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ABSTRACT: Artificial neural networks have been used successfully for generating predictions of wave over-
topping volumes, which are required to appropriately design coastal structures as well as support associated 
flood risk analyses. It is particularly important to assess the uncertainty associated with such predictions, given 
the complexity of the modelling problem and the difficulty in obtaining accurate measurements of the large 
number of variables needed to estimate wave overtopping. The bootstrapping method previously used to esti-
mate the uncertainty associated with ANN overtopping predictions does not, however, fully capture the total 
prediction variance. In this paper, Bayesian ANN methods are used to improve the reliability and robustness of 
wave overtopping predictions and to provide accurate estimates of the associated prediction uncertainty.

1 INTRODUCTION AND BACKGROUND

Climate change and rising sea levels are increasing 
flood risks in coastal areas. In order to appropriately 
assess and protect against such risks, reliable predic-
tions of wave overtopping volumes at coastal struc-
tures are required. However, the complexity of the 
physical processes involved and the highly nonlinear 
dependence between the wave-structure character-
istics makes the development of robust and reliable 
overtopping prediction models a nontrivial problem, 
with many of the models traditionally used for this 
purpose being applicable only over a restricted range. 
Moreover, the accuracy of overtopping predictions is 
often further hindered by the difficulty in obtaining 
accurate measurements of the large number of vari-
ables required. As such, it is of utmost importance 
to characterise the uncertainty associated with over-
topping predictions, as suppressing this information 
can create a false sense of security in the predictions 
generated. As a consequence, coastal structures may 
be inappropriately designed and maintained; in turn, 
resulting in dangerous conditions in cases of storm 
surges, wave attack and flooding.

In the attempt to address this problem, one of the 
main objectives of the European CLASH project 
(EVK3-CT-2001-00058) was to develop a generic 
method for estimating wave overtopping volumes and 
their associated uncertainty (De Rouck & Geeraerts, 
2005; Van Gent et al. 2005). Wave overtopping data 
sets from research institutes and universities around 
the world were collated, resulting in a database con-
taining more than 10,000 overtopping measurements 

(henceforth, referred to as the CLASH database) 
on which to base the model. An artificial neural 
network (ANN) was chosen as the generic predic-
tion tool, as these models are particularly suited to 
modelling complex and nonlinear problems when 
available data are abundant. To measure the reli-
ability of the overtopping predictions, a bootstrap-
ping procedure was applied, whereby 500 resamples 
of the original CLASH dataset were used to train 
(calibrate) the ANN model to provide an ensemble 
of estimated mean overtopping discharge rates and 
associated confidence limits.

There are, however, a number of limitations 
associated with bootstrapping procedures, which 
make them less than ideal for quantifying the uncer-
tainty associated with ANN predictions. Firstly, 
such procedures only capture one aspect of pre-
diction uncertainty. That is, they only measure 
the accuracy of the estimated model with respect 
to the mean of the target distribution, but do not 
measure the accuracy with which the actual tar-
get data (measured overtopping volumes) can be 
predicted (Heskes, 1997). In fact, for the CLASH 
ANN model, Van Gent et al. (2007) did not report 
on the prediction limits estimated using the boot-
strapping procedure, but instead relied on an indica-
tive prediction error band to assess the accuracy of 
the overtopping estimates. To capture both aspects of 
prediction uncertainty, and provide better coverage 
of the true range in which a prediction might lie, pre-
diction limits must include an additional estimate of 
the noise inherent to the problem. Secondly, the first 
aspect of prediction uncertainty may be overestimated 
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due to the learning procedure becoming stuck in local 
minima in the error surface rather than converging 
to the (near) global minimum. In this case, not only 
are inaccuracies in the estimated model captured, but 
also inaccuracies in the training procedure. Finally, 
bootstrapping methods are computationally intensive 
and time consuming. For example, in the CLASH 
project, 500 bootstraps were used to assess uncer-
tainty in the model, meaning that the ANN model 
was retrained 500 times. If new data become avail-
able and the model requires updating, this could take 
several days with a bootstrap method.

Whilst the importance of providing estimates of 
prediction uncertainty is increasingly being recog-
nised in flood risk analysis, it is essential that the 
derivation of these estimates is as reliable as possi-
ble. This paper details the development of a Baye-
sian artificial neural network (ANN) model used 
to improve the reliability and robustness of wave 
overtopping predictions and to provide accurate esti-
mates of the associated prediction uncertainty result-
ing from uncertainty in the data and the difficulty of 
accurately capturing the wave overtopping process. 
An advantage of Bayesian methods over bootstrap-
ping for ANN uncertainty assessment is that uncer-
tainty in the model parameters is handled explicitly 
by estimating weight distributions which include all 
weight vectors that provide a reasonable fit to the 
data, rather than repeatedly estimating point values 
that provide the best fit to resamples of data. Further-
more, the noise variance is also estimated using this 
procedure, enabling prediction limits to be generated 
that include the two aspects of prediction uncertainty 
described above.

2 BAYESIAN NEURAL NETWORKS

2.1 Concept

The concept behind the Bayesian modelling frame-
work is Bayes’ theorem, which states that any prior 
beliefs regarding an uncertain quantity are updated, 
based on new information, to yield a posterior prob-
ability of the unknown quantity. In terms of an ANN, 
Bayes’ theorem can be used to estimate the posterior 
distribution of the network weights w = {w1,…,wd} 
given a set of N target data y = {y1,…,yN} as 
follows:
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In this equation, p(w) is the prior distribution, which 
describes any knowledge of the weight values before 
observing the data; p(y|w) is known as the likelihood 

function and is obtained by comparing the observed 
data y to the model outputs ˆy. This is the function 
through which the prior knowledge of w is updated by 
the data. The denominator p(y) is a normalising con-
stant known as the marginal likelihood, or evidence, 
of the model.

2.2 Bayesian training

For complex models like most ANNs, (1) is ana-
lytically intractable. To overcome this problem, the 
Markov chain Monte Carlo approach developed by 
Kingston et al. (2005) is used to generate samples 
from the posterior weight distribution. Assuming 
that the residuals between the observed data and the 
model outputs are normally and independently dis-
tributed with zero mean and constant variance σ y

2 , 
the likelihood function is given by:
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where f(xi,w) is the ANN output given the ith input 
vector xi.

To define a lack of prior knowledge about the 
weights and to prevent overfitting of the data, a hier-
archical prior distribution in the form:
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is used, which is the product of four different normal 
distributions, corresponding to four different weight 
groups (i.e. w = {w1,…,w4}): the input-hidden layer 
weights, the hidden layer biases, the hidden-output 
layer weights and the output layer biases. The param-
eters and σ wg

2  and dg are the variance and dimension 
of the gth weight group, respectively. Both σ y

2 and 
σ σ σw w wG

2 2 2

1
= { , , }…  in (2) and (3), respectively, are 

treated as unknown hyperparameters with rather 
noninformative inverse chi-squared hyperprior distri-
butions, which allows their values to be determined 
from the data. The MCMC approach then involves 
a two-step iterative procedure, where the hyperpa-
rameters are first sampled using the Gibbs sampler 
and then the weight vector is sampled using the adap-
tive Metropolis algorithm developed by Haario et al. 
(2001). Given sufficient burn-in iterations, the sam-
pled sequences should converge to a stationary distri-
bution. From this point onwards, it can be considered 
that the sampled parameters are generated from the 
posterior distribution.

Chp_063.indd   562 9/6/2008   7:50:22 PM



563

Samples from the posterior weight distribution can 
be used directly to calculate an output distribution for 
each given input pattern. To convert these outputs to 
samples from the predictive distribution of the tar-
gets, Gaussian noise with zero mean and estimated 
variance σ y

2  is then added. As such, the estimated 
predictive distribution accounts for both aspects 
of prediction uncertainty described in Section 1; 
p(w/y, H) describes the accuracy of the estimated 
model with respect to the mean of the target distribu-
tion, while σ y

2  accounts for the variance with respect 
to the actual target data including noise.

For further details of the Bayesian training method, 
see Kingston et al. (2005).

3 WAVE OVERTOPPING MODEL

In this study, apart from the method used for ANN 
training and estimation of prediction uncertainty, the 
intention was to follow the CLASH model develop-
ment procedure described in Van Gent et al. (2007) as 
closely as possible. Therefore, any preprocessing of 
the CLASH database was repeated in this study and 
the model inputs, outputs and ANN structure used 
by Van Gent et al. (2007) were replicated. These are 
described in more detail as follows.

3.1 CLASH database

The complete CLASH database (available from http://
clash.ugent.be/results/Database_20050101.xls) con-
tains over 10,000 wave overtopping test results, repre-
sented by parameters that describe the hydraulic and 
structural characteristics of the tests. It also contains 
information about the reliability of the tests and the com-
plexity of the test structures, represented by a Reliability 
Factor (RF) and Complexity Factor (CF), respectively. 
The RF ranges from 1 (very reliable) to 4 (not reliable), 
while the CF also ranges from 1 (very simple) to 4 
(very complex). For development of the ANN model, 
these factors were combined into a single Weight Factor 
(WF), which was then used during training to ensure 
that the simpler, more reliable tests were given more 
importance during training (see Section 3.2). The WF 
was calculated according to WF = (4−RF) × (4−CF); 
however, tests for which q < 10–6 m3/s/m were assigned 
a WF = 1, as these tests were considered as less accurate 
than larger overtopping discharges.The inputs and out-
puts used in developing the Bayesian ANN model for 
wave overtopping are given in Table 1.

Preprocessing of the database involved removing 
those tests for which the overtopping discharge, q, 
was equal to 0 m3/s/m, tests for which WF = 0 and 
any other tests showing clear inconsistencies. This 
resulted in a total of 8016 tests for developing the 
ANN model. The input and output parameters were 

then scaled to Hm0 = 1 m using Froude’s similarity law 
in order to extrapolate information from small-scale 
test results to prototype conditions, ensuring that the 
model developed would be applicable to both small- 
and large-scale overtopping tests. For further infor-
mation about this scaling see Van Gent et al. (2005). 
Finally, the logarithm of the scaled overtopping vol-
umes, q’, was taken and this became the target data 
for fitting the ANN model.

3.2 Bayesian ANN development

The type of ANN used to model the wave overtopping 
volumes was a feedforward multilayer perceptron 
with 14 nodes in the input layer, corresponding to the 
14 input variables given in Table 1, and 1 output node 
in the output layer, corresponding to log q’. Van Gent 
et al. (2007) found that a network containing 15 hid-
den nodes was optimal for modelling this problem; 
thus an ANN with 15 hidden nodes was also used in 
this study. The hyperbolic tangent transfer function 
was used at the hidden layer nodes, while a linear 
transfer was applied at the output.

Prior to training the model, the available data 
were divided into two subsets: a training set con-
taining 80% of the data (6104 data patterns) and an 

Table 1. Inputs and outputs used in the Bayesian ANN for 
overtopping.

Parameter Description

Hm0*  Significant wave height at the toe of the
 structure (m)

Tm−1,0  Mean wave period at the toe of the structure
 (s)

β  Direction of wave attack w.r.t. the normal of
 the structure (°)

h Water depth in front of the structure (m)
ht Water depth at the toe of the structure (m)
Bt Width of the toe of the structure (m)
γf Roughness/permeability of the structure (-)
cot αd Slope of the structure downward of the berm
cot αu Slope of the structure upward of the berm (-)
B Width of the berm (m)
hb Water depth at the berm (m)
tan αb Slope of the berm (-)
Rc Crest freeboard of the structure (m)
Ac Armour crest freeboard of the structure (m)
Gc Crest width of the structure (m)
WF** Weight Factor (-)
q*** Overtopping discharge (m3/s/m)

*—Hm0 was not used as an input to the ANN, but was used to 
scale the input/output data.

**—WF is not an input to the ANN model, but is used in 
calculating the objective function.

*** q is the model output.
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independent validation set containing the remaining 
20% (1912 data patterns). As mentioned in the previ-
ous section, the WF values associated with overtop-
ping tests were used to give more importance to tests 
with greater reliability and simplicity during training. 
In the CLASH project, this was done by applying the 
weight factor to the total cost function calculated dur-
ing training, as follows:

E WF y fi i i
i

N

= −
=
∑ [ ( , )]x w 2

1  
(4)

Therefore, the likelihood function given by (2) was 
also modified to include WF, as follows:
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The MCMC algorithm described in Section 2.2 
was run for 600,000 iterations, where the first 300,000 
were discarded as burn-in iterations. Traces of the log 
(unnormalised) posterior, log likelihood and log prior 
values were inspected to ensure that approximate con-
vergence was achieved within the burn-in period. Pre-
dictive distributions, from which mean predictions and 
95% prediction limits were evaluated, were calculated 
based on 10,000 weight vectors, randomly sampled 
after approximate convergence had been achieved.

In order to properly examine the advantages of a 
Bayesian training procedure over bootstrapping for pre-
diction uncertainty assessment, an ANN model was also 
developed using the bootstrapping procedure described 
in (Van Gent et al. 2005; Van Gent et al. 2007).

4 RESULTS

Figure 1 displays the mean predictions and 95% pre-
diction limits obtained using the Bayesian ANN, plot-
ted against the measured overtopping volumes for 
the training and validation data sets. It can be seen in 
this figure that the mean overtopping predictions are 
reasonably accurate; however, the prediction limits 
indicate that these predictions have a reasonably high 
degree of associated uncertainty, as the ANN predic-
tions are a factor 10 (or more) larger/smaller than 
these mean predictions (and the corresponding meas-
ured data). Nevertheless, for both the training data and 
the validation data, the 95% prediction limits account 
for greater than 98% of the measured overtopping vol-
umes. In the CLASH ANN publications (Van Gent 
et al. 2005; Van Gent et al. 2007), the percentage of 
measured data accounted for by the prediction limits 

obtained using the bootstrapping procedure is not 
reported. However, for the ANN model developed 
using bootstrapping in this study, these limits only 
account for around 50% of the measured training and 
validation data.

Although the overtopping volumes modelled are 
not a time series, it is useful to compare the results 
obtained using Bayesian and bootstrapping methods as 
shown in Figure 2. In this figure, 100 of the measured 
validation overtopping volumes with WF = 9 are plot-
ted with the corresponding mean predictions and 95% 
prediction limits obtained using the Bayesian ANN. 
Also included in this figure are the 95% prediction 
limits obtained using the bootstrapping procedure. 
As can be easily seen in this figure, the prediction 
limits obtained using the Bayesian approach, which 
incorporate data noise, are significantly wider than 
the limits obtained using bootstrapping. Therefore, it 
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Figure 1. Mean predictions and 95% prediction limits 
obtained using the Bayesian ANN when applied to the train-
ing and validation data.
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Figure 2. Comparison of 95% prediction limits obtained using the Bayesian ANN and using the bootstrapping procedure 
when applied to validation overtopping volumes with WF = 9.

can be concluded that noise variance is a significant 
component of prediction uncertainty and by not 
accounting for this aspect, the uncertainty associated 
with the bootstrapping ANN predictions is signifi-
cantly underestimated.

In addition, the training time required by the Baye-
sian approach was 785 minutes, whereas the time 
taken for bootstrap training with 500 bootstraps was 
7389 minutes; almost 10 times the computation time.

5 CONCLUSIONS

It has been demonstrated in this study that the mean 
predictions and 95% prediction limits obtained using 
a Bayesian ANNs are much better able to represent 
measured wave overtopping data than the prediction 
limits obtained using bootstrapping methods. Whilst 
bootstrapping methods account for model uncer-
tainty variance due to limitations of the ANN model, 
they neglect the second component of total predic-
tion variance; data noise variance. On the other hand 
Bayesian methods account for both of these sources 
of prediction variance and as a result, the prediction 
limits obtained provide much better coverage of the 
target data than those obtained using bootstrapping.

Noise is inherent to all real data and thus data noise 
variance is always likely to be a significant compo-
nent of ANN prediction uncertainty. Therefore, in 
order to correctly indicate the reliability associated 
with ANN predictions of wave overtopping volumes, 
it is recommended that a Bayesian approach be con-
sidered. If bootstrapping methods are relied upon to 

estimate prediction accuracy, it is likely that too much 
confidence could be placed in the predictions, which 
could have severe consequences if the predictions 
turn out to be incorrect.
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