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ABSTRACT 
Most models of the flow over an embankment or through a breach treat the flow as that over a 
broad-crested weir.  This may be appropriate when the flow width is large compared with the 
depth, and the streamlines of the flow in the reservoir towards the embankment or breach nearly 
normal to the crest.  However, evidence from laboratory and large scale field tests (such as in 
the EC IMPACT project) show strong curvature of the flow towards a narrow breach with 
approximately semi-elliptical or semi-circular shaped water profiles in plan for the reservoir 
upstream of the breach.    This paper presents a new analytic model for the two dimensional 
flow towards a slot in an otherwise solid flow boundary.   The surface profiles predicted from 
the model are semi-elliptical in plan, becoming semi-circular in the limit of an infinitesimally 
thin slot. Analysis of this latter idealized case shows that critical flow occurs at a radial distance 
inside the reservoir of rc given by: 
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where Q is the discharge through the breach and E is the total energy level in the reservoir 
measured above the base of the breach.   Non-dimensionalising the horizontal distance along the 
streamlines leads to a new universal solution for the water level profile for this idealised case.   
This solution provides insight into both the erosion mechanisms that control breach growth and 
the validity of assuming flow is similar to a broad-crested weir. 
 
 
 
INTRODUCTION 
The origin of this paper comes from 
discussions at the final meeting of the EC 
research project IMPACT in Zaragoza (see 
http://www.impact-project.net/).  The 
IMPACT project included large scale field 
tests in Norway where temporary dams 
were constructed and then failed in 
controlled circumstances (Morris et al, 
2007).  The photographs and video taken 
during the failure showed a sequence of 
flow in the impoundment conditions 
towards breach.  Figure 1 shows three 
characteristic types of flow which we shall 
call here: weir flow, converging flow, 
breach flow; these photographs and more 
appear in the FLOODsite project analysis 
of the IMPACT project data (Morris, 2009).   

The purpose of the analysis in this paper is 
to illustrate the difference between flow 
over a broad-crested weir as shown in 
Figure 1(a) and the two dimensional 
converging flow towards an opening in an 
otherwise solid flow boundary, typified by 
Figure 1(b), since water surface profiles 
evident in the photographs show the 
character of the flow changes as the breach 
develops.   Note in Figure 1(b) the steeply 
curved water surface in the vertical plane as 
the flow approaches the breach and the 
approximately circular or elliptical shape in 
plan of contours of equal surface level as 
the flow converges towards the breach.   
Many models of breach formation in an 
embankment assume that the flow at the 
crest obeys a broad-crested weir equation, 
whereas the photographs above call this 
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assumption into question.  The analysis 
presented below concentrates on the two-
dimensional converging flow and shows 
that the effective crest-length in this case 
exceeds the width of the breach assumed in 
the broad-crested weir approximation of 
many models.   
 
Flow over a broad crested weir 
For one-dimensional flow towards a broad-
crested weir, in the upstream reservoir the 
energy level E and water surface level h0 
are equal; we take the vertical datum as the 
weir crest level and can set: 
 

0hE =      (1) 
 
At the weir crest the flow is critical and we 
apply Bernoulli’s equation using the 
average velocity Uc and local depth over 
the crest hc:  
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which has the solution: 
 

03
2 hhc =     (4) 

 
The discharge Q for a weir of crest width B 
is then given by: 
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This leads to the idealised coefficient of 
discharge for the broad-crested weir as 
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The development of these equations can be 
found in standard textbooks e.g. Section 2.7 
of Kay and Nedderman (1974).   
 
TWO-DIMENSIONAL FLOW IN 
PLAN 

Stream function, velocity potential 
and complex potential 
To analyse this case we assume that the 
flow is incompressible, inviscid and 
irrotational.  These assumptions are the 
same as made in the theory underlying the 
flow over a broad-crested weir above.  We 
also assume that the flow can be treated as 
steady (either the inflow equals the outflow 
to the reservoir or the reservoir area is very 
large compared with the magnitude of the 
outflow).  Thus we have the continuity 
equation for the flow: 
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Here q is the two-dimensional unit flow 
vector defined as the integral over depth of 
the 3-d velocity u 
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(a) Weir flow    (b) Converging flow  (c) Breach flow 
 
Figure 1  Three types of flow from the IMPACT project field tests 
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Figure 2 Streamlines for potential flow through a unit aperture (after Kreyszig, 1999) 
 
 
This form of the continuity equation for 
steady flow allows the unit flow to be 
represented by a stream function Ψ as 
 

),0,0( Ψ×∇=q     (9) 
 
The assumption of irrotational flow leads to 
the representation of the unit flow vector by 
a velocity potential Φ thus 
 
 Φ∇=q               (10) 
 
The stream function and velocity potential 
are conjugate functions each satisfying 
Laplace’s Equation 
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These can be combined to form a complex 
potential F 
 

Ψ+Φ= iF               (12) 
 
Standard texts on fluid dynamics and 
potential flow theory allow the complex 
potential (and thus the stream function and 
velocity potential) to be identified for a 
variety of boundary conditions (see for 
example Acheson, 1990, Rutherford, 1959).  
Kreyszig (1999) gives the solution for  

potential flow through a unit aperture (-
1<x<1; y = 0) as: 
 

( )1log)(cosh)( 21 −+== − zzzzF e       (13) 
 
in which z is now the complex variable in 
two spatial dimensions 

iyxz +=               (14) 
 
The streamlines are hyperbolae with foci at 
±1 and the equipotential lines are ellipses, 
also with foci at ±1.    
 
We scale this solution to obtain the 
complex potential for flow through the 
general width aperture (-a<x<a) and 
introduce a scaling constant C to allow for 
an arbitrary total discharge thus: 
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It is interesting to note that this potential 
solution for the unit flow vector does not 
depend explicitly on the depth of the flow 
or on the bottom topography, thus it could 
be used (if the physical assumption of 2-D 
flow still applies) on the sloping upstream 
face of an embankment dam.   
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FAR-FIELD CASE – RADIAL 
FLOW 
In the subsequent analysis we accept that 
the idealised model of purely radial flow 
will break down in real fluids at some finite 
distance from the origin.   For large 
distances from the origin, i.e. |z| >> a, the 
complex potential of Equation (15) can be 
approximated by: 
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Equation 16 is the complex potential for 
flow towards a sink or from a source, 
depending upon the sign of C, the 
streamlines are radii from the origin and the 
equipotential lines are concentric circles 
centred on the origin.   This limiting case 
therefore facilitates the identification of the 
constant C without recourse to the use of 
elliptic integrals to calculate the 
circumference of the semi-elliptical 
equipotential lines of Equation (15).  We 
take Ψ=0 on one side of the small aperture 
(θ = 0) and Ψ= -Q/π on the other side (θ = 
π), where Q is the discharge through the 
aperture.   We have in polar coordinates (r, 
θ)  
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where the negative sign denotes flow 
radially inwards.  We now let D(r) denote 
the local depth and we have for the depth 
average velocity: 
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RADIAL FLOW OVER A 
HORIZONTAL BED 
This formula for the depth average velocity 
can be used in Bernoulli’s equation to 
calculate the water surface profile as flow 
accelerates towards the aperture.  We now 
make the assumption that the bed resistance 
can be ignored and the geometric 
simplification that the bed is horizontal.  In 
this case the depth D becomes the water 
surface level, on taking the constant bed 
level as the vertical datum.  Bernoulli’s 

equation on a streamline (choosing the 
water surface) is 
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On substituting for U(r) we obtain 
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Thus the depth, h(r), satisfies the following 
cubic equation: 
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This equation is nearly the same as that for 
rectilinear flow, the difference (apart from 
the scaling constant) is the radial distance 
in the zero order term.  For very large 
values of r this equation has the solutions 
approximately of h = E and a double root h 
= 0.  The first of these is physically the 
correct root for imperceptible flow velocity 
far away from the embankment.    
 
In view of the 3-D nature of the problem, 
we may consider the total energy flux 
crossing a semi-cylindrical surface centred 
on the sink at the origin. The total energy 
flux, T, across any semi-cylindrical surface 
is  
 

QET =                (22) 
 
We define the flow as critical when T is a 
minimum, i.e. when E is a minimum, or  
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This may be inverted to give the critical 
radius, rc as  
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At this point we have: 
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Thus we note that the location of the 
control point occurs at some radial distance 
rc upstream of the embankment and is not 
controlled in this simplified case by the 
shape or level of the breach.   Equation (26) 
may be rearranged as  
 

( ) 2/3
0

2/33/2 hgrQ cπ=              (27) 
 
This is of identical form to the broad 
crested weir flow Equation (5) above with 
the weir crest width, B, being replaced by 
the circumference, πrc, of the semicircle at 
the critical radius. 
 
We now manipulate the Equation (20) to 
examine the behaviour of h(r) as the flow 
approaches the sink at the origin.   by 
rescaling the distance according to this 
value of rc, that is we set: 
 

cr
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Differentiating this equation with respect to 
X we obtain the equation for the surface 
slope: 
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When h = 2E/3, i.e. for critical flow we  
deduce that the surface slope becomes 
infinite since E and X are both positive and  
finite, unlike the case for rectilinear flow 
where the transition occurs with finite 
surface slope. 
 
On an examination of the roots of the cubic 
equation for h, we find that upstream of the 
critical point there are three real roots for h 
for any given value X.  The two which give 
positive values of depth are physically 
meaningful and are the sub and 
supercritical depth.  The roots to the cubic 
can be easily established in inverse form by 
deriving an expression for X(h) – that is the 
non-dimensionalised, radial distance at 
which a given value of water level h is 
achieved.  We have: 
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Here Y is the non-dimensionalised water 
level, Y = h/E and this equation admits 
solutions for all 0<Y<1, see the Figure 3 
below.  Alternatively Cardan’s solution for 
a general cubic equation can be employed 
to give the value of h at any desired value 
of X (See for example Chapter XXI of 
Ferrar (1948)).] 
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Figure 3  Idealised water surface profile for radial flow towards a breach
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DISCUSSION 

Limitations of the analytic model of 
radial flow 
As X tends to the value 1 from “above” 
(X>1), the two sequent depths become 
progressively closer in value until at the 
point X=1 they are a double root of the 
cubic equation.  At X = 1 there is a 
“catastrophe” for the water level.  For X<1 
the only root is the physically meaningless 
negative depth.  This is in contrast to the 
rectilinear case of flow over a broad crested 
weir when there is a smooth transition from 
subcritical conditions upstream to critical 
conditions over the crest and potentially 
supercritical conditions downstream.  We 
conclude that at X=1 the model of 
assuming shallow water flow (negligible 
vertical acceleration) has broken down and 
that a 3-D analysis is needed.   Moreover, 
for an infinitesimally small aperture width 
the flow velocity would increase without 
limit for a fixed discharge rate close to the 
aperture.  Hence the radial flow 
approximation should only be used for the 
far-field, with certainly a limit XR, which 
obeys the restriction X > XR > 1.   
 
Finite sized aperture 
To apply the Bernoulli analysis for a finite 
sized aperture we need to consider the 
velocity along the streamline hyperbolae 
and this will depend (via continuity) on the 
differential arc length on the orthogonal 
ellipses.  It is well known that the arc length 
on the circumference of an ellipse involves 
an incomplete elliptic integral of the second 
kind, for which there is no closed form 
analytic relationship, and so progress on 
this must be made by numerical means; this 
paper does not pursue this approach further.  
 
Comparison of qualitative features of 
the flow 
We note the photographs of flow towards a 
dam breach, such as Figure 1(b) above, 
indicate that water level is constant on 
circular or elliptical arc upstream, with very 
steep water surface slopes developed at the 
“critical” point some distance upstream of 
the dam crest as suggested in this simplified 

analysis in Equation (30).   This converging 
flow case operates once initial overtopping 
has led to an erosion of the embankment 
crest level, but ceases before the final 
breach dimensions are achieved and the 
reservoir in substantially emptied, see 
Figure 1(c). 
 
Limitation of 2-D steady flow 
The stream function of Equation (9) only is 
defined for the case of 2-D steady flow.   
Thus the analysis will only be an 
approximation to the physical case for a 
finite sized reservoir where the inflow does 
not match the outflow through the breach.  
Two physically important time scales can 
be deduced – one is the ratio of the 
reservoir volume to the net outflow rate and 
the other is for the time taken for the water 
to exit the breach, say the ratio of rc to Uc of 
Equations (18) and (26).   The first of these 
timescales dominates and so the analysis is 
likely to be typical of the situation during 
the initial phase of the enlargement of a 
breach.  The reasonable correspondence 
with observation of the inferred properties 
of the flow from this solution also gives 
encouragement that the analysis has 
captured the essence of the physics of the 
converging flow case (Figure 1b). 
 
Implications for the rapidly varied, 
converging flow case 
Comparison of the two discharge Equations 
(5) and (27), shows that in the case where 
the head over the crest is small, the broad 
crested weir flow should be used as the 
critical radius becomes small compared 
with the crest width.  However as the 
embankment crest erodes and the discharge 
increases, the critical radius increases and 
the control point moves upstream into the 
reservoir and the flow is no longer 
controlled by the width of the breach in the 
crest.  This is in accord with analysis of the 
videos taken during the IMPACT field tests 
(Morris, 2009).  The implication under 
these circumstances is that breach discharge 
calculations based upon broad crested weir 
flow through the breach width may 
underestimate the discharge.   
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Figure 4  Evidence of flow separation and vorticity generation from field test 
 
 
A consequence of the control point moving 
upstream is that at this point there is strong 
curvature of the water surface in the vertical 
plane as well as curvature of the 
streamlines in plan.  These conditions 
imply there is acceleration of the mean flow 
velocity both in plan and in the vertical 
plane, leading to non-hydrostatic pressure 
distribution in the vertical and potentially to 
intense generation of vorticity and to flow 
separation.    This is illustrated in the 
images from field tests in Figure 4, taken 
from the downstream side of the 
embankment and looking overhead.   
 
The strong generation of vorticity implied 
by the curvature of the streamlines leads to 
concentrated erosion at the margins of the 
breach.  Some of the images from the 
IMPACT tests show intense concentrations 
of sediment coming in a helical fashion 
from the corners of the breach implying 
possible hot-spots of erosion and 
undercutting of the embankment sides.   
Any undercutting of the embankment sides 
will give rise to mass failure of blocks of 
embankment material as observed in the 
IMPACT field tests.   
 
It is evident that the flow conditions 
through the breach both from the 
approximate analysis in this paper and from 
the field observations in IMPACT field 
tests are far removed from the one-
dimensional steady, uniform conditions  

used to derive general sediment transport 
formulae.   Thus this analysis calls into 
question the use of such equilibrium 
sediment transport formulae in any 
physically-based model of breach formation 
and so reinforces the need to use erosion-
based approaches for breach modelling 
(Morris et al, 2008a). 
 
The next steps for deterministic modelling 
of breaching of embankments should 
therefore consider the use of fully three-
dimensional non-hydrostatic computational 
fluid dynamics (CFD) software closely 
coupled with an erosion-based breach 
growth model.  The breach growth model 
should also capture other observed soil 
mechanics processes of the failure of an 
embankment, such as mass failure of blocks 
of material (Morris, 2009).   The analytic 
approach in this paper could enable a 
hybrid CFD-analytical model to be 
developed with reduced computational 
resources over a full CFD model of the 
reservoir, with the CFD providing the detail 
close to the breach and the analytical model 
providing the far-field.  This approach 
should assist understanding of the complex 
fluid flow and soil mechanics interactions 
in the critical phase of formation and 
enlargement of the breach after the 
initiation stage leading up to the final, 
relatively stable, breach dimensions (see 
Morris et al (2008b) for a discussion of the 
phases of breach formation).  
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CONCLUSIONS 
This paper has presented a new analytic 
solution for the free-surface flow towards 
the breach in an embankment, based upon 
potential flow theory and the use of 
Bernoulli’s Equation. 
 
The analytic model predicts features of the 
flow observed in the IMPACT project field 
tests during the growth of the breach in an 
embankment.  In particular:  
• The movement of the flow control 

upstream 
• The elliptical shape of equipotential 

(water level) surfaces  
• Strong curvature of the water surface in 

the vertical plane and of streamlines in 
plan. 

 

The implication of this analysis is that 
models based on assuming the discharge 
through the breach to be calculated from 
the broad-crested weir equation will 
potentially underestimate the flow through 
the breach for the converging flow case.   
This analysis indicates that traditional 
approaches (weir flow based on the breach 
width and equilibrium sediment transport) 
used in some deterministic models of 
breach flow are not consistent with the 
hydrodynamics of the flow during the phase 
of breach growth characterised by 
“converging” flow discussed in this paper.   
 
The analytic model in this paper has 
potential for use in the next generation of 
deterministic breach models through 
coupling with CFD for the near-field flow 
and soil mechanics processes for the failure 
of the embankment.   
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