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Abstract 

Extreme sea conditions in the nearshore zone are required for coastal flood risk analysis and structural 

design.  Many multivariate extreme value methods that have been applied in the past have been limited by 

assumptions relating to the dependence structure in the extremes.  A conditional extremes statistical model 

overcomes a number of these previous limitations.  To apply the method in practice, a Monte Carlo sampling 

procedure is required whereby large samples of synthetically generated events are simulated.  The use of 

Monte Carlo approaches, in combination with computationally intensive physical process models, can raise 

significant practical challenges in terms of computation. To overcome these challenges there has been 

extensive research into the use of meta-models.  Meta-models are approximations of computationally 

intensive physical process models (simulators). They are derived by fitting functions to the outputs from 

simulators.  Due to their simplified representation they are computationally more efficient than the simulators 

they approximate. 

Here, a methodology for deriving a large Monte Carlo sample of extreme nearshore sea states is described.  

The methodology comprises the generation of a large sample of offshore sea conditions using the 

conditional extremes model.  A meta-model of the wave transformation process is then constructed.  A 

clustering algorithm is used to aid the development of the meta-model.  The large sample of offshore data is 

then transformed through to the nearshore using the meta-model.  The resulting nearshore sea states can 

be used for the probabilistic design of structures or flood risk analysis.  The application of the methodology to 

a case study site on the North Coast of Spain is described. 
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1. Introduction  

Extreme sea conditions in the nearshore zone are required for a variety of purposes.  These include; design 

of coastal structures (breakwaters, port and harbour infrastructure), boundary conditions for flood risk 

analysis models and design of beach management schemes.  Sea conditions are typically defined by a 

range of variables, significant wave height (Hs), mean wave period (Tm) and sea level, for example.  These 

variables can be further disaggregated into wind-sea and swell components of wave conditions, and 

astronomical tide and surge levels for the sea level aspects.  More often than not, formulae used for the 

design of coastal structures are a function of more than one of these variables.  Moreover, coastal flooding 

can arise over large spatial scales.  As the sea conditions can vary significantly in space, and are often not 

fully dependent, (Lewis et al., 2011), there is a need to develop nearshore sea states that are extreme, yet 

remain spatially coherent and plausible.   

The dependence structure between the different sea condition variables (eg. Hs, Tm), and between a single 

variable (eg. Hs) at different points in space, can be complex.  Assumptions of independence or full 

dependence are rarely good approximations when analysing extreme sea conditions.  It is therefore often 

necessary to explicitly consider the dependence between the variables.  Multivariate extreme value models 

that capture these dependencies are therefore required.  There are a wide range of statistical models that 

have been applied to sea condition (Coles and Tawn, 1990), (Tawn, 1992),  (Bruun and Tawn, 1998), 

(Guedes Soares and Cunha, 2000)  (Hawkes et al., 2002), (Monbet et al., 2007), (De Michele et al., 2007) 

(Callaghan et al., 2008), (Wahl et al., 2012) and (Corbella and Stretch, 2013), for example, and some of 

these include extreme value joint probability approaches. 

One of the common limitations of the extreme value joint probability approaches however, often relates to 

restrictive assumptions regarding the dependence structure when extrapolating to extremes.  More 

specifically, restrictions to joint regions in which all variables are simultaneously extreme are often imposed.  

This can place practical limitations on the number of variables considered and also the spatial extents of the 

analyses.  An advance in the underlying multivariate extreme value methods, (Heffernan and Tawn, 2004) 

(hereinafter HT04), has however, overcome a number of these limitations.  The method of HT04 imposes no 

specific dependence structure within the extremes, enabling greater flexibility and a wider range of 

application.  The HT04 method has been applied in the context of fluvial flood risk analysis by (Keef et al., 

2009), (Lamb et al., 2010), (Keef et al., 2012) and (Wyncoll and Gouldby, 2013).  It has also been applied to 

offshore wave conditions, (Jonathan et al., 2013a), (Ewans and Jonathan, 2013), (Jonathan et al., 2013b) 

and the nearshore environment,  (Environment Agency, 2013).  For practical implementation, the method 

comprises the fitting of statistical models and then Monte Carlo approximation, involving the stochastic 

simulation of large (1000´s) samples of extreme conditions. 

The natural boundary condition for undertaking multivariate extreme value analysis for coastal engineering 

and flooding applications is offshore in deep water, prior to the complex nearshore wave transformation 

processes of refraction, shoaling, breaking etc, (Bruun and Tawn, 1998).  There are now extensive data 

sources for offshore wave conditions from in-situ and remote measurements as well as re-analysis (hindcast) 

from coupled atmospheric and ocean numerical models, (Reguero et al., 2012) and (Camus et al., 2013), for 

example.  There are also datasets that combine these two different sources, (Mínguez et al., 2011), 

(Mínguez et al., 2012)   

There are numerous numerical models used for simulating the propagation of waves from offshore to 

nearshore.  Perhaps the most widely used model is SWAN, (Booij et al., 1999).  Even with increases in 

computational resources, these numerical models can be impractical to run for large data sets.  In 
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recognition of these practical limitations, methods comprising the application of meta-models to the wave 

transformation process, (Camus et al., 2011a), have been developed.  Meta-models are, in essence, 

simplified (and hence computationally efficient)  representations of computationally intensive models, (Sacks 

et al., 1989).  These methods have been applied in a wide range of fields and are closely related to the 

response surface method, (Box and Draper, 1959) and (Hill and Hunter, 1966), that is extensively applied in 

the field of structural reliability analysis .  There are now a wide variety of meta-modelling techniques that 

have been applied.  (Kingston et al., 2011) have used a neural network to approximate a finite element 

geotechnical model, (Camus et al., 2011a) used radial basis functions (RBF´s) to approximate the SWAN 

wave model, for example.  A number of case study examples are described by (Kennedy et al., 2006), and a 

general framework for dynamic emulation modelling is described by (Castelletti et al., 2012). 

Meta-models are developed by undertaking simulations of the computationally intensive physical process 

model (so-called simulator), at a range of so-called design points (nb: the use of the expression “design 

point” here is consistent with its use in the meta-modelling field, (O´Hagan, 2006), for example and should 

not be confused with alternative uses that relate to the reliability index) that cover the input boundary space.  

The inputs are then mapped to the outputs using the fitted model.  In the development of the meta-model, 

one of the challenges is to ensure the design points are selected to appropriately cover the input boundary 

conditions, whilst capturing the complexities in the output response surface.  This has to be achieved whilst 

seeking to minimise the number of design points, and hence computational cost, associated with the 

simulator. 

Data clustering methods can be used to assist in the appropriate selection of the design points.  The 

clustering methods are capable of reducing the data to a subset of types with similar primary properties.  

This information can be used in the selection of the design points to create the meta-model, thereby 

increasing efficiency and performance of the meta-model.  (Camus et al., 2011b) have explored the 

performance of a range of clustering techniques (K-means algorithm (KMA), Self Organising Maps (SOM) 

and the Maximum Dissimilarity Algorithm (MDA)) within the context of offshore wave data. 

This paper describes a practical methodology for deriving a synthetic set (stochastically generated large 

sample) of extreme nearshore sea conditions, without using excessive computational resources. The 

methodology can be applied over a broad range of spatial scales. The properties of the derived dataset are 

that the marginal extremes are well preserved and the dependence structure between the variables reflects 

the empirical data.  This large sample of nearshore sea conditions can then be applied for probabilistic 

structural design and reliability analysis or flood risk analysis.  A case study example on the North Coast of 

Spain is used to demonstrate the methodology.  In this example, the nearshore data have been applied to a 

commonly used structural response function of wave overtopping. 

2. Methodology 

The methodology compromises a number of steps: 

1. De-cluster offshore time series sea condition data 

2. Fit statistical models to the marginals and dependence of the de-clustered data. 

3. Simulate a large sample of offshore sea condition data from the fitted models. 

4. Apply the MDA clustering approach to the large sample to define a subset of m offshore sea condition 

design points. 
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5. Run a wave transformation model for the subset of m design points to obtain a subset of m transformed 

nearshore sea conditions. 

6. Construct a meta-model of the wave transformation process by fitting functions to the set of m offshore 

design points and corresponding nearshore sea conditions. 

7. Transform the large sample (Step 3) to nearshore using the meta-model. 

8. Translate the large sample to the response of interest. 

The methodology is not prescriptive in terms of the wave transformation model or the meta-modelling 

approach.  In the case study example below however, the SWAN wave model has been used for wave 

transformation and RBF´s have been used as a choice of meta-model.  The following methodological 

description is therefore defined using these specific approaches. 

A summary of the methodology is illustrated in Figure 1.  Each step is described in more detail below. 

 

 

Figure 1  Flow chart of methodology 

 

2.1. Multivariate extreme value method 

Let X
o 

be a vector of offshore sea condition variables, wave height, period, direction, sea level, wind speed 

and direction (X
o
1, X

o
2�.X

o
n), for example.  The problem then is to estimate the probability of exceeding 

some specified value of a response of interest, flood depth, wave overtopping discharge or wave impact 
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force, for example.  The response (or structure) variable is denoted as Z.  X
o 

is related to Z through the 

function ∆: 

))(Pr()Pr( zzZ >∆=> o
X  

(Bruun and Tawn, 1998) termed ∆ the structure function and identified two alternative approaches for solving 

this problem, the structure variable method (SVM) and joint probability method (JPM).  The SVM involves 

reduction of the multivariate observed data, via the structure function, to a univariate series of the structure 

variable and then extrapolation using standard univariate extreme value techniques.  The JPM method 

requires extrapolation of the joint density of X
o
 to extremes and then integration over the region ∆(X

o
)>z: 

oo

X
XXo dfzZ

zZ

∫
>

=> )()Pr(        (1) 

Where )( o

X
X

o
f  is the joint probability density of the offshore sea condition variables.  A conceptual diagram 

providing an overview of the problem and the two alternative approaches  is shown in Figure 2. (Bruun and 

Tawn, 1998) identified the JPM to offer significant advantages over the SVM, as the performance of the 

structure function in the extremes is fully explored.  This is not the case with the SVM that relies on 

extrapolation in this region.  For this reason, the JPM approach is adopted within the methodology described 

here and the extrapolation of the joint probability density is undertaken using the HT04 approach.  The SVM 

is however, applied here for comparative purposes within the case study example below. 

The objective of the HT04 method is to extrapolate the joint probability density of the offshore sea condition 

variables to extreme values with appropriate consideration of the dependence structure.  Prior to analysis of 

the dependencies between each variable, the marginals are first analysed.  For this, the standard peaks-

over-threshold (POT) approach of (Davison and Smith, 1990) is used, whereby cluster maxima are identified 

and the excesses above a suitably high threshold are fitted to the Generalised Pareto distribution (GPD). 

This defines a probability model for large values of the variable Xi.   

To provide a full specification of the marginal distributions, the empirical distribution iF
~

 of the Xi values, 

below the threshold, is combined with the GPD above the threshold to provide the following semi-parametric 

function for the cumulative marginal distribution ((Coles and Tawn, 1991)): 
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Where, βi  and iξ are the GPD parameters and ui is a high threshold.  The GPD is a well-established model 

for analysing extremes for POT sea condition variables (Hamm et al., 2010; Jonathan and Ewans, 2013) 

In common with other copula approaches that separate the marginal characteristics from the dependence 

analysis, it is usual to standardise the data to common margins. Within HT04 the standard Gumbel marginal 

scales are used.  The sea condition data are therefore transformed (transformed variables denoted as Y), 

from their original scales to Gumbel Scales using the standard probability integral transformation.  Whilst 

Gumbel Scales are used within HT04 and in the analysis described below, the method is not restricted to 

use on these scales.  Recently, (Keef et al., 2012) have undertaken analysis of fluvial flooding using Laplace 

Scales, for example and note some potential advantages. 
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Figure 2  Conceptual diagram showing the SVM and JPM approaches 
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The method proceeds by analysis of the dependence between the variables on the transformed scales.  If Y–i 

denotes the vector of all variables excluding Yi, the method is typically applied using the multivariate non-

linear regression model 

Y–i | Yi = a Yi + Yi
b
 W for Yi > v,       (4) 

Where a and b are vectors of the parameters from the fitted pair-wise regression model, v is a specified 

threshold and W is a vector of the residuals.  The model is fitted using maximum likelihood assuming the 

residuals follow a normal distribution with a mean and standard deviation to be found.  In practice the model 

is fitted separately with each variable treated as the conditioning variable respectively.  It can therefore be 

extended over large spatial scales, (Lamb et al., 2010). 

Once fitted, a Monte Carlo simulation procedure is used whereby samples from the residuals are combined 

with the parameter estimates to obtain realisations of Y.  The steps involved in the Monte Carlo sampling 

procedure are summarised below, with further information provided by HT04, Keef et al (2009), (Lamb et al., 

2010) and (Wyncoll and Gouldby, 2013): 

1. Sample a value of Yi (ie from the variable on the transformed scales) conditioned to exceed threshold v. 

2. Independently sample a joint residual, W, for site i. 

3. Calculate Y-i, from Eqn. 4, using the sampled W and the fitted regression parameters. 

4. Reject if Yi is not a maximum. 

These steps are repeated until the relative proportion of events where Yi is a maximum, conditional on being 

above the threshold, is consistent with the empirical distribution.  This process is then repeated conditioning 

on each variable in turn, to ensure the appropriate proportion of events is simulated. The output of this 

process is a large sample of simulated data on the transformed scales. 

These data are then transformed back to the original scales by reversing the previously applied 

transformations.  The resulting output is a large multivariate sample of extreme (in at least one variable) 

offshore sea condition data that captures the characteristics of dependencies between the variables, as well 

as preserving the marginal extremes. 

2.2. Clustering method 

To develop the meta-model of the nearshore wave transformation process, it is necessary to run the 

simulation model (SWAN) for a set of m design points.  The design points are required to cover the input 

boundary condition space.  Clustering algorithms can be used to aid the selection of the subset of input 

boundary conditions.  The MDA, (Kennard and Stone, 1969), with further refinements described by (Willett, 

1999),  is particularly well-suited for this task as it enables the outer limits of the input boundary space to be 

appropriately represented.  This is not the case for other clustering methods, SOM and K-means, for 

example, (Camus et al., 2011b). 

The MDA algorithm is applied to the Monte Carlo realisations output from the multivariate extreme value 

analysis of the offshore wave conditions.  Prior to implementation, it is however, first necessary to transform 

the data onto standard scales, including the directional component.  The standardisation involves making a 

linear transformation to scale the variables between 0 and 1, using the maximum and minimum value for 

each variable.  For the directional variables, the maximum distance is π  (in radians), hence the directions 

have been divided by π  to scale between 0 and 1.  Further information on these transformations are 

described in detail by (Camus et al., 2011a).   
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The output from the application of the MDA defines a subset of m points that are uniformly distributed in the 

transformed space across the offshore boundary (i.e. the SWAN model input boundary space).  This subset 

of design points is constructed sequentially.  Firstly, the point with the maximum significant wave height is 

identified.  The next stage is to calculate the point in the data set that is furthest, in terms of Euclidean 

Distance, from this point. Then, the algorithm determines the point in the data set that is furthest from these 

two points, and so on, until a subset of size m points is defined.  The choice of the size of m requires 

consideration, as it represents the trade-off between the computational demand of running the simulator and 

the accuracy of the subsequently fitted meta-model.  The required accuracy of the meta-model will vary 

depending on the specific application and the uncertainties associated with subsequent modelling 

components.  (Camus et al., 2011a) have explored the accuracy of the RBF meta-modelling approach as a 

function of m and this information can be used to help inform this decision. 

2.3. Meta-modelling method 

There are a wide range of function approximation techniques that can be used to develop meta-models of 

complex physical process models.  These methods include: Piecewise Polynomials, Neural Networks and 

RBF´s.  The methodology described here is not constrained to the use of a specific technique.  The 

approach used on the case study site below, and hence described here, is that of RBF´S.  This approach 

has been chosen because RBF´s are widely applied and have proven to work well in the context here, with 

SWAN being used as the simulator, (Camus et al., 2011a). 

The RBF has the following general form, (Rippa, 1999), for example: 

)()(
1

DXX −Φ+= ∑
=

o
m

i

i

oN apX       (5) 

Here, X
N 

is the vector of the near-shore sea conditions (ie the output of the meta-model) and: 

o

nn

oo XbXbXbbp +++= ......)( 22110

o
X      (6) 

b0,1,2..n are coefficients to be found by fitting the RBF to the known points and Φ  is a Gaussian function 

defined as: 

)
2

exp()(
2

2

c

DX
DX

o

o
−

−=−Φ        (7) 

where c is a shape parameter and D is a vector comprising the m “known” near-shore wave conditions 

derived from the design point simulations of the SWAN Model. 

When the coefficients have been found, Equation 5 is then used in place of the SWAN model to transform 

the large sample of offshore sea conditions to the nearshore with minimal computational effort.  The resulting 

large sample of nearshore data can then be utilised for a subsequent structural risk analysis or flooding 

assessment for example. 
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3. Case study implementation 

3.1. Study location and data sources 

The location chosen for the case study site was Santander Bay, one of the largest inlets on the Cantabrian 

Coast in the North of Spain (Figure 3). The city is bordered by a number of beaches that are popular 

recreational amenities, these include; Sardinero, Loredo and Somo. Since the 18
th
 century, the bay has seen 

many changes which have determined the evolution of the current system. The land required for the 

expansion of the city at the beginning of the 19
th
 Century was obtained from the bay by reclaiming its 

western part, resulting in a subsequent decrease of the tidal prism. Intensive dredging activity, mainly on the 

offshore shoal and the spit end, has been carried out in order to maintain a navigable channel.   

The global wave hindcast GOW, (Reguero et al., 2012), has been used as the primary source of wave data 

for this study. This reanalysis data set uses the WaveWatch III numerical model forced by 6-hourly wind 

fields from the atmosphere model NCEP/NCAR. The reanalysis GOW spans from 1948-2008 with hourly 

resolution.  These data have been further downscaled to regional scale to obtain a Downscaled Ocean 

Waves (DOW) database, (Camus et al., 2013). The DOW data comprise hourly data for the period 1948-

2008 with spatial resolution of ~200 m along the Spanish coast. These data have been calibrated using 

instrumental records (Espejo et al. (2011), and (Mínguez et al., 2011).   

Sea level data (astronomical and surge residuals) in the form of hourly time series from two different tide 

gauges, the Spanish Institution of Oceanography (1940-2005) (IEO) and from Puertos del Estado (1995-

present), were used in the analysis. Where there were gaps in the time series, these were filled using a 

regional storm surge reanalysis of southern Europe, (Abascal et al., 2012). 

 

Figure 3  Map of the study location 

 

3.2. Method implementation 

The offshore variables considered on the case study site comprised waves (height (Hs), mean period (Tm) 

and direction (θHs)), winds (speed (U) and direction (θU)), sea level (surge (S) and astronomical component 
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(A)).  An additional variable of wave steepness (st), derived from HS and Tm has also been used in the 

context of the statistical simulation and this is described further below. 

The first step applied in the analysis was to de-cluster the offshore time series data into separate 

independent events.  A notional flooding level (l), that is a function of the primary variables of interest, was 

used for this purpose.  The notional flooding level was defined as the addition of sea level to the 2% runup 

level of (Stockdon et al., 2006) for a dissipative beach: 

l =S + 0.043
HsgT

2

2π











1/2

       (8) 

A time series of flood levels was constructed with events then extracted using a 3 day separation criteria and 

a threshold that retained the highest 20% of events.  The resulting data, together with the de-clustered event 

set are shown in Figure 4.  The event set comprised a total of 1918 records, approximately 31 per year. 

Following the de-clustering process, it was then necessary to define the statistical approach for each 

variable.  The HT04 method is appropriate for the extrapolation of the joint density of a series of variables to 

extreme values.  In this study, Hs, U and S were selected for use with this approach.   Wave period was also 

considered, however, this is strongly dependent on, and physically constrained by, wave height, (Toffoli et 

al., 2010), for example.  Hence, adopting a similar approach to that of (Hawkes et al., 2002), wave period 

was implied through the use of the derived variable of wave steepness: 

2

2

m

s

gT

H
st

π
=          (9) 

A regression model of steepness, conditional on Hs was developed.  Rather than using the (Hawkes et al., 

2002) assumption of a normally distributed error model with a constant mean and variance however, the 

heteroscedastic nature of the relationship (steepness tends to a constant value with an increase in Hs) was 

captured using polynomials fitted to the mean and variance of the error, conditional on Hs.  These fitted 

models were introduced within the simulation procedure.  During the simulation procedure, rejection 

sampling was used to maintain the steepness variable within physically plausible ranges. 

For wave and wind direction, within the simulation, the empirical distributions were utilised, conditional on the 

magnitude of Hs and U respectively.  The total sea level was obtained by combining the stochastically 

simulated surge data with sampled astronomical tides.  The astronomical tides were sampled by discretising 

the 18.6 astronomical tidal cycle, conditional on the surge value, taking account of the surge level and 

month.   The process involved the following steps: 

� Discretisation of the empirical surge data into a 10 (discrete surge bands) by 12 (month) matrix 

� Sampling a surge value using the HT04 model 

� Sampling a month using the empirical surge/month joint probability density comprised within the 10 by 12 

matrix 

� Sampling a year from the 18.6 year tidal cycle assuming all years are equally likely. 

� Sampling an astronomical tidal level, given the previously sampled month and year, assuming all tidal 

levels within the month were equally likely. 

The statistical treatment of each variable considered in the simulation procedure is summarised in Table 1 
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Table 1 Statistical treatment of each variable 

Variable Statistical treatment for simulation 

Significant Wave Height (Hs) HT04 

Wave Period (Tm) f(Hs,st) 

Wave Steepness (st) Regression, conditional on Hs 

Surge level (S) HT04 

Wind Speed (U) HT04 

Wind Direction (θU) Empirical distribution 

Wave Direction (θHs) Empirical Distribution 

Tide level (AT) “Empirical” distribution, conditional on S and month 

 

 

Figure 4  Flood level index time series and de clustered events 

 

The marginal distributions of HS, U, S were defined using Equation 3.  The threshold used for all three for the 

GPD fit was 97.5%,  This choice was informed using the mean residual life plots,(Coles, 2001).  To fit the 

dependence model a threshold of 85% was used, based on analysis of the stability of the dependence 

parameters over a range of thresholds and with the independence of the residuals (W) on the conditioning 

variables confirmed.  Further information on these diagnostics is provided within HT04. 
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Figure 5  Empirical offshore sea condition data with the design points output from the MDA algorithm 
highlighted 

The resulting simulated data set, comprising approximately 314,000 realisations, representative of 10,000 

years, is shown in terms of Hs in Figure 5.  It is evident there is a strong dependence between surge and 

wave heights but combining the surge component with the astronomical tide significantly dilutes this 

dependence.  Wave heights are highly correlated with wind speeds and it is noticeable that the highest 

waves always occur when the wind is from a highly specific WNW direction.  The simulated distribution of HS 

and Tm conforms well to the empirical data.  Plots comparing the marginal distributions obtained from the 

multivariate simulation with those obtained from fitting the GPD to the empirical data are shown for Hs, S and 

U in Figures 6, 7 and 8 respectively. 

The number of design points (m) used to construct the meta-model was 500.  The MDA was run to define 

these design points.  These points are shown, together with the simulated and empirical data, in Figure 9.  

The design points provided boundary conditions for a series of simulations from the SWAN model.  SWAN 

was run in stationary mode.  The meta-model was constructed by pairing the nearshore sea conditions 

output from the SWAN model with the respective offshore input conditions and fitting the RBF´s.  The full set 

of simulated offshore data was then passed through the meta-model to obtain a corresponding nearshore set 

of simulated conditions.  These simulated nearshore conditions are shown in Figure 10, together with the 

transformed design points and empirical data.  The computational simulation time for the 500 separate 

SWAN simulations was 35.3 hours on a standard desktop computer.  Had the SWAN model been run for 

each Monte Carlo realisation, as an alternative to using the meta-model, the computational time would have 

been greater than 35 days.  The use of the meta-model has thus resulted in a substantial reduction in terms 

of the computational time, hence aiding practical implementation. 

To demonstrate the results of the new methodology, a comparison has been made with the SVM as defined 

by (Bruun and Tawn, 1998).  Wave overtopping rate has been used as a structural response variable to 

show an application of the simulated nearshore data.  The structure used was a hypothetical simply sloping 

embankment with a 1:4 slope.  The structure was located to the north of Sardinero Beach (Figure 2).  
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Empirical formulae for the positive, and negative freeboard situations from the EuroTop Manual, (Pullen et 

al., 2007), were applied to estimate the overtopping rates, Equations 10 and 11.   

o
gHT

R
bQ

HgT

q

sm

c
o

sm












−= exp       (10)    

5.171.1 chq =          (11) 

Where q is the overtopping/overflow discharge rate (m
3
/s.m), Qo  and b are coefficients, Rc is the freeboard 

(m), c is the crest width (m) and h is the head of water (m).   

It is important to note that there is a distinct change in the physical processes causing the discharge as the 

mechanism switches from wave overtopping (water level below the crest level) to overflow (water level above 

the crest level) and a different equation is used to reflect this.  With the SVM approach, the majority (often 

all), of the observed data may relate to the situation when the water level is below the crest level (wave 

overtopping).  Direct extrapolation of these observed overtopping rates to extremes (ie the SVM approach) 

will therefore not be able to reflect this change in physical process (difference between Equation 10 and 11) 

from wave overtopping to overflow.  This can therefore lead to erroneous extrapolation.  The JPM is 

however, capable of reflecting this changing behaviour.  The extrapolation to extremes and stochastic 

simulation of the offshore variables, and subsequent wave transformation, ensures that both negative and 

positive freeboard situations are appropriately accounted for. 

Figure 11 shows the comparison of wave overtopping rates calculated through the SVM and JPM 

respectively.  The differences between the two methods in the upper tail shows the potentially erroneous 

extrapolation that can arise with the SVM.  This emphasises the advantages afforded by applying the JPM 

and further confirms the findings of (Bruun and Tawn, 1998).

Figure 6  Comparison of the marginal distribution of HS: empirical, simulated and GPD fit 



 
 

 

 

 

Gouldby,  Mendez, Guanche, Rueda, Minguez 

HRPP640 14

 

Figure 7  Comparison of the marginal distribution of S: empirical, simulated and GPD fit 

 

Figure 8  Comparison of the marginal distribution of U: empirical, simulated and GPD fit 
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Figure 9  Simulated offshore data and design points output from the MDA algorithm 

 

Figure 10  Simulated and transformed nearshore data with design points highlighted 

 



 
 

 

 

 

Gouldby,  Mendez, Guanche, Rueda, Minguez 

HRPP640 16

 

Figure 11  SVM V´s JPM comparison for wave overtopping rates 

 

4. Discussion  

JPM methods offer advantages over SVM approaches for coastal engineering and flooding applications.  A 

JPM that uses the method of HT04 for extrapolation of the joint probability density has been described.  This 

method overcomes a number of the constraints relating to the dependence structure that are found in 

previously applied approaches. As no specific dependence structure is imposed, this enables a greater 

number of variables to be included within the analysis.  In some locations it may be necessary to consider 

populations of swell and wind waves separately, perhaps with different predominant directions, for example.  

It is feasible to separate the data and treat these as individual variables within the context of the multivariate 

extremes analysis.   Or, alternatively, in areas sheltered from the predominant wave and wind direction, 

waves generated locally from divergent winds may require separate consideration.  Again, separate 

populations of wind speeds, conditional on direction, can feature within the multivariate analysis.  Coastal 

flooding can occur over large spatial scales. The method of HT04 can readily be applied to large spatial 

scales and this aspect is well demonstrated in the context of fluvial flooding by (Lamb et al., 2010). 

The output of the HT04 analysis is a large, synthetically generated, sample of extreme events.  Meta-models 

offer a computationally efficient method of effectively using this data in practice.  Once configured, the meta-

model can be used to undertake extensive subsequent analysis with minimal computational effort.  This 

could include uncertainty and sensitivity analysis or climate change impact analysis for different emission 

scenarios, for example.  

Given the flexibility of the methodology, it is envisaged that extreme nearshore data sets can be generated 

over large spatial scales (nationally), stored and then made available for a multitude of different purposes. 

The primary limitations within the implementation of the methodology relate to the uncertainties inherent 

within the simulated data obtained from the fitted statistical models and those introduced by the use of the 
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meta-model.  More specifically, in the analysis described here, point estimates of the HT04 regression 

parameters (including thresholds) are used to derive the simulated data.  Bootstrapping approaches can be 

used to explore parameter uncertainties and further details are provided by HT04.  These uncertainties have 

been quantified to a certain extent in the context of fluvial flooding by (Neal et al., 2012).  In addition, 

threshold selection requires careful consideration and approaches to quantify uncertainties associated with 

thresholds have been developed for univariate extremes, (Tancredi et al., 2006), for example.  

The use of the meta-model inevitably introduces a model structural error within the process of wave 

transformation.  The magnitude of any error introduced is a function of the number of design points that are 

selected and hence is controllable.  Exploration into the nature of this error has been undertaken by (Camus 

et al., 2011a). 

The magnitude of uncertainties associated with the parameter estimation within the multivariate extreme 

analysis, and those introduced by the meta-model, require consideration with those associated with any 

subsequent analysis.  It is well known that there are significant (order of magnitude) model structural 

uncertainties associated with empirical wave overtopping estimation, (Pullen et al., 2007) and (Kingston et 

al., 2008), for example.  Moreover, coastal flood risk analysis often involves consideration of structural 

reliability and breach growth estimation, which are also subject to large uncertainties, (Morris et al., 2008).  

So whilst uncertainties are inevitably present in the approach for the derivation of the extreme nearshore sea 

conditions, it may be the case that these are not dominant when uncertainties in subsequent analyses are 

also considered. 

The quantification of these uncertainties has not been undertaken here.  It is however, envisaged that 

comprehensive analysis to quantify and explore the relative importance of these uncertainties will be 

undertaken in future work. 

5. Conclusions 

A methodology for simulating extreme nearshore sea conditions for use in the probabilistic design of 

structures and coastal flood risk analysis has been described.  The methodology is computationally efficient 

and hence practical to apply.  The methodology comprises the application of a multivariate extreme value 

method to offshore sea condition data.  The multivariate extreme value method overcomes limitations 

relating to the dependence structure that were present in many previous methods. The output of the 

extremes analysis is a large sample of simulated offshore sea condition data.  To transfer the offshore data 

to the nearshore, a meta-model of the SWAN wave model has been developed.  A clustering algorithm has 

been applied to select the design points used in the construction of the meta-model. The use of the meta-

model reduced the SWAN computational time from over 35 days to 35 hours (time taken to undertake the 

design point simulations). 

The derived nearshore data preserves the marginal extremes for each variable and the dependencies 

between the variables.  These data can be used in the probabilistic design of structures or as boundary 

conditions for coastal flood risk analysis. The methodology can be readily extended to more variables and 

larger spatial scales.  The primary limitations of the method relate to the uncertainties associated with the 

different components.  These include parameter and threshold uncertainties associated with the multivariate 

extremes extrapolation, model structural error introduced by the use of the emulator and model structural 

errors associated with the response functions.  The quantification and exploration of these uncertainties 

should be considered in future work in this area. 
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It is envisaged the methodology could be applied at small or large spatial scales.  Given the prevalence of 

offshore data, particularly from re-analyses, it is envisaged the methodology can be applied at national 

scales with the resulting data available for a variety of purposes. 
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