structure will
be the array of 2048 complex numbers on which the
Fourier Transform is performed (and each channel
must be so treated). This requires 16 Kbytes.
Certain data structures are used by the
transformation process (to increase speed); these
are an array of complex roots of 1 (8 Kbytes) and
an array of bit-reversed integers (1 Kbyte). It
can be seen that memory requirements are fairly
large and data overlaying should be given
considerable attention: 1t 1s particularly
desirable that the total memory requirement,
including code, should not exceed 64 Kbytes, which
is the largest quantity small processors can
comfortably handle. It was decided that, by

2.2

Cholce of
programming
language

by transforming each channel separately and then
compressing the resulting array (16K) back into the
array in which the data was supplied (8K), it could
be arranged that (a) all three channels could be
loaded at the same time, (b) no significant loss of
precision would ocecur, and (c) total data memory
requirement would be less than 56K, leaving at
least 8K for code.

The most obvious approach to developing a system of
this complexity is to write the software in a high
level language on an existing computer, where it
may be tested and debugged, then recompile it for
the actual application processor. It 1s then
desirable that the end product be designed so that
on-line debugging may be performed, with the code
actually running in its intended environment (the
environment in the end product is never the same as
that in the development machine). This approach
has not been used in this project; the software
has been written in assembly code and can only be
tested in its final environment. The reasomns, not
particularly in order of importance, are:

(a) absence of any high level language
development system;

(b} speed, the faster the operations can be
performed the shorter the time for which
the processor must be activated, hence
lower powver;

(c) ease of communication, using a high level
language makes coding the processing
routines much easier, but interfacing to it
may be a problem;

(d) acqualntance with the hardware and
assembler;

(e) the only other available choices BCPL or,
perhaps, BASIC, were rejected on the
grounds that they would both have to be run
interpretatively which would mean low speed
and also the space taken by the Interpreter
would probably be unacceptable. Not only
this but the representations of numbers in
BBC BASIC (the only type readily supported)
are rather large, four bytes for an integer
and five for a floating point number, again
a space problem. 4

3-

HARDWARE

The disadvantages of the chosen approach are that
all the arithmetic routines (addition,
multiplication, trig. functions etc) must be
written, the resulting programs are not easy to
read, and debugging is generally difficult. The
unreadability of programs 1s an important failing
and the approach adopted to alleviate this problem
is to separate the program Into manageably small,
logically distinct modules. High level
descriptions of each module must be written and
details of the mapping to assembly code must be
provided. This also aids debugging.

Given the absence of a high level language
development system and the consequent need to write
software in assembly language a major factor in the
choice of hardware configuration was the complexity
of the instruction set of the processor. The ease
of design of a comprehensive on-line debugging tool
was also important. The complicated processes
needed to manipulate 16 bit quantities in 8-bit
microprocessors led to their rejection; the
software development would have been complex and
the lower power consumption which would have
resulted from using CMOS circuitry would have been
at least partially offset by the increased
computation time. No 16-bit microprocessors are
currently readily available in CMOS so standard
NMOS/LSTTL circuitry is used. The choice of
TMS9995 microprocessor was made for the following
reasons:

(a) it is the simplest existing 16-bit
pracessor, allowing casy development of
software;

(b) it needs fewer support chips than other
microprocessors;

(c) it allows fairly straightforward development

of the hardware for adequate on-line
debugging facilites;

(d) a design for a suitable processing board was
available.

The hardware is essentially a 16-bit microprocessor
with 64 Xbytes of dynamic RAM, of which either 8K
or 16K may be replaced by EPROM. All of this
memory is accessible by an external device, which
also handles the processor's control lines (reset,
interrupts etc.). This arrangement makes design of
a debugging system quite simple. This interface
may also be used by the data acquistion part of the
logging system to activate and communicate with
this numerical processor.

The 16 bit processor will normally be off. When a
set of data is available, the numerical processor
may be activated. The data will then be
transferred to it and processing can be started.
When analysis of the data is finished the results
must be sent to a tape (or other storage medium).
The wmedium will be another peripheral of the data
acquisition processor, so the results will be
transferred back to it. This leaves the numeric
processor design almost totally independent of the
rest of the system so it can be developed without
worrying unduly about the nature of the data
collection and storage processes.

4.2

4.3

DEVELOPMENT
FACILITIES

BBC micro

The software has been developed on a BBC micro,
using the TMS59995 processor board itself for
testing and debugging, under the control of an
adaptable BBC program Although this program is
not very comprehensive in the facilities it offers
it is written in BASIC and can be easily modificd.
The itemg used in the development process will be
listed together with descriptions of their
functions within this context.

Used for the production of application code,
running debugging aids, controlling the TMS9995
processor board, and writing documentation. It
requires at least one 40-track disk drive and the
BCPL package.

Interface between

BBC micro and
TMS59995 processor

board

Text editor

This interface converts the signals from the BBC's
User Port to a form sultable for driving the
processor board.

The text editcr 1s used for (a) entry and
modification of applications code. For this
purpose the "ED” editor supplied with the BCPL
package has been used. (b} Entry and modification
of development and debugging tools. Those written
in BASIC have just used the standard built in
commands; those written in BCPL have used ED. {¢)
Documentation has used Wordwise. Wordwise and ED
could each have performed all the editing tasks but
since they are both available the choice has been

governed by their relative merits in the various
situations.

ol

4‘5

)

4o

ASM9995

BLINK

WDL

This is the TMS9995 assembler, developed in BCPL on
the BBC micro. It produces relocatable object code
from a source file of assembly code text, and is
invoked by a command of the form:

ASM9995 (source file} <(object file)(/L) (MNOLIST)

where (.. file) 1s a BCPL system compatible
filename (e.g. A.WD2 oxr /F.0.WD6) and (..) denotes
an optional parameter, /L for a listing to the
printer and NOLIST to suppress listing, except of
errors. See the relevant file (TMS59995 Assembler)
for further details, including source code.

This links relocatable object code files such as
are created by ASM9995 to produce larger
relocatable object files. This program has also
been written in BCPL on the BBC micro (there is a
file containing its description and source code),

This loads a relocatable object file to the TMS9995
processor board. It has been written in BCPL and
6502 assembler on the BBC micro specifically for
this project. It can handle segment names "CODE",
"DATA", RESET” and "FPP". The addresses to which
the segments are loaded are set in module WDL2
(source in B.WDL2), procedure FINDSTART. The
component files are (a) B.LD@, the control
directing module. (c) B.WDL1l, generally overseeing
the process. (d) B.WDL2, containing varilous
auxiliary routines. (e) LHDR, the header file.

It is run by issuing the command WDL. Tt will then
ask whether a display of global addresses is
required and prompt for the file to be loaded. It
leaves the processor board in a held state, having
previously issued a reset command. If a listing of
the global addresses to the printer is required,
press control-B before running the program.

This is the debugging and testing program, written
in BASIC. Parts of 1t are dependent on the code
loaded to the procesor board; it uses various
addresses in the code (such as that of N, the
runber of points In the transform), and the
breakpoint function will only work if the
appropriate code fragments are present (these
currently appear in module WD@). Tt is menu driven
so operation is quite simple. At present it

programmer

includes code for the supply of a mixture
of up to 10 sinewaves as data to the
processor; Che generation and loading of
this data can be rather a lengthy process
(nearly five minutes for one sinewave with
N=2048, i.e. 4096 points). WNote that BASIC
must be entered before this program can be
run {(all others run in the BCPL system}.

This a a variation of WDLE for loading the
code to an 8K file, rather than the
processor board, so that it may be written
to an EPROM. It runs similarly, except
that it asks for the name of an output
file. 1Its constituent modules are B.WDPLO,
L.WDPL2 and LPHDR.

To program an EPROM using the output file
from WDPL, when the code has been
finalised. This EPROM will occupy the same
space in the processor as the code did
during debugging and should run
identically. A couple of links on the
processor board must be changed to
incorporate the EPROM within the memory
map. The programmer used is the Watford
Electronics model, which is contreolled by a
BBC micro (in this case not the same one as
used for development work).

5.2

EXAMPLE SHOWING

USE OF DEVELOPMENT

SYSTEM

Edit source file

Assemble source
file

By way of illustration of the interrelationship of
the component parts of the development system, the
steps involved in modifying a source file (e.g.
A.WD4) and testing the resulting code will be
outlined.

Must be in BCPL system to use ED. Enter TMS9995
code disk into appropriate drive.

ED A.WD4

The alteration may now be made (see BCPL manual for
operation of ED editor) and on exit the new file
will be in store. Save it to disk!

SAVE A.WD4

Must be in BCPL system. Use TMS9995 code disk
agaln.

ASM9995 A.WD4 O.4WD4 NOLIST

This assembles the file to store file 0.WD4 (again
this should be saved!). The NOLIST option 1s used
so that errors will be clearly displayed. If a
listing is required a further pass of the assembler
is recommended, to avoid producing pages of listing
when there are still errors in the source.

ASMS995 A.WD4 L
A

This time the null file is used for output since we
have already obtained the object file.

Notes

(a) In addition to saving the object file on
the present disk it should be saved on the
"object code linkage" disk.

(b) It may be that an object file may not fit

into store whilst its source file and the
assembler are resident. In this case it
must be assembled directly to disk. A_WD6
has this attribute,

ASM9995 A.WD6 /F.0.WD6 NOLIST

10.

5.3

5.4

5.5

Object code
linkage

Loading the
code

Testing the code

Must be in BCPL system. Use “object code linkage”
disk.

EX LNK

This saves typing the complete list of object files
every time the linkage is performed. About half
way through a request for a list of names is issued
{symbols for suppression). If the names of any
globals are entered here they will not be passed to
the output file; this feature is unlikely to be
useful in this application, just press “return”.
The name of the output file will then be requested.
This has, to date, been 0.WD, but note that its
size is such that i1t is not possible to create it
in store so "/fF.0.WD" must be typed. This file may
be transferred to the "BBC end” disk for loading.

Must be in BCPL system. Use "BBC end” disk.

WDL

A question will be displayed, "List global
addresses?”. For debugging purposes it is very
helpful if the machine addresses of those items
declared as global are known. An affirmative
answer to this question will supply this list.

Note that 1f a listing to the printer was required,
control-B should have been pressed before running
this program. Press "break”™ and start again. The
next request Is for the object file name, and when
this has been supplied the program will rum to
completion, leaving the processor in a "held”
state. For the loading to be carried out
successfully the BBC micro should be connected to
the processor board via the interface and the power
supply to the latter two units should be active.

First enter BASIC. Use "BBC end” disk.
CH."WDD"

The steps in a simple test run will now be listed.

11.

5.6

Putting the code
in EPROM

(a) Set the number of data polnts (2N), to e.g.
1024.

(b) Load the data. A request for frequency,
amplitude and direction for each of up to 10
components is issued. If a null response
(just "return”) is given to a frequency
request it will terminate the list. A 1024
peint single sinewave takes about a minute
to load.

(c) Run the program. "Normal completion™ will
appear if it runs to completion. TIf this
does not happen then the breakpoint facility
may be used, in conjunction with that for
memory access, to trace the problem (which,
if only one modification has been made, is
likely to be closely associated with that
change).

(d) Display the results. This routine displays
(optionally to the printer) the two
estimates of spectral density and,
calculated from ALPHAl, the wave directions
and spreads. If these do not mcet with
expectations, the algorithms and code must
be inspected, perhaps using breakpoints to
investigate unexpected code behavicur.

The final locatlion of the code developed in this
project 1s an EPROM, which may be plugged into the
appropriate socket on the processor board, so that
it will run immediately the processor is activated.
The EPROM programmer requires an BK flle matching
the proposed contents of the EPROM (a 2764}, so a
program has been written (WDPL, on disk "EPROM
loader™) to convert the object file to this form.
It is very similar in function and design to WDL
(not surprisingly since the only functional
difference is the destination of the output). The
disk containing the output file is then transferred
to the machine driving the EPROM programmer and the
fairly siwmple menu driven software supplied with
the programmer is used to program the EPROM (see
EPROM programmer manual for details).

12.

6. COMMENTS ON

DEVELOPMENT

SYSTEM
1.
2.
3.
4,

When using an EPROM for program storage, WDD
will not be able to change the number of
points, so if fewer than 4096 samples are
wanted a new EPROM must be prepared. The
program (WDO) might be modified to allow new
values to be set, perhaps by stopping after
initialisation.

If it is desired that the data acquisition
processar sets any of the constants listed
in WDO then WDO will have to be modified so
that this value is not initialised
internally. These values will in any case
have to be modified to suit the actual
experimental conditions. No changes to
other modules should be necessary in this
context.

Any constants that do have to be sent to the
numeric processor by the controller might
best be sent in the form In which they arise
in that processor, leaving conversion to
floating point to the numeric processor.

The extra code, presumably placed in WDO,
would not be extenslve (an integer to
floating point conversion routine is already
available as S.FLT, in module MISC of the
floating poiat package).

For maximum speed the registers should be
located in intermal RAM, by changing the
contents of absolute address 0 (beginning of
segment RESET)} from F100 to FO0O, either by
modifying WDO or by changing this value when
transferring the code to EPROM.

13.

7.

SOFTHARE

Section WDl performs d.c. blocking (by subtracting
the mean from all data values) and Blackman
windowing on 2N integer data values, leaving the
result in flcating point format in the array CDAT.
Section WD2 sets up arrays IR and FI using the FFT
process. The first stage of the Fourier Transform
is in WD3 (transforms N complex points). The
second stage, to construct from the result of WD3
the transform of 2N real points, is in WD4. The
data at this stage occupies 16K (in CDAT) and if it
were to be retained in this form the space taken by
the three channels would be 48K. This is too much:
[CODE (8K} + FI (8K) + IR (1K) -+ Miscellaneous data
+ 48K}= »64K], and this Is with much data over-—
laying. There are a number of possible solutions
to this problem, the one used having the merit of
leaving the algorithm essentially untouched; /it
involves compressing the floating point representa-
tion to an integer representation (not twos ccmple-
ment) which occupies half as much space,/allowing
the array to be placed in the same space in which
the data samples were first supplied. [This .
compression Is performed by CMPRS in WD5./ Thesc Ty ey

Tha v oA

compressed arrays are called A4, BB and CC. The ’F“}wu} vl
memory allocation may now be sketched. kji%;ufﬂ b Ho.
0000-1FFF : code ' hed oo B aecane

2000-3FFF : FI “F””j“ﬁ -
400D0-SFFF : DAT (pressure) / AA by
6000-7FFF : DAT (velocity 1) / BB
8000-9FFF : DAT (velocity 2) / CC
AOOO-DFFF : CDAT

A0DO-? : §33

A80Q-7 : 544

B0O0O-? : ALPHAl

B800-7 : ALPHAZ2

EQQ0-E3FF : IR

F200- FFFO : swmall bits of data, segment

DATA

The steps outlined above are performed for each of
the three channels, CDAT being common workspace.

The final stages are performed by code in WD6 using
functions WAVEND (wavenumber calculation) and XPND
(for conversion from the Iinteger format in AA, BR
and CC to floating point format) from WD5S and also
the sheort procedures in WD7. WD7 really owes Its
existence to the limitations of the ED editer on
the BBC micro: the "Fx” procedures are closely
associated with the code in WD& and would have been
included in WD6 if the editor could cope with such
a large file that would then have resulted.

14,

The purpose of this last section is to reduce the
transformed data, in AA, BB and CC to 0.0l Hz
frequency bands, using auto— and cross—spectra to
produce energy density spectra and the quantities
“"alpha 1" and "alpha 1" described in Ref.l.

The sequencing of operations, initialisation,
provision of constants, etc. is handied by WDOD. 1In
its basic form it is fairly passive, requiring the
data to be present before it runs, and leaving the
output arrays waiting to be read. Exceptions,
completion etc. are signalled by interrupting the
host having left clues to the reason for the prod
lying around in memory. This is fine for a host
which implements the full features of the interface
to the host in the final logging application, if
only to reduce the number of wires. Extra
communication code would then be necessary. This
will be considered when the regquirements of the
host processor itself is studied.

WLLLnu
oy

15.

8.

TEST RESULTS

Sinewaves have been generated using the routine in
WDD, -which allows choice of frequency, amplitude
and direction for a set of sinewaves, the sum being
entered into the processor board data arrays.

The time taken for the complete processing
operation is just under two minutes. The following
breakdown giving approximate times shows where the
bulk of the workload lies.

1) preliminaries, Iincluding generation of Fl1 and
IR; 2 seconds;

2) PREPROC: 52 seconds. This may be further
broken down into:

(a) BLW: 14 seconds. includes integer to

floating point conversion and Blackman
windowing;

(b) FFT: 32 seconds. Complex Fast Fourier
Transform. The time taken by SHUFFLE is
less than 1 second.

(c) RECON: 8 seconds. Conversion of
transform coefficients for real data;

(d) CMRPS: 1 second. Conversion of
floating point transform coefficients to
scaled {ntegers.

This group of procedures is performed three
times, once for each channel.

3) FINALE: &8 seconds. Auto- and cross—spectra
and compression of the data into wider
frequency bands, followed by calculation of
output arrays.

The above totals nearly 3 minutes but this applies
to the tests being made with registers In extermal
RAM. Although during testing and debugging the TMS
9996 register space is located in external RAM in
order to be accessed by the BRC micro, a consider-
able increase in speed is obtainable with the
reglsters in internal RAM as will be the case with
the program fully operational. The corresponding
times are:

16.

1, Preliminaries: 1 second
2. PREPROC: 36 seconds

(a) BLW; 8 seconds
{b) FFT: 21 seconds
{c) RECON: 5 seconds
() CMPRS: 1 second

3. FINALE: 4 seconds

Clearly the FFT is the most tlime consuming proce-—
dure, taking more than half the rtotal time. low-
ever, further tests, involving repeated break-in's
suggest rhat more than two thirds of the time is
spent performing floating point addition/ subtrac-
tion (alone nearly half the time) and multiplica-
tion, routines which are used by most parts of the
program, especially FFT. The routines for complex
addition/subtraction and multiplication (these call
the appropriate floating point routines) also
occurred fairly frequently, limiting all other
program activities to less than 107 of the time.
Obviously any improvements would have to lie in the
elementary arithmetic routinés. Additional hard-
ware, in the form of a floating point processor,
might be considered but is presently impractical,
there being nothing suitable available. Alterna-
tively a fixed point representation could be
adopted. This would be possible to implement but
is not recommended for several reasons:

{a) very considerable modifications to the
software would be necessary;

{(b) the wide range of values occurring at
different stages of computation might mean
that different fixed polnt representations
would be necessary to retaln precision,
resulting in the need for renormalisation
procedures;

{(c} the possible renormalisation and range checks
would obscure the program flow, making it
difficult to follow and hence error prone.
However, if an increase of speed prove vital,
such modifications might halve the processing
time although the necessary checks might
reduce the gain.

In practice the overall power consumption of the
numeric processor is much less than the expected
powver demand of the transducers. Operational
current is about 0.6A, which for two minutes per
record and 720 records amounts to 14.4Ah. A supply
voltage to the on-board regulator of 7 to 8V is
recommended.

17.

9.

THE DATA ACQUISITION

PROCESSOR

The companion wmicroprocessor dealing with data
acquisition must control the transducers, the
storage device for the results of the spectral
analysis, and the interface to the numeric
processor. In addition 1t will have to perform
data quality checks, though 1if the processing
involved in this activity becomes substantial
consideration should be given to transfering this
function to the numeric processor.

Regard should be taken of the followiong points when
the project enters onto the development of the data
acquisition subsystem:

1. The NSCB00 or possibly 65C02 are likely to
be suitable processors. Assemblers are
available for both these devices, though
that for the NSC800 1s perhaps more
convenient, being close in implementation to
that for the TMS9995, in particular allowing
use of the same linker and very nearly the
same loader.

2. In the interests of low total power
consumption it is desirable to:

a) use CMOS circultry;
b) employ a low clock speed;
c) deactivate as much circuitry as

possible when it is not in use.
However, with the processor off
between records it will be necessary
to have some memory kept active if
any information has to be retained
from one record to the next;

d) possibly employ a processor
power-save mode between samples,
which are, in computer terms, quite
well separated (% second).

3. The processor should be completely reset for
every record, to protect against crashes.

18.

10.

INTERFACING THE
TWO PROCESSORS

When the complete logging device is assembled, the
unit performing data acquisition and storage must
take over the contrel of the numeric processor
board, a task which had hitherto been in the domain
of the development system. The steps it will have
to go through, for each set of data are:

1. Collect 2N samples from each of the three
channels.

2. Activate the numeric processor.

3. Reset and "hold"” it.

4. Transfer the samples to their allotted
locations in the numeric processor's
memory.

5. Start the numeric processor ("unhold”™ it).

6. Wait for completion to be signalled.

7. Read back the results from the numeric

processor's memory.
8. Deactivate the numeric processor.

9. Save the results to tape, or whatever other
medium is selected for storage of results.

The above only gives an outline of its duties;
housekeeping information must be saved with the
table of results, data errors must be handled, and
appropriate action must be taken if the numeric
processor signals an error.

The simplest approach to the interface would be to
leave 1t as it is, requiring the new controlling
processor to supply similar signals and access
sequences to those used by the development system.
The hardware for this approach would not be exten-
sive; a parallel interface chip could provide all
the data and control lines, perhaps less than 16
being necessary. No additional software for the
numeric processor board would be required and there
is every prospect that only simple software would
be needed for the controller. It is recoumended
that this straightforward approach is adopted.
However, if unforeseen complications arise a
possible alternative path is outlined below.

19.

In the simple method the controller must, 1n addi-
tion to supplying the data to be transferred be-
tweer memory spaces, supply the relevant address in
the numeric processaor for each byte. Now, it is
desirable that (for power economy) the numeric pro-
cessor be active for as short a period as possible,
so if the data transfer process occuples a signifi-
cant fraction of the total active time it would be
beneficial to attempt to reduce 1t. It must be
sald that this does not seem likely but if the con-
trolling processor is running very slowly (to mini-
mise power consumption) it might happen. Thus it
could help if the task of address handling were
removed from the controlier, leaving it with only
data bytes to handle. This would require inter-
action with software in the numeric processor and a
communication protocol. This might work as
foliows:

1. Activate, reset and run numeric processor,
which will wait for a command from the
controller.

2. Send a (serles of) byte(s) describing
operation required (read or write)}, length
of bloek, and start address.

3. Read or write said number of bytes.

The hardware might be arranged such that the con-
troller only has access to one byte in the numeric
processor memory. Hardware must be present to

ad just the numeric processor interface contreol
lines (since software would be slow, defeating the
object of the exercise); here "hold" must be acti-
vated and, possibly, READY awaited for each byte
transfer, since the numeric processor is not con-
tinuously held as it was in the simple interfacing
method. In additicn a signal must be sent to the
numeric processor, presumably in the form of an
interrupt, to indicate that the transfer has occur-
red. The relative speeds of the processors (which
is likely to be great if this method is used) may
mean that no handshake signal is needed by the
software in the controller (carrying on at full
speed secure in the knowledge that all necessary
action will have been taken by the numeric proces-
sor before the slow process gets round to the next
byte). The interactions between the processors may
be so static that the communication protocol can be
quite trivial, perhaps just numbered interactions.

20.

The controller software for this method may well be
even simpler than in the first method (it must run
faster). However the price paid is extra software
in the numeric processor which must now handle the
location of data within its memory space and the
loss of generality of the interface.

21.

11.

CONCLUSIONS

A dedicated processor board using the Texas TMS
9995 microprocessor has been developed and a
printed circuit has been produced. The circuit has
been superficially tested using a simulation method
to prove the principle spectral analysis and
direction extraction functions. The design of the
development tools, the reasoning exerclsed over the
choice of devices, and the software have been
described. The detalled software design and the
listings are not included with this report, as the
resulting documentation 1s far too bulky. These
together with the microprocessor subsystem and
associated circult diagrams are held at Hydraulics
Research Ltd, Wallingford.

The next step in the development program will be
the selection of suitable transducers paying due
regard to the need for low power consuming devices.
The acquisition of transducers and the design of
power supply driving cirucits are expected to be
undertaken in the coming year with funding by The
Department of the Environment. Then the project
willl enter its final phase with the development of
the data acquisition microprocessor and the
integration of the various subsystems in a
submersible housing. The project 1s expected to
run for another two years.

22.

12. ACKNOWLEDGEMENTS
This work was carried out by Mr M Towers under the

supervision of Mr I E Shepherd in the Technical
Services Department headed by Dr A J Brewer.

23.

13.

REFERERCES

l.

M J CRICKMORE and R W P MAY. Evaluation of
a .wave orbital buoy for measuring
directional spectra at sea. Hydraullcs
Research Report IT 256, 1983.

D G AUBREY. Field evaluation of Sea Data
directional wave gauge (model 635-9). Woods

Hole Oceanographic Institution Tech.Report
WHO1-81-2B, 1981.

24.

APPENDIX A
Specification of Field

Processor for proposed
Velocity/Pressure Gauge

Input

The objective is to develop a battery-operated, low
power field microprocessor to compute directional
wave spectra within a self-contained velocity/
pressure gauge. Its functions are to include:

1. the control cof individual sensor operation to
permit a repeating sequence of sensor power
on, record start, record finish/power off,
and rest period of selected duration (e.g.

1, 3 or 6 hours);

2. the acceptance in the recording phase of
continucus signals of pressure and of two
velocity components, together with a single
reading per record of magnetic heading. Data
quality checks are to be made on the iaput
signals;

3. the computation by FFT techniques of the
ditectional spectrum of each wave record and
making the spectral data available for
digital recording in a suitable medium for
subsequent recovery.

The sensors that are to make up the front end of
the velocity/pressure gauge have not been decided
finally but present expectations are that they will
comprise:

(a) 100mm diameter Colnbrook electromagnetic
current meter

{(b) Marinex flux gate compass

(c) Paroscientific Digiquartz pressure
transducer.

The outputs of (a) and (b) are analogue whereas (c¢)
is digital. The target reading resolutions are

10 mms~) over a horizontal velocity range of
iBms'l; one degree; and 1 millibar over a

range ! to 4 bar (i.e. to 30m water depth).

Signal checks

Operation

Output

Suspect readings are to be identified in the
following classes:

(a) zeroes

(b) out—of-scale

(c) excess gradient between successive
readings

(1) persistent no change in reading

The standard operating sequence will be to receord
for about 34 minutes every 3 hours although 1 and 6
hours intervals are desirable options. Spectral
analysis based on 4096 samples (i.e. 2Hz sampling)
is preferred but could be relaxed to 2048 (1 Hz
sampling) if considerable design advantage is
obtained. Unattended operation of at least 3
monthe is desirable {.e. 700 to 750 individual
records.

Spectral analysis is to be based on 0.0lHz
frequency bands covering the range 0.04 to 0.3Hz.

Values for each 0.01Hz frequency band specifying
energy density to the nearest 0.01m25, mean
direction and effective spread to the nearest
degree are to be available for digital recording or
storage.

Each record output i1s also to centain infermation
on data quality checks and general housekeeping
e.g. the number and class of suspect and inserted
readings on each of the three raw data channels;
power supply voltage; real or elapsed time.

