Hydraulics Research
Wallingford

USING MICROCOMPUTER GRAPHICS TO

DISPLAY NUMERICAL MODEL RESULTS

Stuart Davidson

Report No. SR 52
May 1985

HYDRAULICS RESEARCH - s 1ur
WALLINGFORD, OXON.

- 6 JUN1985

..........................

..........................

Registered Office: Hydraulics Research Limited,
Wallingford, Oxfordshire OX10 8BA.
Telephone: 0491 35381. Telex: 848552

©cCrown Copyright 1985

Published by permission of the Controller
of Her Majesty's Stationery Office.

This report describes work carried out
under Contract DGR/465/31, funded by the
Department of Transport from April 1982
to March 1984 and thereafter by the
Department of the Environment. Any
opinions expressed in this report are not
necessarily those of the funding
Departments. The DoE (ESPU) nominated
officer was Mr A J M Harrison. The work
was carried out by Mr S Davidsomn in the
Computer Services Department of
Hydraulics Research, Wallingford. The
contract was managed by Dr A J Brewer.
This report is published with the
permission of the Department of the
Environment.

CONTENTS

1 'INTRODUCTION 1

2 DESCRIPTION OF GRAPHICS EQUIPMENT 3
2.1 The graphics controller 3
2.2 The frame buffer 4
2.3 The colour printer 5

3 DESCRIPTION OF GRAPHICS SOFTWARE , o 7
3.1 The hard copy facility i 7
3.2 The result file display facility 9
3.3 The editor 16

FIGURE 1

FIGURE 2

1

INTRODUCTION

Early in the investigations into the feasibility of
using a micro—computer based colour graphics system at
Hydraulics Research showed that writing programs to
efficiently control such a system requires an 5
understanding of raster techniques and colour theory.

In order to obviate the necessity for the Hydraulic
engineer to acquire such an understanding, research
was aimed at designing programs that allowed them
access to the colour graphics facilities through
easy-to—use cursor and keyboard controls.

To this end, the following programs were designed and
written:

(a) An editor to manipulate displayed images.

(b) A print program for displaying hard coples
of colour images.

(c) A program for displaying result files from
mathematical models as an animation
sequence.

Methods of video recording or filming the display
images were discussed with the Photographic Section
and advice was sort from outside companies. Several
were tried and investigations continue.

As the research progressed, further areas of interest
presented themselves and the shortcomings of the basic
kit being used became apparent.

The 'eye catching' feature of colour images could be
usefully exploited for publicity purposes. A
graphical presentation of Hydraulics work would be
visually striking and informative.

To produce more meaningful realistic images a wider
range of colours would be required. If this were
combined with a device such as a pallette or light pen
that exploits the user—friendliness of graphics then
the system would be open to a wider range of design
applications at Hydraulics.

Animation of results from mathematical models helped
to clarify the results. To extend this facility to
more complex models, a more powerful processor would
be required. To satisfy this requirement a
sophisticated graphics terminal could be connected to
the mainframe computer. This would also circumvent
any restrictions imposed by transferring results to
the micro-computer.

Accuracy would be improved with a higher resolution;

this would enable more complex images to be
presented.)

Some of these improvements could be achieved at little
extra ¢ost.

2.1

DESCRIPTION OF
GRAPHICS
EQUIPMENT

The graphics
controller

Pluto is an intelligent graphics controller. 1In its
simple form the system resides on a single board which
contains the following:

Intel 16-bit micro-processor

192 K bytes Frame buffer

Graphics routines in firmware
Expansion Bus for adding extra features

The version of Pluto used for this investigation was
the basic board with a high resolution option. This
provided a choice of eight colours and a resolution of
640H x 288 V or 576V in the high resolution mode.

The system was connected to an ACT Sirius 1 micro
computer which also uses the 8088 micro-processor.

With the Pluto card housed in an external case,

connection to. the Sirius was through an interface card
in the Sirius expansion BUS.

To display images, a Cotron Sword monitor was
connected to the Pluto.

To access the graphic routines from a ‘high level
language such as Fortran, an assembler library is
required.

The purpose of the routines in the library is to act
as an interface. Sending data from the calling
program to the address in the hosts memory to which
Pluto in connected.

The assembler library originally supplied with the
system was not suitable for Microsoft Fortran as used
on the Sirius. The reason for this was that this
version of Fortran is able to address outside the 64K
limit normally imposed by 16-bit micro—processors and
so it uses 'long data pointers'. These are
effectively 20-bit wide addresses composed of a
segment address and an offset within the segment.

Another assembler library was ordered which was able
to cope with the longer addressing space. This
library did not provide an interface to all the Pluto
graphics routines and so some of these had to be
written. '

2.2 The Frame buffer

On the basic Pluto system the frame buffer is 192K
bytes in size. This relatively large amount of
memory is required because Fluto uses raster
techniques to display the image.

With raster displays, each picture element (pixel) on
the screen is controlled by a memory location in the
frame buffer.

The value of a location determines the colour of the
corresponding pixel.

The image is displayed on the screen by scanning the
frame buffer in a similar manner to that in which a TV
screen is scanned. That is, horizontal lines from the
top left corner down to bottom right corner and
repeat.

The frame buffer muét be scanned and the image
refreshed onto the screen many times per second in
order to achieve a 'flicker free' display.

In Pluto's low resolution mode, the image is
completely refreshed onto the screen every 1/50th of a
second. '

To achieve the higher resolution of 640H x 576V, Pluto
uses interlace techniques.

Interlace is a means of producing a high resolution
image without the associated flicker problems of
scanning a larger frame buffer. This is achieved by
scanning only half of the frame buffer each time. On
one pass the locations controlling even numbered pixel
lines are scanned and on the next pass, locations
controlling odd numbered pixel lines are scanned. The
result is that new information is still being
displayed every 1/50th of a second.

In the version of Pluto used, each location
controlling a pixel consisted of 3-bits. This gave a
range of eight possible colours.

These 3-bits can be thought of as controlling the
three primary colours red, green and blue. Therefore,
the whole frame buffer can be thought of as three
colour planes.

The various combinations of bits being set/unset
produces the range of colours: Black, Green, Blue,
Cyan, Red, Yellow, Magenta and White.

2.3 The colour
printer

The 192K frame buffer supports 640H by more than 800v
pixels: .

(i.e. 640 x 800 x 3 = 1536000 bits = 192000 bytes)

The frdme buffer is divided up in the following
manner.

+'“’ Lo-res
288 }Partition 1 Hi-res
Yy _ , Partition @
A) Lo~res
2§$ §Partition 2
.*) General working space and
2%? + gsymbol partitions

The frame buffer 1s dual ported enabling it to be
updated and displayed on the screen simul taneously.

A Diablo Series C ink jet printer was connected to the
parallel port on the Sirius.

The Diablo provides four basic colours: the

_subtractive primaries cyan, yellow and magenta. Black

is also provided because, in printing, it is difficult
to obtain a deep black by combining colours.

The colours cyan, magenta and yellow are the
complements of the additive primaries red, green and
blue respectively. These subtractive primaries are
provided because in common with other colour hard copy
devices the Diablo is based on the CMY colour model.

The basis of the CMY colour model is that colours are
specified by what is removed from white light. White
light is the sum of the additive primaries red, green
and blue.

As an example: removing red from white light leaves
green and blue and these combine to produce the
subtractive primary cyan.

Therefore, a surface coated with cyan coloured ink
absorbs red light and reflects blue, green. Also, a
surface coated with cyan and yellow absorbs red and
blue and reflects green from illuminating white
light.

Whilst the Diablo is based on the CMY colour model ,
the Pluto is based on the RGB colour model.

The basis of the RGB colour model is that colours are
derived from what is added to black rather than what
is subtracted from white light.

The individual contributions of each primary are added
together to form the resulting colour.

Knowledge of‘both the CMY and RGB colour models was
important when writing a routine to copy a screen
image from Pluto to the Diablo.

DESCRIPTION OF
GRAPHICS SOFTWARE

The hard copy
facility

This facility produces hard copies for screen images.
The following requirements dictated that the routine
should be written in a language other than Fortran:

L] The routine should be as fast as possible

. Perform logical operations on all bits in
bytes '

L Send commands direct to the printer port
(unformatted)

To satisfy these requirements, the routine was written
in 8086 Assembler and incorporated in the assembler
interface library.

The Diablo provides a bit pattern printing mode which
prints four pixel lines at a time. The format of the
command is: information specifying the colour, number
and length of the pixel line followed by a string of
bytes specifying the bit pattern to be printed.

Reading the Plutb bit planes into individual strings
of bytes formed the basis of the bit pattern required
in the printing command.

The following example of printing cyan on the Diablo
demonstrates reading individual bit planes and
producing a bit pattern for the print command.

Line of pixels - BGBCRYMUW
lrlyeeah
aeuadlgi
ceen let
k n one

wt
a

Read Red plane - 00001111

Read Blue plane - 00110011

Read Green plane - 01010101

Perform logical OR on bytes holding blue and green
planes:

00110011
01010101
01110111

Perform logical NAND with byte holding red plane:

;

01110000

This will remove any bits which represent pixels with
red in them. This is effectively subtracting red from
white light as detailed in CMY model example.

the bit pattern printing command and this byte would
now be sSent to the Diablo to print cyan.

By repeating this process and using the appropriate
bit planes at each stage we also print magenta and
yellow.

The result is that both the subtractive and additive
primaries are produced on the Diablo. The additive
primaries are produced where the subtractive primaries
overlap. For instance, where cyan and yellow overlap
green will be produced.

Note: the Diablo does not print blue because magenta
and red overlap to produce violet, however, this is
usually adequate.

Printing black required a slightly different approach
to that used for the subtractive primaries. The
reason for this was that colours in the RGB model
combine to produce white whereas they combine to
produce black in the CMY model (i.e. a location in the
frame buffer with bits set in the red, green and blue
planes would produce a white pixel whereas, printing
cyan, magenta and yellow on the Diablo would produce
murky black.)

To obtain a bit pattern representing black pixels
perform a logical NOT on, say, the red plane:

11110000

Perform logical NAND with, say, the blue plane:
11000000

Perform logical NAND with the green plane:
10000000

The resulting bit pattern represents the only black

pixel in the example. This would now be sent to the

Diablo as part of the command to print black.

Coping with distortion in hard copies

To enable an image from one of the low resolution
partitions to fill the screen, the refresh mechanism

3.2 The result file
display facility

leaves alternate piXel lines blank. These blank lines

are only noticeable when viewing the screen from a
very short distance.

The result is that taking a copy of all locations in
the partition would produce a print such as Fig 1.

Whereas the ratio of width to height should be
approximately 1l:1 as displayed on the screen.

To improve .the proportions of the picture blank lines
could not have been introduced in the hard copy since
these would have been noticeable. Instead, every
pixel line was duplicated.

Essentially the screen dumping routine detects when a
low resolution partition is being displayed. Normally
the routine would read 4 pixel lines at a time since
the Diablo prints 4 at a time. However, in the case
of low resolution only 2 pixel lines were read. A
'bit shuffling' routine then expanded the string of
bytes into a string representing 4 pixel lines.

Although the 'bit shuffling' routine had to be used on
each bit-plane for every two pixel lines it was not a
considerable time overhead. This was because it used
hardware implemented string operators in the 8086
Assembler.

Using the 'bit shuffling' routine produced pictures
such as Fig 2. “

The resolution of the Diablo is 1024H x « and the
Pluto is 640H x 288V (or 576V). Since the physical
width of the paper and the screen are similar this
means that a pixel on the Diablo is approximately 2/3
the size of a Pluto pixel.

The result is that a full screen dump of the Pluto
appears 2/3 the size on the Diablo.

To overcome this deficiency it would be possible to
restrict the amount of the screen to be dumped to 512v
in high resolution mode or 256V in low resolution
mode. Then double each pixel in both directions and
print the image sideways on the Diablo. Note: in low
resolution each pixel would be quadrupled vertically.

This option may be provided in future.

The result files used for display purposes, during the
investigation were produced on the ICL 2972
mainframe.

These were transferred to the Sirius by using a
terminal emulation package on the micro. This

package makes the micro appear to the mainframe as a
Remote Job Entry (RJE) station. The RJE station
comprises an operating console, virtual line printer
and two interactive terminals.

Listing a result file from any mainframe terminal to
the micro's virtual line printer and controlling the
transfer from the RJE console enabled the file to be
placed on the micro's disk.

Format

The files represented regular grids with real numbers
defining the value of each grid cell. These real
numbers represented a wide range of values. However,
since Pluto could only display eight colours and the
codes for these were the integers 0-7/ there was
initially no need to transfer the file with real
numbers.

A routine was written and used on the mainframe to
convert ranges of real numbers into single integers.
It was felt that the time saving in transferring
values as single byte integers rather than, say, six
byte reals would be valuable. Especially when
transferring files containing large numbers of grids.

Displaying (cell for cell)

To handle result files on the Sirius a Fortran program
was written.

The program read the file header which contained
information on the dimensions of the grid and the
number of grids in the file.

The grid dimensions were given in terms of the number
of cells horizontally and vertically. If the number
of grids was greater than one it was assumed that a
sequence was to be shown and so the low resolution
option was used. This is explained more fully in the
animation section.

10

To determine the dimensions of a grid cell in pixéls:

Number vertical pixels =

Vertical resolution
Integer value of (ygmBer vertical cells)

Number horizontal pixels =

Nearest integer (Number - Scaling)
value of Vertical pixels factor

1f:

((Number horizontal pixels x number vertical pixels) >
horizontal resolution) then

Decrement number vertical
- pixels and re—calculate

With the dimensions of a grid cell determined in
pixels, the program then read the values for a grid
into an array. It then stepped through the array
plotting the value of each grid cell as a coloured
rectangle.

Using this method and with all grids held in memory,
the time to update the screen was approximately 2
seconds. This is not only unacceptably slow but
limits on the amount of available memory could also be
quite restrictive.

Limits on memory

It has been mentioned that Microsoft Fortran can
address outside the 64K code segment limit. The limit
on a linked Fortran module is 384K.

This extra space can be used to store arrays if they
are placed in named COMMON blocks since named COMMON
blocks are automatically placed in separate segments.
A segment may be up to 64K bytes in size which is also
the maximum size of a Fortran array.

If a typical grid produced on the DAP represented a
64 x 64 array and each element or grid call was
represented by a single integer in a byte then the
grid would occupy 4K bytes. Therefore, sixteen such
grids could be held in one array in a named COMMON
block.

Up to five of these maximum sized COMMON blocks could
be declared in the 384K link module since at least 64K
will be required for the Fortran code and assembler
interface library etc.

The result is that an animated sequence could contain
approximately 80 such grids, all held in memory. This
could not only prove restrictive but the time to read
the file (s) into the arrays was unacceptably large.

11

To overcome the restrictions of this method of display
and holding all grids in memory, Run Length Encoding
was used with unformatted files.

Run Length Encoding (RLE)

In a typical image the amount of continuous space of
the same colour is often quite large. The basis of
RLE is both to reduce the amount of informatiomn

- required to code this space and reduce the amount of
time to display it.

For instance, a line of 64 grid cells all the same
colour would normally require 64 bytes of data to code
them and 64 separate rectangle plotting commands to
display them. However, with RLE the amount of data
can be reduced to 2 bytes. One representing the
colour and the other representing the number of cells.
The program interpreting this RLE data would know the
_dimensions of a grid cell and so just one rectangle
plot command would display the whole line of cells.

Unformatted files were used for storing the RLE data
because these are more efficient, in terms of speed,
than formatted. Sequential access was used since this
is faster than direct access.

A disadvantage of RLE is that it can be difficult to
edit the data. For instance, if the colour of a grid
cell in a line of cells of the same colour is to be
changed. Then a new field would have ‘to be
introduced, assuming a record represents the whole
image.

For this reason RLE was not used on the mainframe
before files were transmitted even though the possible
data compression would have been greater than the real
to integer conversion mentioned earlier.

Produce RLE data

The following flow chart demonstrates how results
files from the mainframe were converted to files
containing records which represented grids in RLE
form.

12

l

(START)

Open reéult file
Open RLE file

EOF

Close

Files

STOP

Read grid

from result file

l

Display
cell for cell

EDITOR
routine

RLE

routine

Writefrecord to
RLE file

13

The RLE routine skipped to the top left cormer of each
cell as displayed and returned the value of the pixel.
In this way an array was built up which included any
changes made by the editor. The contents of this
array were then run length encoded and written to the.
output file as a single record.

Producing animation

In an animation sequence the viewer should not see the
screen being updated. This can be achieved on Pluto
by using the two low resolution partitions in the
frame buffer. - :

The program was written to display a sequence of
grids. The program designated one partition to be
updated and the other to be displayed. A record was
read from the RLE file into an array, this run length
encoded data was written to the partition to be
updated. When complete, the assignment was swapped
and the next record was read, etc. This reduced the
update time to approximately 1 second. Also, limits
on memory were not a problem because data for only one
grid was held in memory at any one time.

Distortion of displayed images

Low resolution images are able to fill the screen by
leaving alternate blank pixel lines, whereas high
resolution images use all pixel lines.

This results in displayed images requiring different
scaling factors to be applied, depending on whether a
high or low resolution screen is used.

Applying these scaling factors would very likely
result in lengths with a decimal fraction. When these
are displayed in pixels they must be whole numbers
since a pixel is the smallest displayable element.

The conversion to integer inevitably introduces
rounding errors. This is known as the 'nearest
integer' method.

If this rounding error is present in the width of each
grid cell, it is possible that a noticeable distortion
would appear in a line of, say, 64 cells.

Applying the scaling factor to lengths of cells of the
same colour, as would be possible with RLE data,
prevents the cumulative error building up but the
overall width of the image becomes unpredictable since
the number of colour changes is not known. Therefore,
this method is less desirable than the previous one.

14

In an effort to circumvent the problem of a cumulative
error building up, the following method was used. It
is best explained by pseudo-code. C ‘

REAL-CELL-WIDTH HEIGHT OF CELL x
SCALE FACTOR

SUM~-OF-CELL-WIDTHS = O

FOR N =1 TO NUMBER-OF—HORIZONTAL—CELLS

SUM-OF-CELL~WIDTHS

SUM-OF~CELL-WIDTHS +

REAL-CELL~WIDTH

NEAREST INTEGER

"~ (SUM-OF—-CELL WIDTHS +

REAL-CELL-WIDTH) =~

NEAREST INTEGER
(SUM-OF~CELL-WIDTHS)

¢ THEN CELL-WIDTH (N) =1

CELL-WIDTH(N)

IF CELL-WIDTH (N)
REPEAT

NB: A cell with width @ is avoided because this would
result in data being lost from the displayed
image. '

This method prevents the cumulative error exceeding %
a pixel. However, when this is compensated for the
effect is quite .severe in that a pixel is dropped.
This could cause problems when 'butting' multiple
grids together in the same display.

Also, preventing a cell width of ¢ effectively means
that a fine grid of approximately 1 pixel per cell is
able to build up a cumulative error. This would
certainly cause problems when trying to 'butt' such a
grid onto ones which have no cumulative error.

The result is that both methods of displaying grids
have their own merits. During the investigation, the
'nearest integer' method was used.

Multiple Grids

Any distortion in a grid can appear very much worse
when several grids with different cell sizes are
displayed simultaneously. This is because the grids
must 'butt' up to each other exactly and a single
pixel line discrepancy would be very noticeable.

In a standard multiple grid, the cell sizes vary by a
factor of three. The origins of the finer grids are
specified in terms of their cell sizes from the top
left corner of the coursest grid.

15

3.3 The editor

Using this coordinate system and the methods for
displaying grids mentioned so far, the grids will
possibly fail to 'butt' together. Especially if a
fine grid where one cell is represented by one pixel
is used. :

Some wotrk has been done to overcome these problems and
grids have been 'butted' together by using a different
coordinate system. In this system the finer grid
origins were specified in terms of the next coursest
grid cells from the next coursest grid origin.

However, this method was not robust enough to be a
general case. Also it relies on non-standard result
files whereas the intention was to use standard ones.

The result in that a suitable robust and general
method has not yet been developed. However, this
problem will be addressed in the near future.

In addition to displaying images, a facility to
manipulate them was also required. To satisfy this
requirement a basic editing program was developed.

The editor was written in Fortran, providing an
interface to the routines in the assembler library as
well as other Fortran routines.

It provides a mean of altering that part of Pluto's
frame buffer which is being displayed.

The user interacts with the editor by using the
keyboard and single letter, keyword selection =~ (i.e.
press 'P' for print). The cursor is manipulated by
the numeric keypad on the right of the keyboard.

The editor has a modular structure. This proved
valuable during the investigation since new facilities
could be tried and tested simply by adding extra
subroutines.

16

START

i
Set partition to
work on to that
* displayed

|

Open console as
unformatted file

Keyboard input
routine

Enlarging
routine

|

Screen dump
routine

Key display
routine

-

Cursor move
routine

RE

Select colour
routine

"Boundary fill

routine

—

Flood fill
routine

o

Text printing
routine

]

Dump to disc
routine

| Load from

disc routine

Close
Consul

Enlarging routine 'E’

This routine enlarges any part of the screen by a
factor of two. The area to be enlarged is shown by
XORing a rectangle onto the screen.

To defifie the rectangle the cursor is moved to the
bottom right hand corner of the area and the 'R' key
is pressed, the cursor is then moved to the top left
of the area and the 'L' key is pressed.

The routine checks that the rectangle does not exceed
a quarter of the screen since if this were expanded it
would not fit. 1If the dimensions are within limits
the rectangle is displayed.

The cursor can then be moved to the top left corner of
where the expanded box will be displayed. The 'E' key
is then pressed again and the routine checks that the

cursor is not too near the edge of the screen.

The rectangle is then XOR'ed again to erase it and the
expanded version is displayed at the new cursor
position. Each pixel is expanded into four.

Printing routine 'P'

The routine enables any part of the screen to be
printed on the attached Diablo printer.

The area to be printed is defined by XORing a
rectangle onto the screen in the same way that the
enlarge routine does this. However, no checks are
made on the rectangle dimensions.

The user is able to check that the displayed rectangle
encloses the area to be printed. If it does, the
rectangle is XOR'ed again to erase it and the area is
dumped to the Diablo.

The screen dump routine is described more fully in the
'hard copy' section of this report.

Key display routine 'K'

This routine provides a means of displaying those
colours available for line drawing, flood filling and
boundary filling.

The routine displays a series of coloured rectangles
along the top left corner of the screen. The colours
are arranged from left to right in ascending colour
code order (ie Black f, Green 1, Blue 2, Cyan 3, Red
4, Yellow 5, Magenta 6 and White 7).

18

To experiment with mixing various colours a shading
routine was written for use on earlier versions of the
editor. -

The routine produced rectangles which consisted of
vertical, pixel wide bands of any two colours. From a
short distance the bands appeared to blend together
into the required shade. (ie Alternate red and yellow
appeared as Orange).

However, this method of obtaining extra colours is no
longer available on current versions of the editor.
The reasons for this are:

= The mixed colours were rather dull
compared to the primaries.

- The Pluto 'pattern £i11' command had to be
used to 'wall paper' areas of the screen,

this was slow and restrictive.

~ Pluto is easily modified to am 8-bit plane
model and hence 256 colours.

Select colour routine '@’

This routine provides a means of changing the current
and perimeter colours for line drawing, flood filling
and boundary filling.

The centre of the cursor is placed over the desired
colour in the key and the '@' key pressed.

If the Y-coordinate of the cursor falls within the
height of the key a simple algorithm is applied to the
X~-coordinate to determine which colour the cursor is
superimposed on.

A display on the right of the screen is updated to the
current colour.

Cursor move routine

The cursor is defined as a white cross hair which is
superimposed onto the image without making any
destructive changes.

Movement is affected by the numeric keypad on the
right of the keyboard.

Key '5' acts as a toggle switch to set a trail. If

the switch is 'on' a line of the current colour is
displayed as the cursor moves. The trail is not

19

XOR'ed on to the screen so that a perimeter can be
defined for boundary fills.

Key '.' acts as a 'toggle' switch to determine by how
much the cursor moves. The options are 1 or 10 pixels
in any direction.

Keys 1-4 and 6-9 determine the direction of movement
of the cursor. Continuous movement is achieved by
using the 'repeat’' key.

Flood fill routine 'F'’

This implements Pluto's flood fill command. The pixel
at the centre of the cursor and all connected pixels
of the same colour are changed to the current colour.

Boundary f£ill routine 'B'

This is a simple implementation of Pluto's boundary
£ill command. o

The area enclosed by the perlmeter colour is fllled
with the current colour.

- Text printing routine 'W'

This routine enables characters to be printed on the
screen in any one of four directions.

When the 'W' key is pressed the cursor is XOR'ed off
the screen. The direction for printing text is
selected from keys 2, 4, 6 or 8 as for cursor
movement. Once the direction has been selected, any
keys pressed are echoed onto the screen in that
direction.

Pressing 'return' redisplays the cursor at the end of
the text.)

Dump to disc routine 'D'

This routine copies that part of the frame buffer
being displayed to a disc file.

When the 'D' key is pressed the user is prompted for
the name of a file to use. The screen is then copied

to the file, unformatted.

Load from disc routine 'L’

This is the complementary routine to 'dump to disc’.
The contents of the named file are loaded into the
-partition currently being displayed..

2

20

arion Of

Figure 2

