
Hydraulics Researdt
Walingford

USINC TIICBOCOUSUIER GRAPEICS TO

DISPI.AT NUUERICAL TrcDH" BESIILTS;

Stuart Davidson

Report I{o. SR 52
uay 1985

H Y D R A U L T C S R E S E A R C I l J 4 I I V I . .

WALL INGFORD. OXON.

- 6 JUN I9B5

Registered Office: Hydraulics Research Limited,
Watlingford, Oxfordshire OXIO 8BA.
Telephone: 0491 35381. Telex: 848552

@Cror r , Copyr igh t 1985

Pub l lshed by permiss lon o f the Cont ro l le r

o f t l e r M a j e s t y t s S E a t i o n e r y 0 f f i c e '

This report describes work carried out
under Cont,ract, DcRl465/31, funded by the
Department of Transport from April L982
to Mareh 1984 and thereafter by the
Department of the Environment. Any
opinions expressed in this report are not
necessarily those of the funding
Department,s. The DoE (ESPU) nominated
officer was Mr A J M Earrison. The work
was carried out by Mr S Davidson in the
Computer Services Department of
Hydraulics Research, Wallingford. The
contract lras managed by Dr A J Brewer.
This report is published nith the
pernisslon of the Departuent of the
Environment..

ootmtTs

INTRODUCTION

DESCRIPTION OF CRAPHICS EQUIPMENT

Page
I

3

3
4
5

7

7
9
16

2 .L
2 .2
2 .3

3 .1
3 .2
3 .3

FICI'RE 1

FIGI]RE 2

The graphics controller

The frame buffer

The colour prlnter

DESCRIPTION OF GRAPEICS SOFThIARE

The hard copy facillty

The result fi le dlsplaY facllitY

The editor

INTRODUCTION
Early in the investlgations lnto the feasib{Lity of
using a m{cro-computer based colour graphics systeu at
llydraulics Research showed that nriting programs to
efficie'ntly control such a system requires an
understandlng of raster techniques and colour theory.

In order to obviate the necessity for the Hydraultc
engineer to acqulre such an understanding, research
was aimed at designing prograns that aLlowed them
access to the colour graphlcs facllities through
easy-to-use cursor and keyboard controls.

To this end, the fol-lowl-ng programs nere designed and
wr l t ten :

(a) An edltor to manipulate displayed irnages.
(b) A print program for displaying hard copies

of colour images.
(c) A prograu for displaying result f l les from

matheuatlcal models as an ani.mation
sequence.

Methods of video recording or filning the displ-ay
images were disiussed with the Photographic Sectiou
and advice was sort from outside companles. Several
were tried and investigatlons continue.

As the research progressed, further areas of interest
presented theuselves and the shortcomings of the baslc
kit being used became apparent.

The feye catehing' feature of colour images could be
useful ly exploi ted for publ ic i ty purposes. A
graphical presentation of llydraulics work would be
visually striking and informative.

To produce more neaningfuL realistic inages a wider
range of colours would be required. If this were
comblned with a device such as a pallette or light pen
that exploits the user-fri.endliness of graphics then
the system would be open to a wider range of design
appl icat ions at Hydraul ics.

Animation of results from mathematical nodels helped
to clar i fy the results. To extend this faci l i ty to
more complex models, a more powerful processor would
be required. To sat isfy this requirement a
sophisticated graphics terminaL could be connected to
the uainframe computer. Thls would also circuuvent
any restrlctions imposed by transferring resul-ts to
the micro-computer.

Accuracy would be lmproved with a higher resolution'
this would enabl-e more complex images to be
presented

Some of these improvements could be achleved at little
ext,ra cost.

2 DESCRIPTION OF
GRAPEICS
EQUIPMENT

2.L The graphics
control ler

Pluto is an lntelligent graphics cont,roller. In lts
simple form the system resides on a single board which
contalns the followlng:

Intel- 16-blt micro-processor
192 K bytes Frame buffer
Graphics routlnes in flrmware
Expansion Bus for adding extra features

The version of Pluto used for this lnvestlgation was
the basic board wtth a high resolution option. This
provided a choice of eight colours and a resolution of
640II x 288 V or 576Y in the hlgh resolution mode.

The system rdas connected to an ACT Sirius 1 miero
computer which also uses the 8088 micro-processor.
With the Pluto card housed ln ao external case,
connectlon to. the Sirius was through an interface card
in the Sirius expansion BUS.

To display images, a Cotron Sword uonitor was
connected to the Pluto.

To access the graphic routines frou a hlgh level
language such as Fortran, an assembler library is a

required.

The purpose of the routines ln the Llbrary is to act
as an lnterface. Sending data from the call-ing
program to the address in the hosts memory to shich
Pluto in connected.

The assembler library originalLy supplied with the
system was not, suitable for Microsoft, Fortran as used
on the Sir ius. The reason for this was thaE thls
version of Fortran is able to address outside the 64K
lirnit norually irnposed by 16-bit mi.cro-processors and
so i t uses r long data pointersr. These are
effect ively 20-bi t wide addresses composed of a
segaenE address and an offset within the segment.

Another assembler llbrary was ordered which was able
to cope with the longer addressing space. This
library dld not provlde an int,erface to all the Pluto
graphics routines and so some of these had to be
wri t t ,en.

2.2 The Frame buffer
On the baslc Pluto system the frame buffer ls 192K
bytes ln slze. This relatively large amount of
memory is required because Pluto uses raster
technlques to display the inage.

Wlth raster displays, each plcture element (pixeL) on
the screen is cont,rolled by a memory Locatlon in the
frame buffer.

The value of a location determLnes the colour of the
correspondLng pixel.

The Lnage ls dlsplayed on the screen by scannlng the
frane buffer in a sinilar manner to that ln which a TV
screen ls scanned. That ls, horizontal lines from the
top Left corner down to bottom right corner and
rePeat .

The frane buffer nust be scanned and the image
refreshed onto the screen many times per second in
order to achieve a r f l icker freet display.

In PLutors low resolut,ion mode, the lnage is
completely refreshed onto the screen every 1/5oth of a
second.

To achleve the higher resolution of 640H x 576Y, Pluto
uses interlace teehniques.

Interlaee is a means of producing a high resolution
image wlthout the associated flicker problems of
scanning a larger frame buffer. This is achieved by
scannLng only half of the frame buffer each time. On
one pass the locations controlling even numbered pixel
lines are scanned and on the next pass, locations
controlling odd numbered pixel Lines are scanned. The
result is that new information is stil l being
displayed every 1/50th of a second.

In the version of Plut,o used, each location
controlling a pixel conslsted of 3-bits. This gave a
range of eight possible colours.

These 3-bits can be thought of as controlllng t,he
three primary colours red, green and blue. Therefore,
the whole frarne buffer can be thought of as three
colour planes.

The varlous combinatLons of bits being set/unset
produces the range of colours: Black, Green, Blue,
Cyan, Red, Yellow, Magenta and White.

The 192K
pixel s:

(i . e . 6 4 0

The fra'ne
manner.

frame buffer supports 640fi by more than 800v

;

x 800 x 3 = 1536000 bi ts = 192000 bytes)

buffer is divided up ln the folloning

A
g'8
I
+

88v
+

2!+
V

-) Lo-res

I
Par t i t ion 1

I Lo-res

I
Part l t lon 2

I General worki

f
srnbol partit

I l i-res i
Par t i t ion 0

ng
io

space and
ns

2 .3 The coLour
pr lnter

The frame buffer ls dual ported enabling it to be
updated and displayed on the screen slmultaneously.

A Diablo Series C ink jet prlnter was connected to the
paral lel port on the Sir ius.

The Diablo provides four basic colours: the
subt,ractive primaries cyan, yellow and magenta. Black
is also provided because, in pr int ing, i t is di f f icul t
to obtain a deep black by conbining colours.

The colours cyan, magenta and yellow are the
complements of the additive primaries red, green and
blue respect ively. These subtract lve pr imaries are
provided because in common with other colour hard copy
devices the Diablo is based on the CltY colour model.

The basis of the CMY colour nodel is that colours are
specified by what is rernoved fron white light. White
light is the sum of the additive primaries red, green
and blue.

As an example: removing red from white light leaves
green and blue and these combine to produce the
subtractive primary cyan.

Therefore, a surface coated with cyan coloured ink
absorbs red l ight and ref lecEs blue, green. Also, a
surface coated with cyan and yellow absorbs red and
blue and reflects green fron i1luninat,tng white
1 igh t .

Whilst the Diablo is based on the CMY colour model,
the Pluto ls based on the RGB colour model.

The basis of the RGB colour nodeL is that colours are
derlved from what is added to bLack rather than what
Ls subtracted from white f.ight

The Lndivldual contributl.ons of each primary are added
together to form the resulting eolour.

Knowledge of both the CMY and RGB colour models was
important when writing a routine to copy a screen
image from PLuto to the Dlablo.

3 DESCRIPTION OF
GRAPEICS SOFTI{ARE

3.I The hard copy
facility

mrs fa'crl-ity produces hard coples for screen lmages.
The following requirements dictated that the routine
should be nritt,en in a language other than Fortran:

r The routine should be as fast as possible
o Perforn logieal operations on all bits in

bytes
o Send commands dlrect to the printer port

(unforrnatted)

To satisfy these requirements, the routine !ra6 written
in 8086 Assembler and incorporated in the assembler
int ,erface l ibrary.

The Diablo provides a bit pattern printing mode which
prints four pixel- lines at a time. The format of the
cornnand ls: information specifying the colour, number
and length of the pixel 1lne followed by a string of
bytes specifyLng the bi t pattern to be pr inted.

Readlng the Pluto bit planes into individual strings
of bytes formed the basis of the bit pattern required
in the printing conmand.

The following example of printing cyan on the Diablo
deuonstrates reading indivldual bit planes and
producl-ng a bit pattern for the print cbr"mand.

Perform logicaL OR on bytes holding blue and green
planes:

00110011
01010101
6TTI-T'-]N

Perform logieal NAND wirh byte holding red plane:

0 1 1 1 0 0 0 0

Line of pixel-s - B G B C R Y M W
l r l y e e a h
a e u a d l g l
c e e n l e t
k n o n e

w t
a

Read Red plane - 0 0 0 0 1 1 1 I
Read Blue pLane - 0 0 I 1 0 0 1 1
Read Green plane - 0 1 0 1 0 1 0 I

This will reoove any bits whlch represent pixels with
red ln them. This ls effectively subtracting red from
white light as detail-ed in CI'IY nodel example.

the bit pattern printlng conmand and thls byte would
now be s'ent to the Dlablo to prlnt cyan.

By repeatlng thls process and using the appropriate
bit planes at each stage we also print nagenta and
yellow.

The result is that both the subtractlve and additive
primaries are produced on the Diablo. The additive
primarl.es are produced where the subtractive prlmaries
overlap. For instance, where cyan and ye11ow overlap
green wlll be produced.

Note: the Dtablo does not prlnt bl-ue because magenta
and red overlap to produce violet,, however, this ls
usual ly adequate.

Printing black required a slightJ-y different approaeh
t,o that used for the subtractive primaries. The
reason for this was that colours ln the RGB nodel
combine to produce white whereas they conbine to
produce black in the CMY nodel (i .e. a locat ion in the
frame buffer with bits set ln the red, green and blue
planes would produce a white pixel whereas, printing
cyan, magenta and yellow on the Diablo would produce
murky black.

To obtain a bit pattern representing blaek pixels
perform a logical NOT on, sayr the red plane:

1 1 1 1 0 0 0 0

Perform logical NAND withr sayr the blue plane:

1 1 0 0 0 0 0 0

Perform logical NAND with the green plane:

1 0 0 0 0 0 0 0

The resulting bit pattern represents the only bl-ack
pixel in the exarnple. This would nos be sent to the
Diablo as part of the command to print black.

Coping with distort ion in hard copies

To enable an image from one of the low resolution
partltlons to fil l the screen, the refresh mechanism

3 .2 The result f i le
display faei l i ty

leaves alternate pixel lines blank. These blank lines
are only noticeabLe when viewlng the screen from a
very short distance.

The result is that taking a copy of alt locatlons in
the partition would produce a print, such as Fig 1.

Whereas the ratio of width to height should be
approximately 1:1 as displayed on the screen.

To luprove.the proport lons of the picture blauk l ines
could not have been introduced in the hard copy since
these would have been noticeable. Instead, every
pixel line was duplieated.

Essent,ially the screen dunping rouLine detects when a
low resolut ion part i t ion ls being displayed. Nornal ly
the routine would read 4 pixel lines at a time since
the Diablo prints 4 at a tlme. However, ln the case
of low resolution only 2 pixel lines were read. A
rblt shufflingf routLne then expanded the string of
bytes into a str ing represent ing 4 pixel l ines.

Although the 'bit shufflingr routine had to be used on
each bit-plane for every two pixel lines it was not a
considerable tine overhead. This was because lt used
hardware implemented string operators in the 8086
Assembler.

Using the rbi t shuff l ingr rout ine produced pictures
such as FLg 2

The resolut,ion of the D1ab10 is 1024I{ x c and the
Pluto is 640iI x 288V (or 576V). Sinee the physical
width of the paper and the screen are simllar this
means that a pixel on the Diablo is approxLmaxeLy 2/3
the size of a Pluto pixel

The result is that a ful-l screen dunp of the Pluto
appears 2/3 tne size on the Diablo.

To overcone this def ic iency i t would be possible to
restrict the amount of the screen to be dumped to 512v
in high resolution mode or 256Y in 1ow resolution
mode. Then double each pixel in both directions and
print the inage sideways on the Diablo. Note: in low
resolution each plxel would be quadrupled vertically.

Thls option may be provided in future.

The result f i les used for display purposes, dur ing the
investigation were produced on the ICL 2972
mainframe.

These were transferred to the Sirius by using a
terminal emulatLon package on the micro. This

package makes the nlcro appear to the mainframe as a
Remote Job Entry (RJE) statlon. The RJE siatiou
comprises an operat.lng coasole, virtual line printer
and two interactlve terminals.

a

Listing a result fi le from any mainframe terminal to
the nlcrors virtual line printer and controlling the
transfer fron the RJE console enabled the fILe to be
placed on the mlcrors disk.

Format

The flles represented regular grids with real numbers
defining the value of each grid ce11-. These real
numbers represented a wide range of val-ues. However,
since Pluto could only display eight colours and the
codes for these were the integers 0-7 there was
lnitially no need to transfer the file with real
numbers.

A routine was writt,en and used on the nainframe to
convert ranges of real numbers into single Lntegers.
It was fel-t that the tine saving ln transferring
values as singl-e byte iotegers rather than, sayr six
byte reals would be valuable. Especially when
transferrlng files containing l-arge numbers of grids.

Displaying (ce1-L for cell)

To handle result fi les on the Sirius a Fortran program
was wrltten.

The prograu read the file header whlch contained
information on the dimensions of the grid and the
number of grids ln the fi1e.

The grid dimensions nere glven in terms of the number
of cel1s horizontally and vertically. If the number
of grids ltas greater than one it was assumed that a
sequence was to be shown and so the low resolutlon
optlon was used. This ls explained uore fully in the
animation section.

10

To determine the dimensions of a grid cel1 ln plxels:

Number vertLcal plxels =

rnreger value of (ffi)

Number horizontal pixels =

Nearest lnteger TNumber * Scal ing;
value of

- \Verttcal plxels ^ factor

I f :

. ((Nunber horlzontal pixels x number vertical pixels) >

horizontal resolutlon) then

Decrement number vertical
pixels and re-cal culate

I{lth the dimensions of a grld cel1 deternined ln
pixels, the program then read the values for a grld
into an array. It then stepped through the array
plottlng the value of each grld ceLl as a coloured
rectangl e

Using this nethod and wlth a1l- grids held in memory'
the tine to update the screen ltas approximately 2
seconds. This ls not only unacceptably slow but
linits on the amount of available memory could also be
quite restr ict ive.

Limits on memory

It has been mentioned that Mlcrosoft Fortran can
address outside the 64K code segment llnit. The linit
on a llnked Fortran nodule is 384K.

This ext,ra space can be used to store arrays if they
are placed in named COMMON bLocks since named COMMON
blocks are automatically placed in separate segments.
A segnent may be up to 64K bytes in size which is also
the maximum slze of a Fortran array.

If a typlcal grid produced on the DAP represented a
64 x 64 array and each element or grid eaLl was
represented by a single integer in a byte then the
grld would occupy 4K bytes. Therefore, sixteen such
grids could be held in one array in a named COMMON
block .

Up to flve of these maxlmum sized COMMON blocks coul-d
be declared in the 384K link nodule slnce at least 64K
wlll be required for the Fortran code and assembler
interface l ibrary etc.

The result ls that an animated sequence coul-d contain
approximately 80 such grids, all held in memory. This
could not only prove restrlctive but the time to read
the file (s) into the arrays lras unacceptably large.

1 1

To overcome the restrictions of thls nethod of display
and holding al1 grids in nemory, Run Length Encoding
was used with unforn:rtted flles

Run Length Encoding (RtE)

Iu a typical image the amount of eontinuous space of
the same colour ls often qulte Large. The basis of
RLE is both to reduce the amount of lnformation

'required to code this space and reduce the amount of
t ime to dlsplay i t .

For Lnstance, a line of 64 grid cells aLl the same
colour would nornally requlre 64 bytes of data to code
them and 64 separate rectangLe plotting commands to
display them. Ilowever, with RLE the amount of data
can be reduced to 2 bytes. One representing the
colour and the other representing the number of cells.
The program Lnterpreting this RLE data would know the

-dinensions of a grid ee1l and so just one rectangle
plot coronand would display the whol-e Line of cells.

Unformatted flIes were used for storing the RLE data
because these are more efficient, in terms of speed,
than foruatted. Sequential access was used since Lhis
is faster than direct access.

A disadvantage of RLE 1s that it can be difficult to
edit the data. For instance, lf the colour of a grid
ce1l in a line of celLs of the same coLour is to be
changed. Then a new field would have to be
introduced, assuming a record represents the whole
lmage.

For this reason RLE was not used on the mainframe
before files were transnitted even though the possible
data compressl.on would have been great,er than the real
to integer converslon mentioned earlier.

Produce RtE data

The following flow chart
files from the mainframe
containing records whlch
forn.

demonstrates how results
were convert,ed to files
represented grids ln RLE

L2

i

Open result f l le

Open RLE file

Read grid

from result f i le

Display

cell for cell
I

RLE
i

routine

i

Write ' record to
:

RLE file

13

The RLE routine sklpped to the top left corner of each
ceI1 as displayed and returned the value of the pLxel.
In this way an array was bulLt up whLch included any
changes nade by the editor. The coot,ents of this
array were then run length encoded and written to the
output f i le as a single record.

Producing anirnatl.on

In an animatlon sequence the vlewer shorrld not see the
screen being updated. This can be achieved on PLuto
by using the two low resolutl.on partitions ln the
frame buffer.

The program nas writ,ten to display a sequence of
grids. The prograe designated one partltion to be
updated and the other to be displayed. A record was
read from the RLE file into an array, thls run length
encoded data was wrltt,en to the partition to be
updated. When complete, the assignment was swapped
and the next record was read, etc. Thls reduced the
update tlme to approxlmately 1 second. Also, l-inits
on nemory lrere not a problem because data for only one
grid was held in memory at any one time.

Distortion of dis-played inages

Low resolution images are able to fil l the sereen by
leavlng alternate blank pixel lines, whereas hi.gh
resolution images use all pixel 1ines.

This results in displayed Lnages requiring dlfferent
scaling factors to be applied, depending on whether a
high or low resoLution screen is used.

Applylng these scaling factors would very likely
result in lengths with a decinaL fraction. When these
are displayed in pixels they must be whole numbers
since a pixel ls the smallest displayable element.
The conversion to integer inevlt.ably lntroduces
rounding errors. This ls known as the Inearest

integert method.

If this rounding error is present in the width of each
grid cel l , i t is possible that a not iceable distort ion
would appear in a l ine of, say, 64 cel ls.

Applying the seal ing factor to lengths of cel1s of the
same cotour, as would be possible with RLE data,
prevents the cumulative error building up but Lhe
overall width of the inage becomes unpredictabLe since
the nuuber of colour changes is not known. Therefore,
thls nethod is less desirable than the previous one.

L 4

In an effort to eircumvent the problem of a cumulative
error building up, the following method was used. It
ls best explained by pseudo-code.

FOR N = 1 TO NIJMBER-OF-IIORIZONTAL-CELLS

REA],-CELL-I{IDTE

SIn{-OF-CELL.WIDTHS

SUM-OF-CELL-I{IDTES

CELL-ITIDTH(N)

HEIGUT_OF CELL x
SCALE FACTOR
0

SUM-OF-CELL-WIDTI{S +
REAI-CELL-WIDTII
NEAREST INTEGER

(suM-oF-cELL WTDTES +
RXAJ.-CELL-WTDTE) -

NEAREST INTEGER
(sttM-or-cELL{,lrDTES)

0 tne\r cELL-wrDTH (N) = trF cELL-WrDTn (N)
REPEAT

NB: A cell nlth rdidth 0 ts avoided because this wouLd
resuLt in data being l-ost from the displayed
inage.

This nethod prevents the cumul,ative error exceeding L
a pLxel. Ilowever, when thls is compensated for the
effect ls quite severe in that a pixel- is dropped.
Thls could cause problems when tbuttingr nultiple
grids together in the same display.

AIso, preventing a ceL1 width of 0 effectively means
that a flne grid of approxinately 1 pixel per cell is
able to buil-d up a cumulative error. This wouLd
certainly cause problems when trying to tbuttt such a
grid onto ones which have no cumulative error.

The result is that both methods of displaying grids
have their own merits. During the Lnvestigati.oa, the
Inearegt integert method was used,

Mulr iple Grids

Any distortion in a grid can appear very uuch worse
when several grids with different cel1 sizes are
displayed simultaneously. This is because the grids
musL rbut,tr up to each other exactly and a single
pixel l ine'discrepancy would be very not iceable.

In a standard multiple grid, the cel1 sizes vary by a
factor of three. The origins of the finer grids are
specifl.ed in terms of their cell sizes from the top
left corner of the coursest gr l .d.

15

3.3 The ed i to r

Using this coordinate system and the methods' for
displaying grids mentLoned so far, the grids wi1-l
possibly fai l to rbuttr together. Especlal , ly Lf a
fine grid where one cell is represented by one pixeL
ls used.

Some wotk has been done to overcome these problens and
grids have been 'buttedr together by using a dlfferent
coordinate system. In this system the finer grid
origins were speclfied in terms of the next coursest
grld ce1ls from the next coursest grid origin.

Ilowever, this method was not robust enough to be a
general case. Also it relies on non-standard result
files whereas the intention was to use standard ones.

The result in that a suitable robust and general
method has not yet been developed. However, this
problero will be addressed in the near future.

In addltion to displaytng inages, a facillty to
manipulate then was al-so required. To satisfy this
requirement a basic editing program was developed.

The edltor was writ.ten in Fortran, providing an
interface to the rout,ines in the assembler library as
well as other Fortran routines.

I t provldes a mean of al ter ing that part of Plutors
frame buffer which ls being displayed.,

The user interacts with the editor by usLng the
keyboard and single let ter, keyword select ion - (i .e.
press tPr for pr lnt) . The cursor is manipulated by
the numeric keypad on the right of the keyboard.

The edltor has a modular structure. This proved
valuable during the investigation since new facilities
could be tried and tested sinply by adding e:rtra
subrout ines.

L 6

i
Set part i t ion to
work on to that,
' displayed

Open console as
unfornatted fi le

Keyboard lnput
routlne

Enlarging
routlne

Key display
roiltine

Cursor move
routine

Select colour
routine

Flood fi l l
routine

Text pr int ing
routine

Dunp to disc
routine

Load fron
disc routine

En1 arging routine, fEr

This routine enlarges any part of the screen by a
factor of two. The area to be enlarged is shown by
XORing a rectangle onto the screen.

To deflie the rectangJ.e the cursor is moved to the
bottom right hand corner of the area and the rRr key
ls pressed, the cursor is then moved to the top lef t
of the area and the r l f key is pressed.

The routine checks that the rectangle does not exceed
a guarter of the screen since if thls were expanded it
would not flt. If the dimensions are within linits
the rectangle is dtsplayed.

The cursor can then be moved to the top left corner of
where the expanded box will be displayed. The rE I key
is then pressed again and the routine checks that the
cursor ls not too near the edge of the screen.

The rectangle ls then XORted agaln to erase it and the
expanded version Ls displayed at the new cursor
position. Eaeh pixel is expanded into four

Print i .ns rout ine rpr

The routine enables any part of the screen to be
printed on the attached Diablo pr inter.

The area to be printed ls defined by XORlng a
rectangle onto the screen in the sarne way that the
enlarge routine does this. However, no checks are
made on the rectangle diuensions.

The user is able to check that the displayed rectangle
encloses the area to be pr inted. I f t t does, the
rectangle is XORred again to erase it and the area is
dumped to the Diablo.

The sereen dump routine is described more fully in thethard copyr sect ion of this report .

Key display rout ine rKl

This routine provides a means of displaying those
colours available for line drawing, flood fil l ing and
boundary f111lng.

The rout ine displays a ser ies of
along the top left corner of the
are arranged from left to right
code order (le Black 0, Green 1,
4, YeJ-low 5, Magenta 6 and White

coloured rectangles
screen. The colours

in ascendlng colour
Blue 2, Cyan 3, Red
7) .

1 8

To experiment wlth ruixing various colours a shading
routine was written for use on earLier verslons of the
ed i to r .

The routlne produced rectangles which consisted of
vertlcal, pixel wide bands of any two colours- From a
short dlst,ance the bands appeared to bLend together
lnto the required shade. (ie Alternate red and yellow
appeared as Orange).

However, thl.s nethod of obtaining extra colours is no
longer available on current versions of the editor.
The reasons for this are:

- The mixed colours were rather dull
eompared to the primaries.

- The Pluto rpattern fil-l | .cornmand had to be
used to twall papert areas of the screen'
this was slow and restr ict ive.

- Plut,o is easily nodified to an 8-blt plane
nodel and hence 256 colours.

Select colour rout ine 'g '

Thls routine provi.des a means of changing the current
and perimeter colours for line drawing, flood fil l lng
and boundary fil l-ing.

The cent,re of the cursor is placed over the desired
coLour in the key and the '0' key pressed.

If the Y-coordlnate of the cursor falls within the
height of the key a sinple algorithn is applied to the
X-coordinate to deternlne which colour the cursor is
superimposed on.

A display on the right of the screen is updated to the
current colour.

Cursor move routine

The cursor is defined as a whlte cross hair which ls
superimposed onto the inage without naking any
destruct ive changes.

Movement is affected by the nurneric keypad on the
r ight of the keyboard.

Key f5r actb as a toggle switch to set a trai l . I f
the switch ls rorlr a line of the current colour ls
displayed as the cursor moves. The trail is not

l 9

XORfed on to the screen so that a perimeter can be
defined for boundary fil ls.

Key r. t acts as a t toggler switch to determine by how
uuch the cursor ooves. The options are 1 or 10 plxels
in any direction

Keys 1-4 and 6-9 deLermLne the direction of movement
of the cursor. Continuous movement Ls achieved by
uslng the frepeatt key.

F lood f i l l rou t lne rF ' '

This inplements Plutors flood fil l connand. The pixel
at the cent,re of the cursor and aLl connected pixels
of the same colour are changed to the current coLour.

Boundary fil l routine rB I

This is a sinple implementation of Plut,ors boundary
fill conmand.

The area enclosed by the perimeter colour is fil l"ed
with the current colour.

Text. printing rorltine tWr

This routlne enabl-es characters to be prlnted on the
screen in any one of four directions.

When the fWr key is pressed the cursor is XORred off
the screen. The direct ion for pr int ing text is
selected from keys 2, 4, 6 ot 8 as for cursor
movement. Once the direction has been selected, any
keys pressed are echoed onto the screen in that
d i rec t ion .

Pressing rreturnt redisplays the cursor at the end of
the text.

Dump to disc rout ine rDr

ThLs routine copies that part of the frame buffer
being displayed to a disc f i le.

When the rDr key is pressed the.user is pronpted for
the name of a file to use. The screen is then copled
to the file, unformat,ted.

Load from disc rout ine rLf

Thls is the complementary rout ine to tdump to d isc! .
The contents of the named fi le are loaded into the
part l t ion current ly being d isplayed.

20

Figure 1

F igure 2

