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Abstract 
Effective management of flooding requires models that are capable of quantifying flood risk.  Quantification 
of flood risk involves both the quantification of probabilities of flooding and the associated consequences.  
Modern flood risk models account for the probabilities of extreme hydraulic loading events and also include a 
probabilistic representation of the performance of flood defence infrastructure and its associated reliability.  
The spatial and temporal variability of flood events makes probabilistic representation of the hydraulic 
loading conditions on the flood defences complex.  In the system method used widely within England and 
Wales, simplifying assumptions relating to the spatial dependence of flood events are made.  This paper 
utilises relatively recent advances in multivariate extreme value methods to refine this method.  The paper 
demonstrates how the refinements can improve estimates of flood consequences for single events and how 
this can be captured within a risk analysis that incorporates the likelihood of defence failures. 
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Introduction 
Flooding is a global problem with extreme flood events having major consequences recorded at different 
locations relatively frequently.  It is long been recognised that risk management approaches offer a number 
of benefits over more traditional deterministic design event based approaches, USACE (1996), Sayers et al. 
(2002), for example.  A primary component of successful flood risk management is the ability to quantify 
flood risk and to simulate the risk reduction that results from introducing different mitigation measures.   

Flood risk is generally regarded as function of probability and consequence and quantifying flood risk can be 
complex.  Extreme flood events at any particular spatial location occur, by definition, rarely and there is 
limited data with which to verify models.  The temporal variability of flooding can also be complex.  Some 
flash flood events last for a short period of time, a day, for example, whilst others can last for many weeks.  
Flooding can be localised in terms of its impact or can effect large spatial scales.  Within the UK for example, 
the flooding of the village of Boscastle, that took place over a day Roca-Collel and Davison (2010), can be 
contrasted with the summer floods of 2007 Marsh and Hannaford (2007), that lasted for a period of six 
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weeks and effected most of England and parts of Wales.  Flooding can arise from different sources; pluvial, 
fluvial, waves and surges for example.  These different sources can often interact to exacerbate the impact 
of the flood event. 

As risk is a function of probability, establishing the joint probability of different combinations of flood inducing 
events arising has been the subject of much research.  Examples include extreme, fluvial flows at 
confluences, estuarine water levels, astronomical tides and metrological surges, waves and sea levels, see 
for example, Tawn and Vassie (1989), Acreman (1994), Bruun and Tawn (1998), Hawkes et al. (2002), 
Hawkes (2008).  These approaches have, in the past, tended to have been restricted in terms of the number 
of variables that have been considered and the spatial extents that are covered.  The reasons for this 
primarily relate to constraints placed by the statistical models that have been used.  In particular, traditional 
multivariate extreme-value statistical models have constraints relating to the handling of the dependence 
structure.  These constraints make extensions to large spatial scales, where the degree of dependence 
between extremes of a given variable can cover a wide range, impractical to implement. Recent 
developments in multivariate extreme value methods, Heffernan and Tawn (2004),  have however, removed 
some of these constraints and opened opportunities for improving flood risk analysis methods. 

Risk analysis models of flooding systems that incorporate the likelihood of flood defence failure are now 
recognised as effective means of supporting the flood risk management process.  These models have been 
applied at national and regional scales for supporting decisions relating to long term climate change 
adaptation, strategic planning and asset management prioritisation purposes, see USACE (1996), Hall et al. 
(2003), Evans et al. (2006), Apel et al. (2004), Gouldby et al. (2008) and Vorogushyn et al. (2010), for 
example.  Often, when aggregating flood risks over large spatial scales, an assumption of independence 
between extreme events occurring at different spatial locations is made. Keef et al. (2009) and Lamb et al. 
(2010) note that this simplifying assumption can lead to inaccuracies when seeking to define single event 
impacts at large spatial scales. 

This paper describes the application of the Heffernan and Tawn (2004), multivariate extreme value method, 
updated by Keef et al. (2009), to generate boundary conditions for a system flood risk analysis method that 
has been widely used in England and Wales for national and regional flood risk analysis, Gouldby et al. 
(2008).  The application enables the assumptions regarding spatial dependence to be explored in the context 
of a systems based flood risk analysis.  The new system has been applied on a case study in the North West 
of England, with the results described below. 

Background to system flood risk analysis 
System risk models that are currently applied in practice typically define risk through consideration of the 
aleatory uncertainty associated with the random nature of extreme flood events and the epistemic 
uncertainty associated with the potential for flood defence infrastructure to suffer failure.  Whilst there are 
many other sources of uncertainty, approaches to quantify these, Merz and Thieken (2009), Gouldby et al. 
(2010), for example, are not commonly applied in practice, primarily due to the computational burden 
associated with the implementation of the methods.   The primary components of the risk models are: 
hydraulic loads, described by extreme value distributions, flood defence infrastructure, defined by fragility 
curves, flood inundation simulation representation and functions that relate the simulated floods to 
consequences.  The flood defences are typically defined as discrete lengths with a specific fragility curve 
prescribed for each length.  The models that are applied in practice within England and Wales assume the 
performance of each of the defence lengths is independent and hence the risk, expressed in terms of the 
Expected Annual Damage (EAD), is given by: 
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where n is the number of defence lengths, fX is the joint density of hydraulic loads over the defence lengths, 
di is the defence system state (a vector that comprises a representation of the state as failed or undamaged 
of each defence in the system) and g is a function that relates the defence system state and hydraulic loads 
to the economic damage to property. 

The derivation of the joint density of the hydraulic loads can be complex to define over large spatial areas 
and a simplifying assumption is therefore made in current practice.  The hydraulic loading conditions are 
assumed to be fully dependent in terms of recurrence interval (return period) within a flood area.  This 
enables the integration of the joint density of the hydraulic loads over the consequence function to be 
undertaken in terms of a single likelihood of hydraulic load using a simple integration procedure: 
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where )( ixg is the expected economic damage for the hydraulic load xi.  Flood areas are typically less than 
10 km2 and Eqn. 2 is evaluated independently for each flood area.  To assess the risk at spatial scales larger 
than a single flood area, the results for each flood area are aggregated.  It is of note however, that important 
information relating to the nature of flood events can be lost when considering only the EAD.  This approach 
does not, for example, enable assessment of the probability and consequences associated with a single 
flood event that occurs at spatial scales larger than a flood area, when there is partial dependence between 
the hydraulic loading conditions.  Analysis of single event consequences at large spatial scales (ie bigger 
than a single flood area) can be of interest and importance for the insurance industry, where single event 
loss damages are of interest and emergency planners, for example, where large-scale evacuation plans are 
developed. 

Within the analysis described here, the simplifying assumption of full dependence between flood areas is 
replaced with a multivariate extreme value model.  This model is described in more detail below.  The use of 
the multivariate approach enables information on the probability and consequences associated with single 
events to be captured more accurately, whilst also considering the likelihood of the flood defences failing. 

Method 
The primary aim of the application of the multivariate approach is to solve Eqn. 1 with an explicit 
consideration of the dependence, in the extremes, of the hydraulic loading conditions (the vector X) at 
different spatial locations.  It is of note that the dependence in the extremes is likely to vary significantly 
between the sites.  Often, but not always, sites close to each other will exhibit high dependence with one 
another, sites further a-field will often be weakly dependent.  The statistical model needs to be sufficiently 
flexible to accurately capture the range of dependence between the sites. 

The steps in the analysis are 

1. Fit statistical model to joint extremes of hydraulic loads at multiple locations within the study area. 
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2. Simulate extreme hydraulic loading events from the fitted model that form the hydraulic boundary 
condition element of the system risk model. 

3. For each simulated hydraulic loading event, undertake multiple realisations of flood defence system 
states and associated inundation extents and economic impacts.  

4. Integrate the results of Eqn. 3 to determine the risk expressed as EAD. 

Statistical model for hydraulic loads 
Of the range of multivariate extreme value models that are available, the approach of Heffernan and Tawn 
(2004) offers most flexibility in capturing the range of dependence exhibited by flood related variables.  Other 
approaches, Coles and Tawn (1991) and Ledford and Tawn (1996) for example, have restrictive 
assumptions relating to the dependence among multiple variables.  The Heffernan and Tawn (2004) 
approach is therefore the model of choice for this study. 

Let Xt = (X1, …, Xj)t be a time series of flood related hydraulic loading conditions at a collection of  locations 
within the area of interest. Before dependencies between locations are considered, the extreme loads at 
each location are studied marginally. For this the standard peaks-over-threshold approach of Davison and 
Smith (1990), is used: cluster maxima are identified from the time series and the excesses above a suitably 
high threshold are fitted to the generalised Pareto distribution (GPD). This defines a probability model for 
large values of the variable Xi: 
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where βi > 0, ℜ∈iξ are the GPD parameters and [y]+ = max(y, 0). The threshold ui is chosen to be just 
large enough to ensure a stable estimate for the shape parameter ξi for all larger thresholds. 

In order to separate the marginal characteristics from the dependence analysis, it is usual to standardise the 
data to common margins using the probability integral transform. This is often referred to as the copula 
approach. The Heffernan and Tawn (2004) model uses standard Gumbel marginal distributions which are 

obtained by setting )])(ˆlog[log( iii XFY −−=  where iF̂  is an estimate of the cumulative distribution 

function for Xi. For this the GPD fit above the threshold is combined with the empirical distribution iF~  of the 
Xi values to give the following semi-parametric function (first used by Coles and Tawn (1991)): 
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The transformed multivariate time series Yt = (Y1, …, Yd)t retains the dependence structure of the original 

data but satisfies { } [ ]( )yyYP i −−=> expexp  for each different location i. The primary aspect of the 
Heffernan and Tawn (2004) approach is to model the dependence between extreme values of Yi and typical 
values of the remaining variables. The analysis is repeated for each site i so that extreme values of all 
variables are considered. 
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Let Y–i denote the vector of all variables Yj excluding Yi. The Heffernan and Tawn (2004) approach is 
typically applied using the multivariate non-linear regression model 

Y–i | Yi = a Yi + Yi
b Z for Yi > v,       (5) 

where v is a high threshold on Yi, a ∈  [0, 1] and b < 1 are vectors of parameters and Z is a vector of 
residuals. Vector arithmetic should be interpreted component-wise so that each Yj is modelled as a function 
of Yi using parameters aj|i and bj|i and residual Zj|i. 

The regression parameters aj|i and bj|i are estimated using maximum likelihood under the temporary 
assumption that Zj|i follows a Normal Distribution with unknown mean and variance. This fit uses all pairs (Yi, 
Yj) corresponding to cluster maxima of Yi > v to be consistent with the marginal GPD fits made to cluster 
maxima of Xi. Heffernan and Tawn (2004) show that asymptotically Yi > v is statistically independent of the 
residual Zj|i. The threshold v is therefore chosen to be just large enough for this condition to hold. Once all 
parameter estimates have been found a non-parametric estimate of the joint distribution of Z is constructed 
from the empirical distribution of the sample residuals. 

The above description assumes variables Yi and Yj occur concurrently so is not appropriate for modelling 
temporally dependent data with extreme events that are lagged between gauges. Keef et al. (2009) 
overcome this deficiency by fitting the conditional model of Yj,t+τ | Yi,t for a selection of lags τ for each gauge j 
≠ i. This allows the model to be used to simulate new events over a range of lags so that the largest values in 
each time window need not occur concurrently. 

Statistical simulation of extreme hydraulic loading events 
The fitted model provides parameter estimates aj|i,τ and bj|i,τ for all locations i, j ≠ i and for a range of lags τ. 
Additionally, for each location i, an empirical sample of joint residuals Z is available, each of which provides 
values Zj|i,τ for each j ≠ i and lag τ. These can be used to simulate a large number of dependent peak events 
Y, each of which consists of a single peak value for every location in the network with associated lags 
between peaks. These are then transformed to give samples of spatially dependent peak flow events X on 
the original scale. 

To simulate an event, a conditioning site, i must be selected. The value Yi is sampled above the threshold v 
and the remaining Yj values are sampled from the fitted model for Y–i,τ | Yi. In order to control the proportion 
of events where each site is most extreme, the value Yi is constrained to be largest by rejection sampling. 

The simulation consists of repeating the following steps, after selecting a conditioning site i: 

1. Sample a value Yi from the standard Gumbel distribution conditioned to exceed v. 

2. Independently select one of the joint residuals Z for site i. 

3. Calculate τττ
τ

,|,|,
,|

ij
b

iiijj ZYYaY ij+=
for all j ≠ i and lags τ. 

4. For each j, set Yj to be the maximum Yj,τ over selected lags τ. 

5. The joint sample Y is rejected unless Yi is maximum over all gauges. 

These simulated events have Gumbel marginal distributions which can be transformed to the original scales 
using the probability integral transform, inverting the transform applied to the original data using GPD fits and 
the empirical distribution. 

To select the proportion of events where each gauge is most extreme, Lamb R et al. (2010) propose 
simulation from the fitted model without rejection and this approach has been adopted here. For each gauge 



 
 

 

 
Application of a multivariate extreme value approach to system flood risk analysis 

D Wyncoll and B Gouldby 

HRPP594 6 

i, a large sample of samples is used to estimate P{Yi ≥ Yj∀ j ≠ i | Yi > v}, the probability that Yi is largest when 
i is the conditioning gauge. Since all simulated events have at least one threshold exceedance, this can be 
used to estimate the proportion of all events where Yi is largest and hence variable Xi is most extreme. 

The output from this analysis is a simulated set of hydraulic loading events.  Each event comprises a peak 
flood variable at each location.  An example of fluvial flow events simulated from the statistical model 
(ignoring lags and rejection) and compared to the observed data is given on Gumbel scales in Figure 1.  The 
black dots show the empirical data for sites i and j whilst the overlain blue dots show those generated from 
the multivariate model with conditioning site i above the threshold.  It is apparent that the dependence in the 
extremes for site i within the simulated data reproduces well that within the observations.  Further examples 
are available within Heffernan and Tawn (2004) and for flood related variables within Lamb et al. (2010), for 
example. 
 

 
Figure 1: Comparison of observed peak flow events (black) against samples from the Heffernan and Tawn 
(2004) model (blue) for conditioning site i plotted on the Gumbel scale. 
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Defence system state reliability and floodplain analysis 
Each flood event that has been simulated from the statistical model forms the boundary conditions for the 
flood defence system reliability analysis and subsequent inundation and economic consequence evaluation.  
The line of flood defences that forms the boundary between the river or coast and the floodplain area is 
discretised into sections that have different performance characteristics (ie type of defence, elevation and 
condition).  Fragility curves are used to define the performance of each defence section, USACE (1996), 
Simm et al. (2009), Schultz et al. (2010), Vorogushyn et al. (2009), for example, and the performance of 
each defence section is assumed to be independent from any other.  It is assumed that each defence can 
exist in two possible states, failed (ie structural failure or breached), or undamaged.  During a flood event, 
water can enter the floodplain through any particular defence if it is a breached defence or if it remains 
undamaged but is overtopped.  As there are a finite number of defence sections and only two possible 
system states for each section, there are a finite number of defence system states (combinations of failed 
and undamaged defences).  It is, however, computationally impractical to run an inundation simulation for all 
of the different defence system states and, for each hydraulic loading event, a Monte Carlo simulation of the 
defence system states is therefore undertaken. 

For each simulated defence system state, floodplain discharge volumes are calculated for each flood 
defence.  This water is then propagated across the floodplain using a computationally efficient spreading 
algorithm Lhomme et al. (2008).  Flood depths are then determined and their associated economic damages 
estimated with reference to widely applied functions, Penning-Rowsell et al. (2005). 

Within any particular discrete location within the floodplain, the probability of exceeding any particular flood 
depth (h), conditional on the specified hydraulic loading level (x) is therefore: 

)()( m
mxhHP h≈>

        (6)  

where m is the total number of defence system state Monte Carlo realisations and mh is the number that 
exceed h, under the specified loading level x.  Similarly, the probability of exceeding a specific economic 
damage level (c) is: 

)()( m
mxcCP c≈>

        (7) 

Combining the Monte Carlo realisations for the hydraulic loading with the defence system states, it then 
follows that the unconditional annual probability of exceeding any particular level of economic damage is: 
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where lc is the number of Monte Carlo realisations that exceed c, l is the total number of Monte Carlo 
realisations and ny is the number of years of data that has been simulated.  The risk, expressed in the usual 
terms of EAD is: 
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where ci is the economic damage arising on the ith realisation of the hydraulic loading conditions.  The 
number of realisations required can be controlled in a number of different ways, for example, through 
specification of convergence criteria on the quantity of interest. 

Case study application 
Study area description 
The case study covers a catchment in the northwest of England and includes the city of Carlisle (Figure 2). 
Carlisle has a history of flooding with significant events having been recorded in 1963, 1968, 1979, 1980, 
1984 and most recently in January 2005, when nearly 3000 homes were flooded, 3 people died and the 
resulting flood losses were estimated as £400m, Geographical Association (2009).  The floodplain protection 
varies significantly across the study area and includes high ground in rural areas, embankments and a range 
of heavily engineered vertical structures within urban areas, Carlisle for example.  The study area has been 
separated into 10016 flood areas and is consistent with those used in the National flood risk assessment of 
England, Environment Agency (2009). 
 

 
Figure 2: Maps showing the study area for the case study with the representative nodes spanning the river 
network. 
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Hydraulic load analysis 
Synthetic flow data form the basis of the analysis and these stem from a series of linked models.  Time 
series rainfall, on a 25km spatial grid and an hourly time interval provide the driving data for a gridded 
hydrological model (Grid-to-Grid, or “G2G”, Bell (2007). These rainfall data, together with estimates of 
potential evaporation (PE) have been generated from the UK Met. Office Hadley Centre global climate model 
(GCM), HadCM3, dynamically downscaled to 25km using the HadRM3 regional model, Jones R et al. ( 
2004). The G2G Model operates on a 1km grid covering the whole of the UK, and, using a gridded 
representation of the kinematic wave equation, simulates surface and sub-surface flows. A full description of 
the G2G model is provided in Bell (2007). 

The G2G Model provides 27 years of time series flows on a 1km UK grid along the river network.  The 
gridded data were first interpolated to each of 4119 nodes that span the river network by selecting the largest 
value of each surrounding grid point at every time step. Rather than applying the statistical analysis to every 
node, variables that had a correlation over 0.99 with a remaining node were removed to leave a 
representative subset of 284 sites. 

The marginal extremes at each of these selected nodes have been analysed separately. Peak flow clusters 
were identified using the runs method of Smith and Weissman (1994) before the cluster maxima above a 
high threshold were fitted to GPD. After transformation to Gumbel marginal distributions, cross-correlations 
were analysed using node pairs lagged by up to ±6 days. In the majority of cases, the largest correlation was 
obtained by a lag within ±2 days. Hourly lags of up to ±3 days were therefore used to fit the multivariate 
statistical model to every pair of nodes in the subset, adopting a similar approach to that of  Lamb et al. 
(2010). 

Peak flows were then paired with local maxima at every other node so that extreme events that had at least 
one threshold exceedance could be identified. 709 such events were counted giving an average of 26 
extreme events per year. With this, 1000 years worth of hydraulic loading conditions were simulated from the 
fitted model on the Gumbel scale. Each sample comprised a peak flow level for all 284 selected nodes and 
had at least one threshold exceedance. Rejection sampling was used to control the proportion of events that 
are most extreme for each site. 

After transformation back to the original scale, linear relationships identified between nodes with large 
correlations were used to extend the peak flow samples to all 4119 river nodes. These were then converted 
to water levels using the Conveyance Estimation System, McGahey C et al. (2009) and mapped to all 34006 
discrete river defence sections in the catchment. 

Figure 3 shows a comparison of hydraulic loading data (peak fluvial flows) simulated from the statistical 
model for a subset of stations.  The figure shows the range of dependence that is present across the study 
area and highlights the flexibility required of the multivariate model to capture this.  Perhaps unsurprisingly, 
sites in close proximity exhibit a high degree of dependence whilst others, further a-field are only partially 
dependent on one another. 
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Figure 3: Comparison of peak flow events sampled from the statistical model four sites on the river network. 

Figure 4 shows the variation in return period of the hydraulic loading levels across the study area for a 
subset of single realisations from the multivariate model.  The spatial variation in the intensity of the flood 
events is apparent.  Some events spatially diverse and extreme flows arise across the study area, whereas 
other events are very much localised with extremes arising in relatively small areas over the catchment.  This 
highlights the difficulties that have arisen in the past to describe flood events in terms of the severity of their 
loading conditions - “The event was a 1 in 100 year (flow) event”, for example.  It is apparent that statements 
about flood events, expressed in terms of the extremes of the hydraulic loading conditions, are often only 
valid for small spatial areas.  Attempting to express widespread flood events, like those that affected England 
Wales in the summer of 2007, in terms of return period of the hydraulic loading conditions, as often seems to 
be a requirement, is clearly a frivolous exercise and something that is probably best avoided. 
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Figure 4: Variation in return period water levels across the study area for a subset of sampled hydraulic 
loading events. 

Lewis et al. (2011) draw attention to the validity of making an assumption of complete dependence of 
hydraulic loading level (equal return period) within a flood area with system based flood risk analysis models, 
for example Hall et al. (2003), Gouldby et al. (2008).  This assumption is made to enable a simplified 
integration of the joint density of the hydraulic loads over the consequence function (Eqn. 2).  Their analysis 
was conducted within the context of coastal systems and it is possible to explore the validity of this 
assumption further here, within the context of this fluvial system.  Figure 5 shows the variation of return 
period within one of the largest flood areas for the same events shown in Figure 4.  The flood area 
comprises 30 defences, the maximum and minimum return periods and average return period for each of the 
hydraulic loading events are shown in Table 1.  It is apparent that even within a flood area there can be 
significant variation in the return period of the water level and the assumption of equal likelihood can 
potentially introduce significant bias in some cases.  This reinforces the observations on coastal systems of 
Lewis et al. (2011). 



 
 

 

 
Application of a multivariate extreme value approach to system flood risk analysis 

D Wyncoll and B Gouldby 

HRPP594 12 

 

 
Figure 5: Variation in return period water levels within a particular flood area. 

Economic damages and risk estimation 
Within the current National Flood Risk Assessment of England, Environment Agency (2009), the EAD is 
derived at the level of a flood area and then aggregated to obtain a regional or national value of risk.  The 
method does not enable estimates of return period damages, or flood hazard characteristics of depth and 
velocity, for single events that are greater than a flood area. The introduction of the multivariate method does 
however, enable this.  For each realisation of the multivariate model of the hydraulic loads, a Monte Carlo 
simulation of the defence system states and associated inundation and consequence analysis, within each 
flood area, has been undertaken.  The resulting risk, in terms of EAD, over the whole study area is £19.7 
million. 

The distribution of damage aggregated over the whole study area is shown in Figure 6.  A comparison has 
also been made under the assumption of full dependence and complete independence of hydraulic load, on 
a flood area basis.  It is important to note that whilst the EAD for the three cases in Figure 6 does not 
change, the distribution of damages is quite different.  It is this information that can be of importance for the 
insurance industry, for example, where estimates of likelihood of losses for single flood events are often 
required. 
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Figure 6: Return period total damage for the study area for the fully dependent (green), partially dependent 
using the statistical model (blue) and independent (red) cases. 

In this particular study area the results show the modelled dependence of economic damages to be close to 
full dependence.  It is important to note that this finding is only applicable for this study area and other study 
areas will differ.  For example, Lamb et al. (2010) found the degree of dependence was closer to 
independence for a study area in the northeast of England. 

Conclusions 
Flooding is a global problem.  Effective flood risk management decision making is underpinned by 
quantitative system models of flood risk.  The models that are applied in current practice within England and 
Wales incorporate a wide range of hydraulic loading conditions, a representation of the likelihood of failure of 
the flood defence assets and a computationally efficient inundation model. The current models do however, 
utilise a simplifying assumption to facilitate the evaluation of the flood risk.  The hydraulic loading events 
within a flood area are assumed to be fully dependent in terms of likelihood.  This assumption is made to 
facilitate the calculation of risk in a computationally efficient manner and to overcome the complexities 
relating to the dependence structure within the extremes of the hydraulic loading conditions.  

An artefact of this assumption is the inability of the current method to provide information on the likelihood of 
damages for single flood events at spatial scales larger than a flood area.  Within the current method, risk, 
expressed as EAD is calculated on a flood area basis and aggregated to obtain risk at larger spatial scales. 
Information on the probability of exceeding a specified economic damage threshold for a single event is not 
currently available.  This information can be important for the insurance industry and emergency planners, 
for example. 
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To overcome these deficiencies within the current method, a multivariate extreme value method has been 
applied to determine the joint probability density of the hydraulic loading conditions.  A Monte Carlo 
simulation of the fitted statistical model enables the hydraulic boundary conditions across the flood defence 
system to be represented more realistically. The resulting method retains the system characteristics of the 
current methodology and its ability to reflect the performance of the flood defence infrastructure.  This is 
implemented through a secondary Monte Carlo simulation of the defence system states, conditional on the 
output of the multivariate model. 

This development has enabled the exploration of the assumption of full dependence of hydraulic loading 
likelihood within a flood area.  The analysis shows that in some cases, for a single flood event the return 
period can vary significantly, even within a flood area.  This is likely to introduce a bias in estimates of flood 
risk that utilise this assumption.  This concurs with the findings of recent research relating to coastal 
hydraulic loading events. 

The implementation of the multivariate method enables the probability of single flood event damages to be 
quantified. This refinement can potentially offer insights into the spatial characteristics of single flood events 
that are not currently possible with the existing system. It also highlights the limitations of using the EAD. 
EAD is a relatively simplistic measure of flood risk and analysis of additional information comprised within the 
full distribution can be of importance. 
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Tables 
Table 1: Minimum, mean and maximum return period flows over the 30 defences in the highlighted flood 
area for each of the events in Figure 5. The events in the figure are numbered in rows beginning in the top-
left. 

Event 
Number 

Return period (years) 
Minimum Mean Maximum 

1 <1 <1 1 

2 <1 <1 <1 

3 <1 <1 <1 

4 2 5 8 

5 1 5 8 

6 3 5 9 

7 6 8 11 

8 1 3 14 

9 65 145 400 

10 8 22 57 

11 <1 <1 1 

12 3 25 65 
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