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Abstract 
When waves break against seawalls, vertical breakwaters , piers or jetties, they abruptly transfer their 
momentum into the structure. This energy transfer is always spectacular and perpetually unrepeatable but 
can also be very violent and affect the stability and the integrity of coastal structures. Over the last 15 years, 
increasing awareness of wave-impact induced structural failures of maritime structures has emphasised the 
need for a more complete approach to dynamic responses, including effects of impulsive loads. At the same 
time, movement of design standards toward probabilistic approaches requires new statistical tools able to 
account for uncertainties in the variability of wave loading processes. This paper presents a new approach to 
the definition of loads for use in performance design of vertical coastal structures subject to breaking wave 
impacts.  Based on conservation of momentum and joint probability of non-dimensional wave impact maxima 
and rise times from large-scale test measurements, a new set of equations have been derived to 
characterise design impact loads at different non-exceedance probability levels and guidance is given for the 
estimation of the static-equivalent design loads to be used in early-stage feasibility studies. Predictions of 
static equivalent design loads and corresponding safety factor against sliding using the proposed 
methodology are found to be in very good agreement with both predictions by most established deterministic 
methods and field observations reported in literature. 

This is the author's version of a work that was accepted for publication in Coastal Engineering. Changes resulting from the publishing 
process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in 
this document.  Change may have been made to this work since it was submitted for publication. A definitive version was subsequently 
published in Coastal Engineering, Volume 58, Issue 1, January 2011. DOI:10.1016/j.coastaleng.2010.08.003 
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Introduction 
Despite their magnitude, wave impacts have only rarely been included in structural analysis of coastal 
structures, sometimes leading designers to ignore short-duration wave loads, perhaps contributing to failure 
of a range of breakwaters, seawalls and suspended decks. Over the last 15 years, improved awareness of 
wave impact induced failures of coastal structures (Franco 1994; Oumeraci 1994; Goda 2000; Allsop, 2000), 
has focused attention on the need to include dynamic responses to wave impact loads in designing of 
maritime structures. Small and large scale physical model tests (see e.g. Allsop et al. 1996, Bullock et al. 
2004, Cuomo et al. 2010) have demonstrated that wave impact loads on walls can be much higher than 
pulsating loads predicted by standard methods and highlighted the need for further investigations of the 
physics that stands behind wave breaking onto coastal structures. 

Extracts from a typical load time-history recorded during physical model tests on vertical walls under wave 
breaking attack are shown in Figure 1.  Sharp impacts are evident, with significantly different maxima and 
rise times, followed by slowly-varying pulsating loads. Various recent experiments have recorded and 
analysed violent wave impacts on vertical structures. These new data are however only useful for design if 
methods become available to predict not only wave impact loads and their variability but also the dynamic 
responses of maritime structures to short-duration loads. 

 

Figure 1  Wave-impacts force time-histories from large-scale physical model tests. Nominal (model) 
condition equal to: Hs0 = 0.48m, Tm = 2.56s, d = 0.83m, Rc = 1.16m. 

For seawalls or crown walls, dynamic analysis has been rare (Allsop, 2000) and wave impact loads are often 
ignored in design despite their magnitude. For caisson breakwaters, simplified models (Goda 1994, Omeraci 
and Korthenhaus, 1994) and more sophisticated ones (Takahashi et al., 1994, Oumeraci et al. 2001) have 
been proposed in the past to describe the dynamics of caisson breakwaters. A complete methodology for the 
design of caisson breakwaters subject to impulsive wave-loading is nevertheless still missing and 
international standards suggest avoiding such structures at sites where significant wave breaking might be 
expected. Unfortunately, this is often the case when (as may easily occur along the North European coasts), 
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a large tidal excursion and severe environmental conditions coincide to expose vertical breakwaters or 
seawalls to impulsive wave loads. 

Improvements in predictions of effective loads on vertical structures exposed to wave breaking using 
dynamic analysis require development of more refined wave load models based on new measurements and 
experiments. Takahashi et al. (1994) extended methods by Goda (1974) to account for impulsive wave 
conditions by amplification factors depending on the geometry of the structure and its foreshore. The method 
has been included in Goda (2000) and is recommended by international standards worldwide. Nevertheless, 
none of the above methods gives guidance on the duration of the loading nor accounts explicitly for the 
dynamics response of the caisson itself. 

More recently, within the framework of the PROVERBS (PRObabilistic design tools for VERtical 
BreakwaterS) research, Oumeraci et al. (2001) gave guidelines for assessment of wave forces on seawalls 
under breaking and non-breaking conditions. The PROVERBS results represents the most recent and 
significant European effort towards the understanding and assessment of wave loads, and includes guidance 
to estimate impact magnitudes and durations, and their effects on caisson breakwaters. The application of 
the PROVERBS methodology is nevertheless complex and may still lead to significant scatter in predictions 
of wave loads even under relatively similar design conditions (Cuomo et al., 2007) with predicted design 
loads being often significantly different from estimates by the most generally accepted and established 
design methods. 

Here, we provide an improved wave-impulse model based on the joint probability distribution of non-
dimensional impact force maximum and rise time. The statistical model is based on dataset from large-scale 
test measurements carried out at the CIEM-LIM wave flume of University “Politècnica de Catalunya” (UPC) 
under the Big-VOWS project. 

Using this joint probability model, correlation curves between impact maxima and rise times are derived at a 
number of fixed probability levels, making possible to generate pulse time-histories with specific non-
exceedance probability level of impact maxima and rise time, that are suitable for use in dynamic analysis of 
maritime structures exposed to impulsive breaking wave loads. 

Based on the analogy of caisson breakwaters with a Single Degree of Freedom (SDOF) system, guidance is 
given for the estimation of the dynamic response of the structure and its use in assessing the static-
equivalent design load at different probability levels. 

The present methodology moves from work by Cuomo (2007) and Piscopia et al. (2007) and allows to 
account efficiently for both the stochastic nature of impact loads and the dynamic response of caisson 
breakwaters. Prediction are shown to be in general agreement with both field measurements and most 
established deterministic prediction models. 

1. Previous work 
Many researchers have focused on measuring and analysing wave impact loads on maritime structures, the 
physics that stands behind the loading process is nevertheless not yet completely understood, partially due 
to the difficulties in measuring short-duration wave impact pressures and in dealing with the large volume of 
data to be stored and analysed. In this work, we briefly summarize the main results presented in literature, 
for a more comprehensive review, reference might be made to Peregrine, (2003) or Cuomo et al. (2010) and 
references therein. 
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Work by Bagnold (1939) laid foundations for much subsequent research. The author distinguished between 
wave pressures exerted by "not breaking" waves (which later will be referred to as "pulsating" or "quasi 
static") and breaking waves (“impacts” or “impulsive”). Bagnold first noticed the importance of entrained air, 
and observed that impact pressures were greatest when air trapped by the wave as it hits the wall was least, 
but not zero. 

Mitsuyasu (1966) measured impact pressures induced by regular waves breaking onto a vertical wall, placed 
at the top of a 1:15 beach slope, recording pressures up to 320g/cm2 with duration of about 0.0035s. 

Experimental work by Richert (1968) and Kamel (1970) confirmed the relative importance of the air cushion 
to the magnitude of initial peak pressure as well as on the duration of the succeeding damped oscillations. 
The thicker the cushion of enclosed air, the lower the peak pressure and longer the oscillation period. 

Based on observations during wave flume tests and considerations on the conservation of wave momentum, 
Weggel and Maxwell (1970) suggested a tentative relationship between maximum impact pressure Pmax [Pa] 
and the time needed to transfer wave kinetic energy to the wall t [s] in the general form: 

𝑃𝑚𝑎𝑥 = 𝑎 ∙ 𝑡𝑏 (1) 
where a = 232 and b = -1 are non-dimensional empirical coefficients.  It is important to note that Equation 1 is 
not dimensionally consistent, suggesting that a more complete version could be usefully derived. 

Kirkgöz performed an extensive series of experiments on breaking wave loads on vertical walls using 
artificially derived single waves. Kirkgöz (1982, 1983) pointed out the relative importance of deep-water wave 
steepness and beach slope on both the maximum peak pressure and its position up the wall. Successive 
physical model tests (Kirkgöz 1991, 1992 and 1995) confirmed that the variation of the rise time (tr) taken to 
rise pressure from zero to its maximum value (Pmax) within an impulsive loading event (Figure 2) obey 
Equation 1 but with values of coefficient a and b respectively equal to 250 and -0.9. 
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Figure 2 Idealized time-history superimposed to an example impact pressure record from physical 
model tests. In the plot: Pmax is the peak pressure, tr is the rise time, td is the total impact duration time; 
shaded area represents total impulse 

 

Hattori and Arami (1992), Hattori (1994) and Hattori et al. (1994) used regular waves for their experimental 
work on wave impacts on vertical walls. The authors confirmed the predominant role of the air trapped 
between the wall and the wave in the physics of high impact pressures, with the most severe impact 
occurring when the breaker strikes the wall with an almost vertical face, trapping a relatively small amount of 
air. The larger the amount of entrapped air, the lower the peak pressure maxima and the longer the rising 
time of the impact. Assuming an adiabatic compression of the trapped air pocket, the authors proposed a 
predictive model for breakers plunging against vertical walls that was found to explain fairly well both the 
maximum impact pressure and the frequency of the damped pressure oscillation. The functional relation 
between impact pressure maxima and rise times was found to follow Equation 1 with values for coefficient a 
and b respectively equal to 400 and -0.75. 

Within the framework of the PROVERBS research project (Oumeraci et al, 2001) a new procedure was 
developed for the assessment of wave impact loads on sea walls. The new methodology was the first to 
quantitatively account for uncertainties and variability in the loading process and represents a step forward in 
the development of a more rational and reliable design tool. Moving from the identification of the main 
structural geometrical aspects and wave parameters, the method proceeds through 12 steps to the 
evaluation of the wave forces (shoreward, up-lift and seaward) expected to act on the structure, together with 
the corresponding impact rise times and pressure distribution up the wall. The new design methods are 
described in details in Oumeraci et al. (2001), Klammer et al. (1996) and Allsop et al. (1999). According to 
the guidelines delivered within the project, the maximum landward impact force is given by: 

2*
bimpimp gHFF ρ⋅=  (2) 
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where Hb is the wave height at breaking (Oumeraci et al, 2001) and the relative maximum wave force Fimp
* is 

distributed according to the Generalised Extreme Value (GEV). 

On occasion, two force peaks were observed, followed by lower force oscillations, perhaps caused by cyclic 
compression and expansion of the air pocket trapped at impact. The period of the force oscillation was 
assumed (Oumeraci et al. 1992) to be a linear function of the equivalent diameter of the air pocket. For usual 
dimension of trapped air pocket, the period of oscillation of the loading was found to lie in the range of the 
natural period of prototype caisson breakwaters, and therefore to represent near-to-resonance excitation. 

Coefficients a and b in Equation 1 given in literature also include those summarised in Table 1 highlighting 
large variability among estimates given by different authors. This is only partially due to the difficulties of 
recording comparable impact pressures from different tests.  Walkden and Bruce (1999) suggest a number 
of other factors: 

Table 1 Coefficients a and b in Equation 1 from previous experiments at small and large scale 

Researcher Scale a b 
Weggel & Maxwell, 1970 Small 232 -1.00 
Blackmore & Hewson, 1984 Full 3100 -1.00 
Kirkgoz, 1990 Small 250 -0.90 
Witte, 1990 Small 261 -0.65 
Hattori et al., 1994 Small 400 -0.75 
Bullock et al., 2001 Full 31000 -1.00 

 

 bathymetry, permeability and roughness of the foreshore in front of the structure; 

 wave height, period and direction; 

 measurement apparatus (transducer size, location, sample rate and frequency response); 

 model scale; 

 structural configuration tested; 

 model dynamic response; 

 aeration. 

Among the others, aeration is generally acknowledged to be one of the most important cause of variability in 
wave impact maxima, either in the form of trapped pockets, expelled air or trapped bubbles.  

Bagnold (1939) identified the thickness of the air layer trapped at impact as the main cause of scatter in 
wave pressure maxima, while the first classification of wave shocks is attributed to Lundgren (1969), who 
distinguished: 

 ventilated shock: when the wave front approaches the face of the wall so that no air is trapped; 

 compression shock: when the wave front approaching the wall is concave and the wave crest curls 
trapping an air pocket between the wave front and the structure; 

 hammer shock: when the forward pointing crest of a plunging breaker hits the wall. 

Lundgren assumed the maximum wave impact pressure to be given by: 

r

b

t
UHP

2max
⋅⋅

=
ρ

 (3) 
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where tr = AV / (UHb) is the impact rise-time, Hb and U are respectively the breaker height and velocity, and 
AV the volume of air expelled at impact. Small changes in AV may therefore result in large variation of Pmax. 

Other than variations in geometry (foreshore, wave height and steepness), changes in AV might be due to 
different air content in still and sea water or to scale effects on air compressibility. According to Lundgren 
(and confirmed by latter researchers), wave impulse can be scaled to prototype by Froude's law.  Scaling 
maximum pressures by Froude's law will therefore be correct for well-ventilated shocks, but might be over-
conservative when air is trapped during impact, since different levels of aeration between model and 
prototype might affect pressure maxima and rise-times beyond Froude scaling factors. For compression 
shocks, Lundgren suggested adopting a "model law" (after Mitsuyatsu, 1966) for scaling of maximum 
pressures to prototype, but warned that using Froude law for scaling hammer shocks might lead to over-
estimation of impact maxima. The problem of scaling from model to prototype has been discussed more fully 
by Cuomo et al (2010). 

Walkden et al. (1996) compared impact forces and total impulse durations (td in Figure 2) on caisson 
breakwaters at small and large scale. For small-scale test best-fit parameters a and b were found to be 
respectively a = 21.4 and b = -0.92. The best-fit of the large-scale data was obtained for parameters a and b 
respectively equal to a = 1900 and b = -1.00.  

Similarly to Equation 1, a relation between the impact force Fmax and rise time tr can be written as follows: 

b
rtaF ⋅=max  (4) 

where Fmax [N] is the maximum force and tr [s] its corresponding rise-time; a and b are again empirical 
coefficients. Hereinafter, the following dimensionless form (McConnell and Kortenhaus, 1996) is used to 
modify Equation 4: 

b

m

r

qs T
ta

F
F









⋅=

+ 250/1,

max
 (5) 

where Tm is mean wave period and Fqs+,1/250 is the average of the four higher values of quasi-static force 
within a Nz = 1000 waves test. Equation 5 has been found to represent well the variability of wave impacts 
and to extend the generality of the analysis since reliable methods exist for the evaluation of quasi-static 
force at 1/250 level (Fqs+,1/250) by Goda (2000), Oumeraci et al. (2001) and Cuomo et al (2010). 

2. Description of the experimental data 
Large-scale experiments were performed at the CIEM / LIM wave flume at Universitat Politècnica de 
Catalunya, Barcelona (UPC), under the Big-VOWS project. Experimental setup and the main findings in 
terms of wave overtopping and wave induced loads are described in detail in Pearson et al. (2002) and 
Cuomo et al. (2010). In the following, a summary of tested conditions is given together with a short 
description of the experimental data. 

Tests were performed using five different water depths d, ranging between 0.53m and 1.28m and values of 
the freeboard (Rc) ranging between 0.71m and 1.46m. The test matrix of 39 different wave conditions is 
summarized in Table 2 in terms of significant spectral wave height (Hm0) and mean period (Tm). 
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Table 2. Summary of test conditions 

Test 
Series 

Configuration Nominal wave period 
Tm [s] 

Nominal wave height 
His [m] 

1A & 1B 
Rc = 1.16m / 1.40m 

d = 0.83m 

2.56 
3.12 
3.29 
3.64 
1.98 

0.48, 0.45, 0.37 
0.60, 0.56, 0.39 

0.67 
0.60 
0.25 

1C 
Rc = 1.46m 
d = 0.53m 

1.98 
2.56 
3.12 
3.29 
3.64 

0.25, 0.22 
0.48, 0.45, 0.37, 0.23 
0.63, 0.60, 0.56, 0.39 

0.67 
0.60 

1D & 1E 
Rc = 0.71m / 0.95m 

d = 1.28m 

1.97 
2.54 
3.12 
3.65 

0.26, 0.23 
0.44, 0.35, 0.23 
0.58, 0.50, 0.34 

0.55 

1F & 1I 
Rc = 1.38m / 1.42m 

d = 0.82m 

2.60 
3.15 
3.40 
3.80 

0.46 
0.59, 0.51 

0.59 
0.51 

1G & 1H 
Rc = 0.98m / 1.02 m 

d = 1.22m 

3.15 
3.40 
3.80 

0.59 
0.59 
0.51 

 

Pressures up the wall were measured by a vertical array of 8 pressure transducers, spaced vertically by 
20cm, logging at a frequency of 2000Hz. This was assumed to give a sufficiently sharp description of wave 
impact loads (Klammer et al., 1994).  

The total horizontal force ( hF ) and overturning moment ( zM ) on the seaward face of the wall were 

computed respectively as: 

∑ ∆⋅=
k

k
h zPF  (6) 

∑ ⋅∆⋅=
k

kk
z zzPM  (7) 

where kP  is the pressure recorded by the kth pressure transducer and mz 20.0=∆  is the distance up the 
wall between two successive transducers and zk is the absolute position of the kth transducer up the wall, 
including the top and the bottom sensors of the array. 

Visualization of pressure distribution as measured from sensors up the wall confirmed the array to cover the 
whole area of application of wave loads and Equations 6 and 7 to provide an efficient evaluation of global 
wave forces acting on the wall and that overtopping did not significantly affect the distribution of wave 
pressures up the wall all over the range of freeboards (Rc) tested. Example wave impact force time-histories 
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in Figure 1 were computed from pressure time-histories recorded during test run under nominal (model) 
condition equal to: Hm0 = 0.48m, Tm = 2.56s, d = 0.83m, Rc = 1.16m. 

Values of wave impact force and rise-time as recorded at UPC have been analyzed to assess the variability 
of wave impacts within each test of Nz = 1000 waves. For each wave impact on wall, the following 
parameters were extracted from pressure signals recorded up the wall: 

 time 0t  corresponding to the beginning of the event; 

 impact maximum force impF ; 

 corresponding rise time ( ) 0tFtt impr −= ; 

 maximum quasi-static load +qsF . 

Whilst the value of Fimp recorded during an impact is likely to be influenced by the spatial and temporal 
resolution of the measurements, the value of tr is most likely to be influenced by the threshold used to define 
the beginning of the event. Based on work by McConnell and Kortenhaus (1996), to facilitate the comparison 
of data with different levels of noise, an event was assumed to start each time Fh up-crossed the background 
noise-threshold level: 0min 2.0 mHdgF ⋅⋅⋅= ρ , where Hm0 is the incident spectral significant wave height and ρ 

and g are respectively the water density and the gravitational acceleration. 

The distinction between impulsive (Fimp) and quasi-static forces (Fqs+) was based on the relative duration of 
the loading. In particular, “impacts” or “short-duration” forces are those that act on the structure for durations 
shorter or comparable with the natural period of oscillation the structure (T0). Conversely, “quasi-static” (also 
called slowly-varying or pulsating) forces are those that act on the structure for longer than twice its natural 
period of vibration. 

For each run, the horizontal quasi static shoreward force at significance level 1/250 (Fqs+,1/250) was also 

extracted and used to normalise impact maxima 250/1,
* / += qsimpimp FFF . The overall sample size was equal 

to 12998 pairs of non-dimensional impact-force *
impF  and rise-time mrr Ttt /* = . 

3. Bivariate inference on impact maxima and rise 
times 

Since Bagnold’s pioneering work, impact pressures were found to largely vary even for fixed nominal 
conditions whereas the pressure impulse I, defined as: 

∫= dtPI  (8) 

that is, the integral of pressure P over time t, was far more repeatable. Nevertheless, using impulses in 
dynamic analysis is only meaningful in the range of impact duration in which the dynamic amplification is not 
affected by the pulse shape (Chopra, 2001). This is not the case for wave-induced loads on caisson 
breakwaters (Cuomo, 2007), and therefore evaluating the dynamic amplification to use in design requires the 
specific knowledge of the dependence between impact maxima and rise times. 

Being impulses finite quantities, shorter rise time will correspond to more intense impact force and vice 
versa. The first stochastic description of the correlation between impact forces and their rise-time can be 
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found (Oumeraci et al., 2001) who suggest evaluating impact rise time using the following function of the 

relative maximum wave force *
impF  (as defined in Equation 2): 

*

/

imp

eff
mr F

gd
kt ⋅=  (9) 

where deff is the effective water depth at the structure as a function of the geometrical characteristics of the 
foreshore (Oumeraci et al. 2001), and km the mass parameter (Klammer et al. 1996), which can be assumed 
to follow a Log-Normal distribution with mean equal to 0.086 and variance equal to 0.084. The following 
expression is also suggested for impact duration: 

r

d
d t

c
t

ln
−=  (10) 

empirical parameter cd being normally distributed with mean equal to 2.17 and variance equal to 1.08. 

Differently, in the present work, the reciprocal dependency of impact magnitude and its rise time is described 
using a more sophisticated, multi-parametric, bivariate, statistical model, i.e. a joint-probability distribution 
able to describe both coupled and conditional occurrences of impact maximum and rise time.  

Here we implement the method to set up bivariate probability distributions with arbitrary marginals (i.e. the 
probability distribution of a single variable) using copulas. This allow to break apart the dependence structure 
and the marginal behaviour of a joint distribution function or, in other words, the use of copulas functions 
enable studying marginal behaviours and their correlation in separate, consecutive steps, and to handle all 
this information in a single analytical function. From this point of view, copulas are powerful tools that allow to 
approximate the exact joint-probability distribution law for which an explicit algebraic expression is not 
available. 

Copulas have been studied in the probability literature for about 50 years since Fréchet (1951, 1956, 1958), 
and therefore many properties of copulas are now widely known (Genest and Mc Kay, 1986;  Joe, 1997; 
Nelsen, 2006). The application of copulas to ocean and coastal engineering problems nevertheless has a 
relatively short history, with most reference dating back no more than two decade. Athanassoulis et al. 
(1994) described wave climate, Piscopia et al. (2002) pointed at the dependence between the shape 
parameters of wave spectra and the corresponding significant wave height and peak period whereas de 
Waal and van Gelder (2005) modelled the extreme wave heights and periods relation. Bearing in mind that 
the use of copulas in the coastal engineering community has so far only been rare, in the following we 
provide a short description of the theoretical basis that stands behind the application of this statistical tool. 

The main asset of copulas results from the theorem by Sklar (1959) which, roughly speaking, points out that 
if two random variables x and y exist with univariate cumulative distributions P(x) and G(y) (marginals), there 
exists a function called copula (C) that joins the marginal distributions to give a bivariate cumulative 
distribution F(x,y)=C(P(x),G(y)). It can also be proven (Kimeldorf and Sampson, 1975a, 1975b) that the 
general problem of defining all the possible multivariate probability models whit arbitrary marginals Pi(xi) can 
be reduced to the study of the correlation structure of multivariate probability models having uniform 
marginals.  

Straightforward practical consequences of these properties are that: a) different copulas can be used with 
any kind of marginal distribution and b) the identifications of the univariate models that best-fit the data and 
the copula function that performs best can be carried out independently. In other words, the parameter set 
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on which the joint-probability distribution depends can be decomposed into 3 independent sub-sets: 2 arrays 
controlling the marginal distributions and 1 group conditioning the data correlation. 

Also, if the marginal distribution P(x) and G(y) are continuous functions, then the conditional distribution 
function FP(y|x) can be defined as: 

( ) ( ) ( )( )
xx

P yGxPC
x

xxyF
ˆ

,ˆ
=∂

∂
==  (11) 

In what that follows we will give details of techniques used to evaluate both the marginal probability 
distributions and the association parameter on which the bivariate distribution depends. In particular we will 
first analyse the families of univariate probability distribution functions that are able to model independently 
impact forces maxima and their rise times; we will then describe in detail the technique used to estimate the 
parameters (position, scale and shape) of the marginal probability distributions. Finally, we will describe the 
copula model used to describe the correlation of the data and the technique used to estimate its association 
parameter. 

3.1. Marginal distributions of wave impact and rise times 
As anticipated in Section 3, wave impact maxima were normalised using the quasi-static shoreward 
horizontal force at significant level 1/250 (Fqs+,1/250). Sample frequencies for data extracted from each test part 
are superimposed in Figure 3, showing that the normalised data extracted from each test part follow the 
same probability distribution and suggesting analysing the collected data as a whole dataset. The best-fit 

probabilistic model for the dimensionless impact forces 
*

impF  was identified by routinely testing the following 

distribution functions (Evans et al., 2000) using Matlab® libraries: Beta, χ2, Exponential, Gamma, Generalised 
Extreme Value (GEV), Generalized Gamma, Generalized Pareto (GP), Gumbel, Inverse Gaussian, 
Lognormal, Normal, Rayleigh, Truncated Rayleigh, Student's τ, Weibull, Truncated Weibull. 

The task was performed fitting each and every of the aforementioned distribution laws to the dataset and 
selecting the one with the least square error, defined as the difference between the data frequency and its 

corresponding theoretical probability for each given value of
*

impF . Confirming what suggested from previous 

work (Oumeraci et al., 2001, Cuomo 2005) the GEV distribution was found to best-fit to experimental data. 
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Figure 3 Normalized-impact frequencies distribution for each experimental test. 

Accordingly, the following expression is therefore adopted to model the cumulate probability distribution of 
dimensionless impact force maxima (Jenkinson, 1955; Johnson et al., 1994; Coles, 2001): 
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where A, B and k are respectively the position, scale and shape parameters, whose values are computed as 
stated in section 4.2 
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A series of adaptation tests of the aforementioned distribution laws was also performed for the non-

dimensional rise times *
rt . The Generalized Pareto (Pickands, 1975; Johnson et al., 1994; Coles, 2001) was 

identified as the best-fitting distribution, leading to the following expression for the probability density 

distribution of *
rt : 
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where again µ, η and κ are respectively the position, scale and shape parameters, whose values are 
computed as stated in section 4.2; the following expression is accordingly used to model the probability 

density distribution of *
rt : 
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3.2. Estimation of marginals parameter set 
Having settled the statistical univariate models for both the dimensionless impact force maxima and their rise 
times makes it possible to focus on the best performing method to estimate their parameter values. Here we 
have compared results obtained by using the least square error method (LSEM), the maximum log-likelihood 
method (MLLM) and the method of L-moments. 

The least square error and maximum log-likelihood methods involve, respectively, the minimization and the 
maximization of the following expressions (see for example Lawless, 1980): 
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where λ is the unknown parameter vector (λ=[A,B,k] for GEV and λ=[µ,η,κ] for GP) and NiP ,  is the non-

exceedance cumulate frequency of the sample xi, given by: 

1, +
=

N
iP Ni  (22) 

where i is the sample ranking index (for a descending ordered series) and N is the sample size. The values 
of the parameter vectors giving the minimum value of Equation 20 or the maximum of Equation 21 were 
obtained using the numerical algorithm named “Complex” method (Box, 1965; Gill and Murray, 1975), a 
multi-parameter, nonlinear, constrained, optimization algorithm by direct-search (details on implementation 
are given in the Appendix). The adopted numerical-method search the equation solution in a sub-region of 
the parameter-space (i.e. all possible values of λ terms, eventually limited by specific constrain on the 
allowable values of each λ term) until the relative error is less than 10-6. 

The method of L-moments (Greenwood et al., 1979) estimates the parameter vector by means of arithmetic 
expressions, which are functions of the probability-weighted moments. For the generalized extreme value 
distribution, the parameter expressions are as follows (Hosking et al., 1985; Hosking, 1990) 
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where the probability weighted moments (PWM) βr, r = 0,1,2, are given by the following expression: 
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The evaluation of PWM was carried out using the following estimator: 

∑
=

=β
N

i
i

r
Nir xP

N 1
,

1ˆ  (27) 

Equations 23, 24 and 25 are computed successively starting from Equation 25, which is solved iteratively by 
using the Newton-Rapson method with starting point given by: 
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which is a satisfying approximation of Equation 25 proposed by Hoskins et al. (1985).  

For the generalized Pareto distribution, the parameter expressions are as follows (Pandely et al., 2001) 
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( )( )( )01221 β−β−−=η kk  (30) 
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Figure 4 Panel a: P-P plot, i.e. fitted GEV distribution (solid line) versus sample frequency (symbol +) 
of non-dimensional impact force; Panel b: quantiles of theoretical cumulative distribution and MonteCarlo 
simulated confidence interval at 90% (dashed line) versus quantiles of sample frequency for the non-
dimensional impact force. Top of each panel b reports the parameter values obtained with the specific fitting 
techniques 

Results obtain for each of the aforementioned fitting techniques are showed in Figure 4, showing the 
probability-probability plot (panel a) and the comparison between the quantiles of the theoretical non-
exceedance probability function, along with their confidence interval at 90% significance, and the quantiles of 
the correspondent sample frequency (panel b).  
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The Kolmogorov-Smirnov goodness of fit test rejected the hypothesis that the GEV is the true sample 
distribution over the whole dataset (sample-size =  12998). As pointed out by Braun (1980) this might be due 
to the fact that “the hypothesis is rejected because even small deviations from the ideal function are 
exaggerated when sample sizes are large”. One way of dealing with this problem is that of extracting random 
sub samples of the data and testing goodness of fit on these less numerous samples (Braun, 1980). Figure 5 
shows the results obtained by varying the sample size; it is evident that K-S test is reasonably satisfied when 
the sample size is about 800. According to Petruskas and Aagaard (1971), the spreading of a MonteCarlo 
simulated sample can also be used to describe the confidence related to any chosen quantile. As shown in 
Figure 4, for the MLLM and L-moments methods, the sample quantile are always included into the 
confidence band at 90% of significance (obtained on the basis of 500 series of MonteCarlo simulated data). 
Accordingly, it appears that the generalized extreme value distribution fitted both by Maximum Log-
Likelihood and L-moments methods correctly models the non-dimensional impact force maxima.  The GEV 
parameters computed by MLLM read: 

Â = 2.804 10-1, B̂  = 1.376 10-1, k̂  = -2.438 10-1 (32) 

As for the non-dimensional rise times, the results achieved by fitting the ensemble dataset with the GP 
distribution with the LSEM, the MLLM and the L-moments methods are showed in Figure 6, similarly to 
Figure 4.  

 
Figure 5 Significance level of the Kolmogorov-Smirnov goodness of fit test performed on impact data 
sub-set of varying size. 

The Kolmogorov-Smirnov goodness of fit test again rejected the hypothesis that the GP is the true sample 
distribution when the sample-size was 12998. We therefore proceeded again by taking random sub samples 
of the total data and performing the goodness of fit Kolmogorov-Smirnov test (Braun, 1980). Figure 7 shows 
the results obtained by varying the sample size; it is evident that K-S test is satisfied when the sample size is 
about 400, with the sample quantiles being included within the 90% significance confidence band (see 
Figure 6). The generalized Pareto was therefore considered suitable to model the non-dimensional rise-time 
probability distribution. The GP parameters fitted by MLLM read: 

µ̂  = 0.0, η̂  = 2.214 10-1, κ̂  = -1.267 (33) 
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3.3. Estimation of copula association parameters 
With the aim of identifying the joint probability function, we tested different families of  single-parameter 
bivariate copulas, i.e. functions depending on an unique variable that controls the degree of data 
dependence. We tested both Archimedean (Nelsen R.B., 2006) and non-Archimedean copulas (Plackett, 
1965). Among those tested, the non-Archimedean Plackett model was chosen for its non-symmetrical 
features; it is defined by the following equations: 

 

Figure 6 Panel a: P-P plot, i.e. fitted GP distribution (solid line) versus sample frequency (symbol +) 
of non-dimensional rise-time; Panel b: quantiles of theoretical cumulative distribution and MonteCarlo 
simulated confidence interval at 90% versus quantiles of sample frequency for non-dimensional rise-time. 
Top of each panel b reports the parameter values obtained with the specific 
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Figure 7 Significance level of the Kolmogorov-Smirnov goodness of fit test performed on rise-time 
data sub-set of varying size 
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being ( )∞∈ψ ,0  the dependence coefficient (for ψ = 1 the variables are independent, for ( )1,0∈ψ  the 

variables have negative correlation, whilst for ( )∞∈ψ ,1  the variables have positive correlation).  The 
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The computation of the dependence parameters ψ has been carried out using the Maximum Log-Likelihood 
method, i.e. maximizing the following expression 
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The maximisation was performed using the “Complex” method solving Equation 40 with marginal parameters 
given by Equations 32 and 33. The association parameter was found to be: 

-310390.6ˆ ⋅=ψ  (41) 
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The corresponding data correlation structure is presented in Figure 8. 

Using the estimated parameter vectors of the GEV and GP distributions (Equations 32 and 33) along with 
the computed values of the association parameter, we can obtain the cumulate non-exceedance and density 
probabilities (Figure 9) as well as the conditional probability of impact maximum given its rise-time (Figure 
10). Figures 9 and 10 show a good agreement of the observed dataset with the fitted probability model and 
confirm the nearly perfect negative correlation between the impact maxima and the rise-time. 

 
Figure 8 Correlation structure obtained by using the Plackett copula given by Equation 34, with the association 
parameter equal to 6.390 10-3. 
 

 
Figure 9 The cumulate non-exceedance probability and the density probability obtained by using the 
Plackett copula with the correlation parameter equal to 6.390 10-3. 
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Figure 10 The conditional probability of impact force given its rise-time obtained by using the Plackett 
copula with the association parameter equal to 6.390 10- 

The stochastic correlation between rise-time and impact-force maximum can now be expressed by a non-
invertible function of the assigned probability level (Ω): 
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where 
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impF  is the impact-force value corresponding to the given value ϑ  of the non-dimensional rise-time 

*
rt and Λ is given by: 
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 (43) 
Which can be solved using the Newton-Raphson numerical method.  

With the aim to simplify the estimation of Equation 43, we proceeded as follows: first we fixed a series of 
probability level Ω (in accordance to statistical and coastal engineering standards) and obtained a curve 
corresponding to each probability level; then we fitted a power law, similar to Equation 5, to each of the 
obtained curves. Results of the fitting procedure are summarised in Table 3 together with the maximum 
relative error (in percentage). Although very simple, the use of power law as fitting curve leads to 
unsatisfactory adaptation to the theoretical conditional probability, particularly in the region of the most 
violent impacts (Figure 11). For this reason, with the aim of reducing the relative error while using a simplified 
expression, we tried a series of alternative functions, among those tested, the following was found to provide 
the best compromise between fitting performances and ease of use: 
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where a1,2, b1,2, c1,2, d1,2 are fitting parameters summarised, for each probability level, in Table 4, together 
with their corresponding maximum relative error. The achieved improvement is also confirmed in Figure 11. 

Table 3. Dynamic characteristics of typical prototype caisson breakwaters 

Researcher Period of vibration (s) 
Muraki, 1966 0.20 ÷  0.40 
Ming et al., 1988 0.26 
Schmidt et al., 1992  0.15 ÷  0.60 
Lamberti and Martinelli, 1998  0.15 ÷  2.00 

 
Table 4. Coefficients a and b in Equation 5 at different level of non-exceeding joint-probability levels 

Non-exceedance level [%] a b Err rel [%] 
99.9 0.479 -0.411 25.23% 

99.8 0.392 -0.415 25.57% 

99.6 0.324 -0.417 25.66% 

99.5 0.307 -0.417 25.61% 

99.0 0.262 -0.414 25.21% 

98.0 0.231 -0.405 24.50% 

95.0 0.208 -0.386 24.01% 
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Figure 11 Normalised static-equivalent design load Feq/FGoda (-o-) corresponding to example 
breakwaters in Figure 9 for increasing non-exceedance levels between 95% and 99.8%. In the plots are also 
represented predictions by Goda (1974), solid line and Takahashi et al. (1994), dashed line. 
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4. Dynamic analysis of caisson breakwaters 
Being structurally relatively simple, the dynamics of caisson breakwater is usually driven by the 
characteristics of the soil foundation. In the past, several authors explored the dynamic behaviour of caisson 
breakwaters subjected to impulsive wave loading by means of basic mass-spring-dashpot multi-degree of 
freedom (MDOF) linear system models (see, among the others: Oumeraci and Kortenhaus, 1994; Goda, 
1994, Pedersen, 1997 and Lamberti and Martinelli, 1998). Comprehensive reviews of the state of the art of 
foundation design of caisson breakwaters can be found in de Groot et al. (1996) and Oumeraci et al. (2001). 

In the following, the relative importance of impact rise-time and pulse shape on the effective load to be used 
in design of caisson breakwaters is discussed briefly, based on the analogy of the dynamics of caisson 
breakwaters with that of a single degree of freedom (SDOF) linear system. In fact, despite its simplicity, the 
model has been found to be suitable for the initial estimation of the amplification factor for use in early 
feasibility studies (more details are given in Cuomo, 2005). 

4.1. Dynamic response of a SDOF system to pulse excitation and 
shock spectrum. 

For a linear SDOF system of known mass (M), stiffness (K) and viscous damping (D), subject to a force f(t) 
arbitrarily varying in time, the solution to the equation of motion at time t can be expressed as the sum of the 
responses up to that time by the convolution integral: 

∫ −⋅⋅= −−
t

D
tn

D

dtef
M

tu
0

)( )](sin[)(1)( ττωτ
ω

τξω  (45) 

Where M
K

n =ω  and 
nM

D
ωξ 2=  is the damping ratio and 21 ξωω −= nD . Equation 45 is known 

as Duhamel's integral and, together with the assigned initial conditions, provides a general result for 
evaluating the response of a linear SDOF system subject to arbitrary time-varying force. In general, the 
dynamic response of a SDOF system will have to be evaluated numerically by solving Equation 45 in time. 
Results shown in the following have been obtained by integrating numerically Equation 45 by means of a 
time-stepping method based on the interpolation of excitation (Chopra, 2001). At each ith time-step, the 
variation of the exciting force f(t) over the time interval t∆≤≤ τ0  is assumed to be linear, so that 

( ) ( ) τ⋅∆∆+=∆+ tftfttf iii  and the displacement of the system )(tu∆  results expressed by the sum of 

three contributions, respectively: the free vibration due to the initial displacement iu  and velocity iu  at 

0=τ , the response to a step force if  constant within t∆≤≤ τ0  supposed to be applied on the system at 

rest ( 0== ii uu  ) and the response to a ramp force ( ) τ⋅∆∆ ii tf  which is assumed to act on the system at 

rest. 

The dynamic amplification factor (Φ) can be defined as the ratio of the maximum displacement of the system 
in time u(t)max and the displacement u0 of the same system due to the static application of the maximum force 
Fmax: 
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0

max)(
u
tu

=Φ  (46) 

where KFu max0 = . 

The procedure described above has been used to investigate the dynamic response of SDOF systems to 
simplified time-history loads whose general form reads: 

),,()( max tttfFtF dr⋅=  (47) 

where Fmax is the maximum force, tr the rise time and td the total pulse duration and t the time. Equation 47 
has been used to describe the triangular pulse time-history load as follows: 
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Depending on the values of tr and td in Equation 45, the following particular cases can be obtained: 
a. asymmetrical triangular pulse; 
b. right-angled triangular pulse; 
c. symmetrical triangular pulse; 
d. step force with finite rise-time; 

Case a is the most general, cases b-d are obtained entering Equation 48 respectively with rd tt = ,

rd tt ⋅= 2  and ∞=dt . 

For a SDOF system of given damping ratio, subject to pulse excitation, the deformation of the system in time 
u(t), and therefore Φ, only depend on the pulse shape and on the ratio between the pulse rise-time (tr) and 
the period of vibration of the system (T0 = 2π/ω) (Chopra, 2001). For a given shape of the exciting pulse, Φ 
can therefore be regarded as a function of the ratio tr/T0 only. The variation of the Φ with T0 (or a related 
parameter) is named "response spectrum", when the excitation consists of a single pulse, the term "shock 
spectrum" is also used. Example shock spectra are given in Figure 12 for pulse shapes obeying Equation 48 
and with total duration time (td) respectively equal to tr (left), 2tr (center) and 3tr (right). 
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Figure 12 Example shock spectra for a linear SDOF system subject to triangular pulse (Eq. (45)) 
having total duration time (td) respectively equal to tr (left), 2tr (center) and 3tr(right) 

When a system is subject to an harmonic excitation at or near resonance, the energy dissipated by damping 
is significant. On the contrary, when the system is excited by a single pulse, the energy dissipated by 
damping is much smaller and the relative importance of damping on maximum displacement decreases. This 
is confirmed in Figure 12, where shock spectra of a damped SDOF system (ξ = 0.05, dashed line) is 
superimposed to the one corresponding to the equivalent un-damped system (ξ = 0, solid line). 
Nevertheless, for maritime structures, damping can be much larger than for other civil structures (i.e. ξ >> 
0.05), due to the high dissipative role played by both water (Petersen, 1997) and soil foundation (Wolf, 1988) 
and although being generally safe, not taking into account the effect of damping when assessing effective 
design load might result in a significant overestimation of wave-induced loads. This is demonstrated by 
results in Figure 12 from further computations assuming ξ = 0.2 (dashed dotted line) and ξ = 0.3 (dotted 
line). 

The effective pulse shape of the wave-induced load depends on both the incoming wave kinematics and the 
dynamic characteristics of the structure, nevertheless, in order to facilitate the analysis of the dynamic 
response of caisson breakwater to pulse excitation, time-histories recorded during physical model tests were 
schematised as simplified pulses. An example idealised load-history is superimposed on an original signal in 
Figure 2, the triangular spike is characterized by the maximum reached by the signal during loading (Pmax), 
the time taken to get to Pmax from 0 (tr) and back (td). The shaded area in Figure 2 represents momentum 
transfer to the structure during the impact, the impulse. Such schematisation has encountered the favour of 
many authors in the past and results in this paper confirm its suitability for simplified but meaningful time-
history analysis. 

Moving from previous (Schmidt et al. 1992, Oumeraci et al. 1993 and Hattori et al. 1994) and new 
observations, the following association between breaking wave types and shock spectra in Figure 12 has 
been suggested (Cuomo, 2005): 

 Flip through    ⇒  asymmetrical triangular pulse; 

 Vertical wave front   ⇒  right-angled triangular pulse; 

 Plunging wave with air pocket ⇒  symmetrical triangular pulse. 
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Given the variability of the loading process, the above shall be nevertheless taken as an indicative guideline 
only; in the general case, an initial estimate of td in Equation 48 can be obtained by means of Equation 10. 

4.2. Dynamic characteristics of prototypes 
Prototype measurements of the dynamic characteristics of caisson breakwaters have been assessed by 
Muraki (1966), Ming et al. (1988), Schmidt et al. (1992) and Lamberti and Martinelli (1998). The estimates 
given by the authors are summarised in Table 5. 

Table 5. Coefficients of Equation 41 at different level of non-exceeding joint-probability levels 

Non-exceedance  
level [%] a1 b1 c1 d1 a2 b2 c2 d2 

Err 
rel  

[%] 
99.9 0.013 -1.023 0.410 2.023 0.457 -0.002 0.502 -0.537 0.42 

99.8 0.035 -0.682 0.588 1.853 0.348 -0.002 0.613 -0.534 0.29 

99.6 0.044 -0.622 0.811 2.058 0.415 -0.002 0.328 -0.529 0.10 

99.5 0.042 -0.581 0.822 2.074 0.377 -0.002 0.359 -0.526 0.05 

99.0 0.008 -0.878 0.702 2.411 0.356 -0.001 0.306 -0.514 0.29 

98.0 0.003 -1.186 0.986 2.327 0.419 -0.001 0.183 -0.491 0.45 

95.0 0.000 -1.159 0.915 2.302 0.387 -0.001 0.170 -0.460 2.06 

 

Differences in values given in Table 5 is mainly due to the fact that such estimates correspond to caisson 
breakwaters structurally significantly different. In fact, while periods of vibration by Muraki and Ming were 
derived from analysis of relatively “small” caisson installed in relatively shallow water, those referred to by 
Schmidt et al and Lamberti and Martinelli correspond to much more massive caisson units in relatively deep 
water. Moreover, the wider range of estimates given by Lamberti and Martinelli is due to the fact that the 
authors considered modes of vibration that involve motion of adjacent caisson units, and thus mobilise a 
larger amount of mass. 

4.3. Scaling 
For practical use, data from physical model tests need back-scaling to prototype. As stated earlier in this 
work, it is widely recognised that use of Froude similarity for back-scaling wave impact recorded at model 
scale leads to overestimation of impact maxima and underestimation of impact rise times, conserving total 
wave impulse. Bearing this in mind, we scaled wave impact maxima following the approach in Cuomo et al. 
(2010), based on the “compression law” originally proposed by Bagnold (1939) and successively extended 
by Mitsuyatsu (1966), Lundgren (1969) and Takahashi et al. (1985). 
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5. Proposed method for the evaluation of statically 
equivalent design load 

For feasibility study, a first estimate of the statically equivalent impact load to be assumed in the design can 
be evaluated by means of the simplified procedure described in the following: 

1. Condense the structure into a linear SDOF system evaluating its dynamic parameters (mass, stiffness 
and damping) as functions of the dynamic characteristics of the structure, its foundation and of the water 
level in front of caisson; 

2. Select the pulse shape (asymmetrical triangular pulse, right-angled triangular pulse or symmetrical 
triangular pulse) corresponding to the breaker type (flip through, vertical wave front or plunging wave with 
air pocket) that is expected to occur in front of the structure as a function of the geometrical 
characteristics of the structure and its foreshore. When no further information is available, a symmetrical 
triangular pulse (Equation 48, case b) represents a reasonable choice. For the sake of simplicity, in the 
following we assume the pulse to have such symmetrical shape; 

3. For the selected pulse shape, evaluate the dynamic amplification factor Φ of the system for different 
values of the ratio tr Φ = tr / T0 and evaluate Φmax = max[Φ(trΦ)] for 0 < trΦ < 2 (we assume here every load 
applied for longer then 2T0 to be felt as quasi-static by the structure) to identify severest combination of 
wave impact maximum and rise time to be used in design; 

4. Assume a non-exceedance joint-probability level for the calculation. For simplicity, parameters a and b in 
Equation 5 have been fit to iso-joint probability contour line corresponding to non–exceeding levels equal 
to: 95%, 98%, 99%, 99.5%, 99.6%, 99.7% and 99.8%; results are summarized in Table 3; 

5. Evaluate F* = Fimp/ Fh,qs+(1/250) in Equation 5 for tr = tΦ
r,max T0/Tm (tΦr,max being the value of tr that maximise 

Φ, Figure 12); 

6. Evaluate the appropriate scaling factor (λs) using procedure in Cuomo et al. (2010) as a function of the 
Bagnold number at prototype scale; 

7. Compute the quasi-static load Fh,qs+(1/250) acting on the structure using prediction method by Goda (1974) 
that is, assuming α2, αI = 0 in the expressions given in Goda (2000) and Takahashi et al. (1994); 

8. Evaluate the static equivalent design load as: Feq = λs Fh,qs+(1/250) F* Φmax. 

6. Example calculations 
Goda (1973, 1974) gave a detailed description of documented damages to breakwaters in Japan together 
with synthetic information on wave conditions at the site during catastrophic events. Among documented 
failure, we chose the following example cases (Figure 13): 

1. Hocinoue Port breakwater (10th section); 

2. Kobe Port breakwater; 

3. Onahama Port breakwater; 

4. Yokohama Port breakwater; 

For the four cases above, we schematized the structure as a SDOF system having synthetic dynamic 
characteristics given in Table 6. Values of dynamic characteristics (K and C) of the soil foundation have been 
evaluated according to Wolf (1988). A more detailed description of the procedure adopted for the estimation 
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of the dynamic characteristics to be used in the dynamic analysis of caisson breakwater is given in Cuomo et 
al. (in review). Wave conditions recorded at the site are summarized in Table 7. 

 

Figure 13 Example breakwater cross sections used in the application of the present methodology to 
real case study (courtesy of Prof; Y. Goda) 

Table 6. Dynamic characteristics of equivalent mass-spring-dashpot single degree of freedom system 

Breakwater M 
[tons] 

K 
[kN / m] 

D 
[kN s / m] 

T0 
[s] 

Hachinohe 1216 6.5 106 63.0 103 0.18 
Kobe 3574 13.7 106 153.7 103 0.19 

Onahama 3483 11.8 106 128.1 103 0.21 
Yokohama 2009 9.6 106 85.9 103 0.19 

 

Table 7. Wave conditions at the site and corresponding Bagnold number 

Breakwater H1/3 
[m] 

Hmax 
[m] 

T1/3 
[s] 

Tm 
[s] 

Bg 
[-] 

Hachinohe 6.1 7.6 11.5 10. 5 0.446 
Kobe 3.3 5.9 6.0 5.5 0.418 

Onahama 5.5 9.4 10.0 9.1 0.574 
Yokohama 3.5 6.3 7.3 6.6 0.445 

 

For simplicity, we use here the approximate expression for F* in Equation 5, together with parameters a and 
b in Table 3. 
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The normalised static equivalent design load Feq/Fqs+,1/250 corresponding to example cases in Table 6 (by 
means of T0) and wave condition in Table 7 (by means of Tm) can now be evaluated for non-exceedance 
joint probability levels in Tab 4. Results are plotted in Figure 14 as a function of dimensionless rise time tr/Tm. 
For the example cases used in this application, critical rise times fall within the range 0.001 Tm < tr < 0.005 
Tm. The static equivalent design load can now be evaluated by multiplying quasi-static design load by Goda 
(1974) for maxima of Feq/Fqs+,1/250 as a function of the non-exceedance joint probability level. 

As expected, the dynamic response of the caisson significantly reduces wave impacts having duration td << 
T0 while amplifying impact pressures with duration comparable to the period of oscillation of the structure. 
Impact pressures having duration td >> T0 are “quasi-statically” applied to the superstructure and therefore 
not affected by its dynamic response. Since their magnitude is smaller than that of pulsating loads at 1/250 
significance level (Fimp/Fh,qs+(1/250) < 1) they have little effects on the stability of the breakwater. And the 
caisson should be design to withstand pulsating loads predicted by well established methods (Goda, 2000). 

Results are given in Table 8 in terms of horizontal (shoreward) design wave load at non-exceedance level 
99.6% (that is, at 1/250 significance level). 

Table 8. Horizontal (shoreward) design load 

Breakwater Goda 
[kN] 

Takahashi 
[kN] 

Present 
method 

[kN] 
 F1/250 F1/250 99.6 % 

Hachinohe 818 1027 1069 
Kobe 277 532 300 

Onahama 1048 1700 1046 
Yokohama 439 647 503 
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Figure 14  Normalised static-equivalent design load Feq/Fqs+,1/250 corresponding to example breakwaters in 
Figure 9, as a function of the normalised rise time tr/Tm for non-exceedance levels between 95% and 99.8%. 
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Figuire 15 Normalised static-equivalent design load Feq/FGoda (-o-) corresponding to example 
breakwaters in Figure 9 for increasing non-exceedance levels between 95% and 99.8%. In the plots are also 
represented predictions by Goda (1974), solid line and Takahashi et al. (1994), dashed line 

For completeness, prediction by Goda (1974) and Takahashi et al. (1994) are also summarized in Table 8. 
Results, normalised assuming Fqs+,1/250 = FGoda (1974), are also plotted in Figure 11 for the 5 non-exceedance 
joint probability level in Tab 4 superimposed to design load by Goda (1974) and Takahashi et al. (1994). 

Finally, results are given in Table 9 in terms of safety factor (S.F.) against sliding. Note that for all prediction 
methods in Table 9, safety factors have been evaluated as: 

( )
H

U

F
FW

FS
−⋅

=
µ

..  (49) 

where µ = 0.6 is the friction factor, W is the effective weight of the caisson in water and the uplift force FU has 
been evaluated according to the classical formulation by Goda (1974). 

Table 9. Safety factor against sliding 

Breakwater Sliding 
[m] 

Goda 
S.F. 

Takahashi 
S.F. 

Present 
method 

S.F. 
  F1/250 F1/250 99.6 % 

Hachinohe 1.4 1.14 0.91 0.87 
Kobe 0.05 0.87 0.45 0.80 

Onahama 0 1.14 0.70 1.14 
Yokohama 0 1.17 0.79 1.02 
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Observing Table 9, the following conclusion can be derived: 

 In the case of Hachinobe Port breakweater, Goda’s method predicts no-sliding while substantial sliding of 
the caisson was measured at the site. Sliding is predicted by both Takahashi et al. (1994) and the 
present method; 

 In the case of Kobe Port breakweater, little sliding was measured and a S.F. slightly less than 1 should 
be expected. This is in agreement with prediction by Goda and the present method, while prediction by 
Takahashi et al. (1994) seems too pessimistic; 

 In the cases of Onahama Port and Yokohama Port breakwaters, no-sliding was measured. This agrees 
with prediction by Goda and the present method, while safety factors evaluated using predictions by 
Takahashi et al. (1994) are too conservative; 

 Prediction by the present method at 99.6% non-exceedance level compare well with both field 
observations and predictions by most established methods and is therefore suggested for an initial 
estimate of the design load. 

Although values in Tables 8 and 9 are in good agreement with predictions by Goda-Takahashi’s methods, 
the present formulation might diverge significantly from estimates using such methods under more severe 
conditions. As an example, estimates of design load by the present method for the cases of: Todohokke, 
Hacinohe (8th section), Kurihama and Kaizuka port breakwaters are compared with prediction by Goda-
Takahashi’s methods in Table 10, and in Table 11 in terms of safety factor against sliding, together with the 
measured sliding distance (Goda, 1973). It should be noted that values of safety factors in Tables 9 and 11 
differ slightly from those published in Goda (1974), this might be due to rounding during calculations but 
doesn’t affect the validity nor the results of the analysis since Fqs+,1/250 = FGoda (1974). 

Table 10.  Horizontal (shoreward) design load 

Breakwater Goda 
[kN] 

Takahashi 
[kN] 

Present 
method 

[kN] 
 F1/250 F1/250 99.6 % 

Todohokke 646 655 868 
Hacinohe 507 633 913 
Kurihama 339 339 437 
Kaizuka 202 268 424 

 

Table 11.  Safety factor against sliding 

Breakwater Sliding 
[m] 

Goda 
S.F. 

Takahashi 
S.F. 

Present 
method 

S.F. 
  F1/250 F1/250 99.6 % 

Todohokke 1.5 0.65 0.64 0.48 
Hacinohe 3.7 0.61 0.49 0.34 
Kurihama 5 0.88 0.88 0.68 
Kaizuka 8 0.67 0.51 0.32 
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7. Conclusions, recommendations and further work 
A method has been presented that is suitable for the evaluation of the static equivalent horizontal 
(shoreward) load for use in performance design of caisson breakwaters subject to wave impacts.  

Correlation curves between impact force and duration have been derived at fixed non-exceedance 
probability levels based on the analysis of the joint probability of impact maxima and rise times recorded 
during large scale physical model tests at CIEM / LIM wave flume of the Universitat Politècnica de 
Catalunya, Spain.  

Use of measurements from physical model tests requires scaling up from model to prototype, in this work, 
impact forces from physical model tests have been scaled to prototype scale by means of an adaptation of 
original work by Bagnold (1939) and Takahashi et al. (1985), as explained in Cuomo et al. (2010). 

Based on the analogy of caisson breakwaters with a SDOF system, it has been possible to derive simple 
estimates of the dynamic amplification factor for caisson breakwater subject to wave impacts. This can be 
used to: 

 identify the worst combination of impact maxima and rise time to use in the design; 

 evaluate the static-equivalent design load at different non-exceedance probability levels. 

These models have been integrated within a coherent methodology for the estimation of the equivalent 
design wave-impact load for use in early feasibility study. The methodology accounts for the stochastic 
nature of the loading, the dynamic response of the structures and is corrected for scaling effects. It has been 
found to  compare satisfactorily well with most established prediction models as well as to field 
measurements of sliding. 

It is worth noticing that the methodology proposed in this work is relatively general and can be adapted to 
suit different kind of loading and structures, once the joint probability distribution of impact maxima and rise-
times is known, together with the dynamic behaviour of the structure. 

Unfortunately, the application of the above procedure is not as straightforward as that of previous methods 
(Goda, 2000 and Takahashi et al, 1994). This is mainly due to the  fact that in this case the designer is asked 
to: 

1. choose the level of non-exceedance probability to be used in the design; 

2. evaluate the dynamic characteristics of the structure for use in the analysis; 

3. correct peak loads for scale effect; 

As far as the first point is concerned, the adoption of a particular non-exceedance level rather than 
“standard” values like 1/250, 98% or similar, can only be assessed by means of a cost / benefit analysis, 
which can now be based on a much more effective characterization of the joint probability of wave impact 
maxima and rise time. 

Scale effect can be accounted for by adapting the Bagnold-Mitsuyasu scaling law, as explained in Takahashi 
et al. (1985) and Cuomo et al. (2010). 

Finally, it must be stressed that assuming the caisson breakwater to behave as a SDOF system is indeed a 
strong simplification and more appropriate model should be developed to reduce simplification and improve 
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description of dynamics of superstructure, especially when non-linearity are expected to occur. This is 
always the case when sliding occurs between the superstructure and the soil foundation. 

A non-linear model for the evaluation of the sliding distance of caisson breakwaters for use in performance-
based design of such structures has been presented in Cuomo et al. (2010). 
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Notation 

A, B, k    [-] position, scale and shape parameter of the GEV distribution 

Â , B̂ , k̂   [-] estimations of the position, scale and shape parameter of the GEV distribution  

AV    [m3] volume of air expelled at impact 

a and b   [-] empirical coefficients 

a1,2, b1,2,   [-] fitting parameters  

c1,2, d1,2   [-] fitting parameters  

C(F(x),G(y))  [-] copula bivariate cumulative probability function 

( ) ( )( )ζ=xPyGCP  [-] copula bivariate conditional probability function 

( ) ( )( )ξ=yGxPCG  [-] copula bivariate conditional probability function 

( ) ( )( )yGxPc ,   [-] copula bivariate density probability function 

cd    [-] empirical parameter 

D   [kNs/m] damping 

d   [m] water depths during tests  

deff    [m] effective water depth at the structure  

F(x,y)    [-] bivariate cumulative probability distributions 

FP(y|x)    [-] conditional probability distribution function 

Fh   [N] horizontal force 

Fimp   [N] impact force 

Fimp*   [-] relative maximum impact force  

Fmax   [N] maximum landward impact force 

Fmin   [N] background noise-threshold level 

+qsF    [N] maximum quasi-static load 

Fqs+,1/250   [N] average of the 4 higher quasi-static force values within a 1000 waves test 

g     [m s-2] gravitational acceleration 

Hb    [m] wave height at breaking  

Hm0    [m] significant spectral wave height  

K   [kN/m] stiffness 

km    [-] mass parameter 

I   [Pa s] pressure impulse 
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i    [-] sample ranking index  

M   [kg] mass 

Mh   [Nm] total overturning moment 

N   [-] sample size 

Nz   [-] number of waves 

P(x), G(y)   [-] univariate cumulative probability distributions 

NiP ,    [-] non-exceedance cumulate sample frequency 

Pk   [Pa] pressure recorded by the kth pressure transducer 

Pmax    [Pa] maximum impact pressure  

Rc    [m] structure freeboard 

Tm   [s] mean wave period 

T0   [s] natural period of oscillation the structure 

T0,n   [s] natural period of oscillation the un-damped structure 

T0,D   [s] natural period of oscillation the damped structure 

t    [s] time needed to transfer wave kinetic energy to the wall 

0t     [m] time corresponding to the beginning of wave impact 

tr    [s] impact rise-time 

tr*   [-] relative rise-time  

td   [s] impact duration 

U    [ms-1] breaker velocity 

zk   [m] absolute position of the kth transducer up the wall 

βr, r=0,1,2,   [-] probability weighted moments 

rβ̂ , r=0,1,2,   [-] probability weighted moment estimations 

∆z   [m] distance up the wall between two successive transducers 

ρ     [kg m-3]water density 

µ, η, κ    [-] position, scale and shape parameters of the GP distribution 

µ̂ , η̂ , , κ̂   [-] estimations of position, scale and shape parameter of the GP distribution 

ψ    [-] dependence coefficient  

ψ̂    [-] dependence coefficient estimation 

λs   [-] scaling factor 
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ϑ    [-] assigned rise-time value 

Λ    [-] numerical constant 

Ω    [-] assigned probability level 
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APPENDIX - The “Complex” fitting method 
The Complex Method (CM) is a general, multivariable, direct-search, optimization technique 
widely applied to nonlinear problems with inequality constraints (Box, 1965) whose application 
becomes particularly convenient whenever derivatives of the objective function (i.e. function to 
be minimized) are difficult to obtain. The method represent a further development of the Simplex 
Method (SM), which is a unconstrained direct-search optimization method (Spendley et al., 
1962). The development introduced by Box involves the opportunity to bound the search for the 
optimal values of parameter set into a fixed region of the variables space.  

The CM is easily implementable and is efficient in obtaining the global optimum while imposing 
inequality constraints on explicit and implicit variables. Widely used in chemical engineering, the 
CM has only rarely been applied in coastal engineering (Piscopia, 2003) and is briefly described 
in the following. 

The CM is based on the adjustment of a geometric figure, called “complex”, having 2k+1 
vertices in the k-dimensional parameter-space, being k the number of variables in the objective 
function Φ(x). The initial complex shape, given by the distribution of its vertexes into the 
parameter-space, is completely arbitrary. Namely, 2k+1 points are randomly selected and the 
minimizing function is there evaluated. The vertexes are then ranked as a function of their level 
(i.e. the value of the objective function in the vertex). The resulting function values define, step 
by step, the marching direction of the solution on the basis of simple rules. The basic one is to 
replace the “worst” vertex in the figure, (defined as the vertex with the highest function values, 
also termed level) by mirroring it with respect to the centroid of the other vertexes. This process 
allows the “complex” to move within the variable space toward more favourable (with decreasing 
level) parameter settings. The process is repeated until all the vertexes collapse onto the 
centroid or until a convergence criterion is met.  

The definitions of the centroid (χ) of all vertices (xi) other than the worst (xj) and of the new 
reflected trial (xj

new) are respectively 

∑
+

=≠

=χ
qn

ij
in 1

1 x  (A1) 

( ) j
new
j xx 111 δ−χδ+=  (A2) 

being δ1>1 the reflection coefficient that controls the convergence rate. 

For the complex to improve the value of the control parameters, the new trial should always 
return a value of the objective function value smaller than the previous (Φ(xj

new) < Φ(xj)). When 
this is not the case, the general procedure changes: the worst vertex is kept in the complex and 
the vertex having the second higher level is reflected through the centroid. If this movement 
yields an improvement then the new trial is retained. On the contrary, if the search is moving 
uphill to higher levels, then the reflection rule is not further applied and the new trial is obtained 
by contracting the worst vertex in the complex, i.e. 

( ) j
new
j xx 221 δ+χδ−=  (A3) 

in which 0≤δ2≤1 is the negative contraction coefficient which controls the collapse of the vertices 
into the centroid. 
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Other rules can be added to the aforementioned two to enhance the efficiency of the 
optimisation process. For instance, vertexes retained in the complex for more than a specified 
number of steps could be re-evaluated, allowing the complex to move away from a local 
minimum. 

Nelder and Mead (1965) increased the convergence rate allowing the shape of the complex to 
be modified according to the result of the reflection so that it can expand or contract itself, 
enabling the routine to accelerate along a successful track of improvement or to home around 
the optimum (see figure A1). Expansion is attempted every time eq. (A2) provides a minimum 
value of the level. In this cases xj is expanded according to  

( ) j
new
j xx 331 δ−χδ+=  (A4) 

where 1<δ1<δ3 is the expansion coefficient. If eq. (A4) results in an even smaller trial than that 
obtained using eq. (A2), the expansion outcome is retained. Otherwise the expansion trial is 
discharged and the worst vertex is replaced by the outcome of eq. (A2). Analogously, positive 
contraction is performed if the complex reaches a worst point, i.e. eq. (A2) gives a trial xj

new with 
max[Φ(xi≠j)] < Φ(xj

new) < Φ(xj). In this cases xj is contracted according to  

( ) j
new
j xx 441 δ−χδ+=  (A5) 

in which 0≤δ4≤1 is the positive contraction coefficient that controls the collapse onto the centroid. 

The optimization procedure stops when one of the following criteria is met one of the following 
criteria: 

( )[ ] 610max −≤Φ ix  (A6) 

( )[ ] ( )[ ]{ } ( )[ ] ( )[ ]{ } 610  minmax  minmax   2 −≤Φ+ΦΦ−Φ iiii xxxx  (A7) 

610>m  (A8) 

being m the iteration index and i = 1, 2,…, 2k+1.  

With the aim to constrain the search path within a limited parameter space, Box (1965) imposed 
a range [lh, uh] on each variable, which therefore must satisfy the following constraints: 

0, ≥−=Γ hhih lx  (A9) 

0, ≥−=Γ + hhikh xu  (A10) 

in which -∞ ≤ lh < uh ≤ ∞, h = 1, 2,…, k and i = 1, 2,…, 2k+1.  

If eq. (A2) results in a trial xj
new that violates one of the constrains Γh, the outrange trial is reset 

inside the allowable bound and the resulting point is retained as the new vertex. If eq. (A2) 
results in a trial xj

new that violates two or more constraints Γ, then successive moves are made 
halfway back toward the centroid, until a feasible vertex is attained. 

If no reliable guess point is available, the vertices of the initial complex can be assigned as: 

( )λ−+= hhhhi lulx ,  (A11) 
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being λ a pseudo-random deviate uniformly distributed over (0,1), h = 1, 2,…, k and i = 1, 2,…, 
2k+1. If a suitable guess point (x0) is available, the initial complex shape ought to be drawn 
starting from it. In the present work we use the following expression: 

( ) 10,, hhhohi luxx −λ+=
 (A12) 

A flow chart summarising the essential steps of the CM is given in Figure A2. 
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