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Abstract 
This paper presents a series of numerical models tests performed to assess the ability of the OpenFOAM® 
modelling system to represent the physics that stands behind the propagation of tsunami waves in coastal 
regions and in particular their transformation (by means of shoaling, refraction, reflection) over uneven 
bathymetries and their interaction with the shoreline (run-up, run-down, breaking). A series of tests is 
selected from the literature to explore the accuracy, applicability and limitations of this particular 
computational fluid dynamics model solving the threedimensional Navier–Stokes equations for 
incompressible multiphase fluids. The range of scenarios tested includes experimental work on wave 
propagation over shoals, solitary wave run-up and the Monai valley tsunami physical model test recreating 
the Hokkaido–Nansei–Oki 1993 tsunami that struck Okushiri Island, Japan. This allowed direct comparison 
with experimental data from physical model tests as well as with other established two-dimensional – that is, 
depth integrated – and three-dimensional numerical models. 

Notation 
a  volume fraction over a vertical column T  wave period 

Cs  Smagorinsky coefficient t  time 

d  water depth t*  non-dimesional time 

e  relative difference from experimental data ui  Cartesian components of the velocity 

g  acceleration due to gravity un  normal velocity vector 

H  wave height ut  tangential velocity vector 

Hexp  experimentally predicted wave height xi  Cartesian coordinates 

Hi  average incident wave height α  water volume fraction 

Hnum  numerically predicted wave height tan β  beach slope 
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H0  nominal wave height Δx1  cell size at main propagation direction in 
horizontal plane 

i  coordinate or component index Δx2  cell size along vertical (gravity) direction 

j  coordinate or component index (Einstein 
notation) 

Δx3  cell size normal to main propagation 
direction in horizontal plane 

N  number of wave probes η  free-surface elevation 

n  unit normal vector λ wavelength 

Patm  atmospheric pressure μ dynamic molecular viscosity 

p  pressure ρ  density 

R2  correlation coefficient σr  relaxation coefficient 

r  growth ratio τij  turbulent stress tensor 

1. Introduction  
Until recently, two-dimensional (2D) depth-integrated numerical models, solving mild slope (Berkhoff, 1982), 
shallow water (Saint Venant, 1871) or Boussinesq (Boussinesq, 1872) equations were generally used to 
support engineering applications with respect to wave transformation over uneven bathymetries and 
interaction with coastal structures (Galland et al., 1991; Wei and Kirby, 1995), while the use of three-
dimensional (3D) Navier–Stokes models was usually restricted to research studies (Christensen, 2006; 
Watanabe et al., 2005). After decades of development, 2D depth-integrated models are fast, relatively 
accurate and reliable; however, their accuracy in predicting wave breaking, run-up and wave loading is 
limited, owing to the fact that they use simplifying assumptions to describe the variation of the flow along the 
depth in the surf and the swash zone and they do not simulate the air phase, which is critical for the accurate 
prediction of plunging breaking, wave overtopping and wave loading.  

With the progress in computer technology, the computational cost associated with performing and post-
processing 3D simulations has become affordable for engineering-related problems. In addition, the 
development of open-source computational fluid dynamics (CFD) software with advanced meshing and 
computational capabilities, such as OpenFOAM® has promoted the use of fully 3D CFD models for 
engineering applications. Two-phase (air/water) 3D CFD models present several advantages in modelling 
coastal flows, as they are capable of simulating the complex free-surface dynamics pertaining to wave 
transformation in the surf and the swash zone, without requiring complex boundary conditions for modelling 
free-surface overturning, air entrainment and shoreline motion. Examples of modelling the two-phase, 3D 
nearshore flow induced by wave propagation and interaction with bathymetries and structures are presented, 
among others, in the works of Hsiao and Lin (2010) and Higuera et al. (2013).  

In this paper, an OpenFOAM®-based numerical model is presented for applications in coastal engineering. 
The model uses the relaxation zone method for wave generation and absorption (Jacobsen et al., 2012; 
Mayer et al., 1998) and it is developed, validated and optimised for coastal and hydraulic engineering 
applications ( HR Wallingford, 2013). In the current paper, part of this work is presented; the model is 
validated against some of the most classical benchmark test cases for the validation of numerical models for 
use in simulation of the dynamics of water waves, namely two cases of regular and solitary wave 
propagation (Berkhoff, 1982; Briggs et al., 1995; Ito and Tanimoto, 1972; Synolakis, 1986). It is also 
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demonstrated that the model is capable of generating and absorbing a tsunami from experimental or field 
surface elevation measurements, by simulating the benchmark case of Monai valley (Liu et al., 2008).  

2. Numerical model 
The numerical model presented here is based on the  OpenFOAM® open source modelling system 
(OpenFOAM® Foundation, 2013). The software development is sponsored by ESI-OpenCFD and released 
under the GNU general public license (version 3). OpenFOAM® comes with a built-in set of software libraries 
that enable it to simulate a variety of CFD cases. In this work, the software is used to numerically solve the 
3D, incompressible, immiscible, two-phase flow induced by wave propagation, transformation, breaking and 
run-up. 

2.1. Model formulation 
The model solves the 3D Navier–Stokes equations for two-phase incompressible motion. The mass and 
momentum conservation equations in differential form are shown in Equations 1 and 2, respectively. 

𝜕𝜌𝑢1
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑢1
𝜕𝑥𝑖

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

�𝜇 𝜕𝑢𝑖
𝜕𝑥𝑗
� +

𝜕Τ𝑖𝑗
𝜕𝑥𝑗

 (1) 

𝜕𝑢𝑗
𝜕𝑥𝑗

= 0 (2) 

where t is the time, xi are the Cartesian coordinates, ui are the velocity components, r is the density, μ is the 
dynamic molecular viscosity, p is the pressure and τij is the turbulent stress tensor. 

The stress tensor τij is defined according to the modelling approach for the turbulence. In this work, the large 
eddy simulation (LES) method is applied, where wave breaking is expected to occur. According to this 
method, turbulence is decomposed to large- and small-scale structures. Large-scale structures are directly 
resolved by the numerical solution of Equations 1 and 2, whereas small-scale effects are accounted for by a 
sub-grid scale (SGS) stress model. SGS stresses denote the transfer of momentum from large-scale to 
small-scale structures. The LES method and SGS stress models have been widely discussed in the 
literature; interested readers might refer, among others, to the work of Pope (2000). 

The free surface is simulated as an air–water interface and its motion is defined by Equation 3, according to 
the volume of fluid (VOF) method (Hirt and Nichols, 1981). 

𝜕𝑎
𝜕𝑡

+ 𝑢𝑗
𝜕𝑎
𝜕𝑥𝑗

= 0 (3) 

The volume fraction of water α varies from 1 (100% water) to 0 (100% air) and it is related to the density and 
the molecular viscosity according to Equation 4. 

(𝜇,𝜌) = 𝛼 ∙ (𝜇𝑤 ,𝜌𝑤) + (1 − 𝛼) ∙ (𝜌𝑎, 𝜇𝑎) (4) 

where subscripts ‘w’ and ‘a’ denote the water and the air phases, respectively. The values of ρ and μ for 
each phase considered here are: ρw = 1000 kg/m3, ρa = 1 kg/m3,μw = 0.001 Pa s and μs = 0.015 Pa s. In this 
work, no account is made of surface tension effects. 

The discretisation of Equations 1–3 is achieved through the finite-volume method. In this context, a mesh is 
generated and the flow equations are discretised to each internal cell of the mesh, in integral form. Boundary 
conditions are applied to specific surfaces of the mesh, which have been first characterised as boundary 
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patches. More information on various temporal and spatial discretisation schemes used by OpenFOAM® can 
be found in Jasak (1996). A detailed description of the numerical procedure used to resolve two-phase flows 
in the software is given in Rusche (2002). 

2.2. Meshing 
The generation of the model mesh is a critical stage of modelling with finite-volume schemes, as the quality 
of the results is  directly dependent on the quality of the mesh. In this work, the built-in tools for OpenFOAM®, 
blockMesh and snappyHexMesh meshing tools are utilised. 

The tool blockMesh is elementary for generating simple structured meshes with hexahedral cells. For 
engineering applications, a structured mesh is often not capable of reproducing all the geometry features of 
the problem. In OpenFOAM®, an unstructured mesh can be derived from a structured mesh, using the tool 
snappyHexMesh. The tool can fit a realistic geometry to a structured mesh, first by rearranging shape of the 
neighbouring cells to follow the geometry and then by removing the part of the mesh which is unnecessary. 
More information for both meshing tools is available in the software user guide (OpenFOAM® Foundation, 
2013). 

In this work, one 2D and four 3D meshes are used to simulate the validation cases presented in the next 
sections. A summary of the properties of these meshes is presented in Table 1, along with typical 
computational times for parallel execution on 12 central processing unit (CPU) cores. The mesh of the Monai 
valley case is also presented in Figure 1, as an example of mesh generation with snappyHexMesh. 

2.3. Wave generation and absorption 
Wave generation and absorption are achieved through the relaxation method, originally proposed by Mayer 
et al. (1998) and first implemented in OpenFOAM® by Jacobsen et al. (2012). The present model uses a 
version of the relaxation method that is optimised for engineering applications ( HR Wallingford, 2013). 

According to the method, the target boundary condition for the velocity and the volume fraction is relaxed to 
the numerical solution with the utilisation of a weighting average operation. This operation is applied in a 
domain of the mesh called ‘relaxation zone’. The relaxation zone is usually adjacent to boundaries that 
represent inlets or outlets. The operation is described in Equation 5. 

(𝛼,𝑢𝑖)  =  (α,𝑢𝑖)𝐵𝜎𝑟 + (𝜎,𝑢𝑖)𝑁(1 − 𝜎𝑟) (5) 

The value of relaxation coefficient σr is 1 at the boundary, 0 at the end of the relaxation zone and varies 
according to an exponential relation (Jacobsen et al., 2012). Indices ‘B’ and ‘N’ denote the calculation of field 
variables (here a and ui) from the boundary conditions or the internal flow equations, respectively. 

Depending on the purpose of the relaxation zone (generation or absorption of waves), it is named either 
‘generation/absorption zone’ or ‘absorption zone’. Wave generation is achieved from known velocity and 
free-surface elevation profiles. The velocity profile is directly forced in Equation 5, while the free-surface 
elevation value is used to define the volume fraction distribution at the boundary (a = 1 below the free 
surface and a = 0 above). Wave absorption is achieved by forcing zero velocities and a volume fraction 
distribution that corresponds to the local still water level. 
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Figure 1 3D mesh used in Monai valley simulation case. For better visualisation, mesh refinement is 
shown in 2D surfaces (lateral and bottom boundaries) 

 

Table 1 Mesh properties and typical computational times for all simulation cases 

 Typical cell size: m 
Mesh 
size: 

number 
of 

cells 

Typical 
computational 

time on 12 
CPU cores: h 

Typical 
computational 

time per 
simulation 

time on 12 CPU 
cores: h/s 

Δx1 
(horizontal) 

Δx2 
(vertical) 

Δx3 
(horizontal) 

Ito and Tanimoto (1972) shoal 0.004 0.004 0.004 2 × 107 ~36 ~3.0 

Berkhoff (1982) shoal 0.014 0.018–0.036 0.036 1.3 × 106 ~24 ~0.4 

Two-dimensional solitary wave 
run-up (Synolakis, 1986) 

0.025 0.003–0.025 - 1.8 × 105 ~2 ~0.1 

Run-up at conical island 
(Briggs et al., 1995) 

0.04 0.005-0.04 0.04 6 ×106 ~24 ~1.4 

Monai valley case (Liu et al., 
2008) 

0.052 0.005 0.05 1.7 × 105 ~4 ~0.02 

 

The relaxation method enables the generation/absorption zone to work as an absorbing numerical 
wavemaker, leaving the incident wave conditions unaffected by waves reflected in the domain ( 
HR Wallingford, 2013). The relaxation method is also very efficient in absorbing waves, allowing less than 
0.1% of the wave energy to reflect from the outflow boundary ( HR Wallingford, 2013). 
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2.4. Boundary conditions 
In addition to the relaxation method for wave generation/ absorption, the following boundary conditions are 
used in the simulations. 

 At solid walls, the free-slip boundary condition is used, as defined in Equations 6–8, in terms of pressure, 
velocity and volume fraction. 
𝑢𝑛 = 0 (6) 
 
𝜕𝑝
𝜕𝒏

= 0 (7) 

 
𝜕𝛼
𝜕𝒏

= 0 (8) 

where un is the velocity component normal to the boundary and n is the unit normal vector. Equation 5 
implies that the boundary layers close to walls are not resolved; this simplification is made to avoid the 
additional computational cost for resolving the oscillatory boundary layer at the bottom, as it is not 
significant for wave propagation and shoaling. 

 At the atmosphere boundary, the pressure head is equal to the atmospheric pressure, which is set to 
zero (Equation 9). 
𝑝 + 1

2
𝑢𝑗𝑢𝑗 = 𝑃𝑎𝑡𝑚 = 0  (10) 

 
Additionally, an inflow/outflow condition is imposed, by forcing zero gradients conditions for uj and α, 
according to Equations 10 and 11, respectively. 

𝑢𝑡 = 0, 𝜕𝑢𝑛
𝜕𝒏

= 0 for un < 0 and 𝜕𝑢𝑖
𝜕𝒏

 for un > 0 (11) 

 

α = 0 for un < 0 and  𝜕𝛼
𝜕𝒏

= 0 for un > 0 (12) 

where ut is the velocity component tangential to the boundary. The physical meaning of the conditions 
above is that water and air are allowed to leave the atmosphere boundary, but only air is allowed into the 
domain, flowing perpendicularly to the boundary. 

 At planes where the geometry and the flow are symmetric, a symmetric flow boundary condition is used. 
For the cases simulated here, this condition works as the free-slip wall (Equations 6–8). 

3. Validation for regular waves 
In this section, the model is validated for 3D wave transformation of regular waves (shoaling and refraction) 
that propagate over bathymetries with shoals. Two cases that correspond to well known experiments 
(Berkhoff, 1982; Ito and Tanimoto, 1972) are modelled. 

3.1. Ito and Tanimoto (1972) shoal 
Ito and Tanimoto (1972) studied wave shoaling, refraction and ray intersection over a shoal by performing a 
physical model. The shoal is a spherical volume with concentric, circular, bathymetry contours, mounted on a 
flat bottom. In this work, the experiment is numerically reproduced using a 3D flow domain. The bathymetry 
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and longitudinal sections of the domain are shown in Ito and Tanimoto (1972). The bathymetry and the wave 
propagation are symmetric, so half of the domain is considered, with a symmetry plane added at the middle 
of the domain and parallel to the wave propagation direction. 

The operative length of the flow domain is 4.4 m and the half-width is 1.2 m. The generation/absorption zone 
and the absorption zone are 0.4 m and 0.8 m long respectively, extending at the full width of the domain. 
Apart from the shoal, the bathymetry is flat, with depth d = 0.15 m. The projection of the shoal to the bottom 
is a circle, with radius 0.8 m and the depth at the tip of the shoal is 0.05 m. Surfaces considered as fixed 
walls (bottom, outlet, side wall opposite to AA′) are assigned to a free-slip boundary condition 
(Equations 6-8). The atmosphere is modelled according to Equations 9–11. A symmetric flow boundary 
condition is imposed at the AA′ plane. A regular wave condition is generated at the inflow boundary, with 
nominal wave height H0 = 0.0104, wave period T = 0.51 s and wavelength λ = 0.4 m. 

An unstructured mesh is generated, with characteristic cell sizes Δx1 = Δx2 = Δx3 = 0.004 m at the 
generation/absorption zone and the bathymetry domain. Cell size Δx1 increases in the absorption zone with 
growth ratio r = 1.1: This mesh configuration reduces the computational cost associated with wave 
absorption by about 90%, keeping the same efficiency ( HR Wallingford, 2013). The mesh size is about 20 
million cells. 

The domain is initialised with zero velocity and still water level. The simulation needs about 1.5 d to run for 
12.5 s of model time, in parallel execution (12 CPU cores, 2.6 GHz each). A 3D snapshot of the free surface 
at t ¼ 10 s is presented in Figure 2 (top) showing a greyscale map of the free-surface elevation, as the wave 
propagates over the spherical shoal. The complete domain is reconstructed by mirroring the two symmetric 
halves. It is observed that the wave amplitude increases and the wave crests are refracted as they 
propagate above the shoal. The model also predicts the wave ray intersection occurring at the shadow of the 
shoal, due to wave refraction at both sides, which eventually leads to a short-crested free-surface pattern 
behind the shoal. 

The free-surface elevation is monitored along the cross-sections aa′ and bb′ (Figure 2(a)), by placing 
numerical wave probes every 0.1 m. The probes calculate the free-surface elevation by integrating the 
volume fraction a over a vertical column. The mean zero-crossing wave height is calculated at each location 
and it is normalised with the average incident wave height (Hi) at the end of the generation/absorption zone. 

The numerical predictions at these two sections are compared against physical model data in Figure 2(b). 
The numerical model is capturing satisfactorily the trend of the distribution and it is very close to the 
experimental predictions for the wave height values at the central area, at the shadow of the shoal. Away 
from this central area, there are some discrepancies, possibly because the boundary conditions are not 
completely representative of the actual experimental configuration. The error is estimated in terms of relative 
difference from the experimental data using Equation 12. 

𝑒 = 1
𝑛
∑ �𝐻𝑛𝑢𝑚−𝐻𝑒𝑥𝑝

𝐻1
�
2
 (12) 

where Hnum and Hexp are the numerically and experimentally predicted wave height and N is the number of 
wave probes. According to Equation 3, the relative difference is 3% of Hi. 
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(a) 

 
(b) 

Figure 2  (a) Free-surface elevation map at t ¼ 9 s. Dark grey corresponds to wave crests, light grey to wave 
troughs and solid lines to zero free-surface elevation. (b) Wave height distribution at sections aa′ and bb′, 
shown in part (a). Symbols correspond to experimental data and solid lines to the numerical model output 
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3.2. Berkhoff (1982) shoal 
A physical model of regular waves propagating over an elliptical shoal, placed on a constant-slope beach, 
was performed by Berkhoff (1982). The aim of the experiment was to study wave shoaling, refraction and ray 
intersection, as well as to provide benchmark data for numerical models. The experiment is numerically 
reproduced using a 3D computational domain. A plan view and a longitudinal section of the bathymetry are 
shown in Figure 3.  

The operative length of the domain is 25 m and the width is 20 m. The generation/absorption zone and the 
absorption zone are 1.5 m and 3 m long, respectively. The bathymetry consists of a constant-slope beach 
(tan β = 1/50) and an elliptical shoal, with major and minor diameters of 4 m and 3 m, respectively. The 
centre of the ellipse is located 13 m from the end of the generation/absorption zone. The slope and the 
elliptical shoal are rotated 20° with respect to the wave propagation direction (x1 axis). The water depth at the 
beginning of the slope is 0.45 m and 0.125 m at the tip of the shoal. Wave run-up is not modelled, as it is 
assumed not to affect wave shoaling and refraction; therefore, the domain was truncated at 0.1 m and the 
absorption zone was attached at this depth.  

The fixed walls of the domain (bottom, outlet and side walls) are modelled as free-slip walls, according to 
Equations 6–8. At the atmosphere boundary, the flow is governed by Equations 9–11. A regular wave 
condition is generated at the inflow boundary, with nominal wave height H0 = 0.0232 m, wave period T = 1 s 
and wavelength λ = 1.5 m.  

An unstructured mesh is generated, with characteristic cell sizes Δx1 = 0.014 m and Δx3 = 0.036 m, parallel 
and normal to the propagation direction, respectively. In the vertical direction, Δx2 is more refined (0.018 m) 
at an area extending 0.03 m at both sides from the still water level, while Δx2 is larger outside this area 
(0.036 m). The absorption zone mesh is configured similarly to the previous case, to minimise the 
computational cost. 
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The domain is initialised with zero velocities and still water level. The simulation needs about a day to run for 
68 s of model time, in parallel execution (12 CPU cores, 2.6 GHz each). A dense grid wave probe is located 
over and behind the shoal, with spacing 0.1 m × 0.1 m. The grid extends from 5 m upstream of the shoal, 
until the bathymetric contour of 0.1 m, occupying the full width of the domain. The mean wave height at 
every probe location is calculated from the free-surface elevation time series, using zero-crossing analysis. 

A map of the wave height in greyscale is presented in Figure 4(a), showing the distribution of the normalised 
wave height (H / Hi). Behind the shoal, the wave height is increased, reaching about two times the incident 
wave height and denoting an area of wave focusing. At either side of the wave focusing area, wave height is 
sharply reduced to almost zero, thus reflecting the existence of two amphidromical points (Berkhoff, 1982). 
The wave height patterns behind the shoal are not symmetrical with respect to the wave propagation 
direction, due to the wave crest refraction at the beach slope.  

 

Figure 3  Elliptical shoal mounted on a constant slope (Berkhoff, 1982), with generation and absorption 
zones, plan view (top) and longitudinal section (bottom). All dimensions are in m 
 

The wave height along two cross-sections (aa′ and bb′ in Figure 4(a)) is compared with experimental 
measurements and a mild-slope equation model (Panchang et al., 1991) in Figure 4(b). It is observed that 
the present model compares very well with both experimental data and the mild-slope equation model of 
Panchang et al. (1991). The relative differences are calculated according to Equation 12, and it is 2% at 
section aa′ and 4% at section bb′, whereas for Panchang et al. (1991) the relative differences are 2% and 
5%, respectively. 
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Figure 4  a) Wave height map behind the shoal. (b) Wave height distribution at sections aa′ and bb′, as 
shown in part (a). Circular symbols correspond to experimental data, solid lines to the numerical model 
output and dotted lines to Panchang et al. (1991) 
 

4. Tsunami run-up 
In this section, the numerical model is used to simulate the processes associated with tsunami propagation 
and run-up. The first case corresponds to the propagation, transformation and run-up of a solitary wave at a 
constant-slope beach (Synolakis, 1986). The second case corresponds to the study of solitary wave run-up 
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at a conical island bathymetry (Briggs et al., 1995). The third case corresponds to a real-case scenario: the 
study of run-up at the shoreline of Monai valley, at Okushiri island, during the Hokkaido–Nansei–Oki tsunami 
of 1993 (Liu et al., 2008). 

4.1. Solitary wave run-up at a simple beach 
In this section, the solitary wave shoaling, breaking and run-up on a 2D, constant-slope beach 
(tan β = 1/19⋅85) is modelled. Two conditions are modelled that correspond to a non-breaking (H/d = 0.0185) 
and a breaking (H/d = 0.3) solitary wave. An analytical solution exists for the first condition, while 
experimental data are available for both (Synolakis, 1986).  

The operative length of the numerical wave flume is 34.85 m and the water depth is 1 m. A 5 m long 
generation/absorption zone with a flat bottom is introduced at the beginning of the domain that extends the 
numerical domain to a total length of 39.85 m. The slope starts at 19.85 m from the initial shoreline and 
extends 10 m further shoreward.  

The free-slip wall condition is used at the bottom (Equations 6– 8) and the flow in the atmosphere boundary 
is governed by Equations 9–11. The two solitary wave conditions are generated by using first-order theory 
and the domain is initialised with the crest of the solitary wave located 24.85 m away from the initial shoreline 
position. At the second condition, the LES method is used for modelling wave breaking. While LES is not 
strictly applicable in 2D flow simulations, it has been successfully used to predict wave breaking in 2D 
numerical flumes (Dimakopoulos and Dimas, 2008; Hieu et al., 2006). In this case, the turbulent momentum 
transfer is modelled with a Smagorinsky SGS model (Smagorinsky, 1963) with coefficient Cs ¼ 0.094 
(Deardorff, 1970).  

A structured mesh is generated, with constant characteristic cell size in the direction of the propagation 
(Δx1 = 0.025 m). In the vertical direction, the number of cells in the vertical is constant with Δx2 linearly 
varying from 0.025 m at the generation zone to 0.003 m at the end of the slope. The size of the mesh is 
about 180 000 cells. The non-breaking (H/d = 0.0185) and breaking (H/d = 0.3) cases were run for 30 s and 
10 s of model time, respectively. Both cases need about 2 h to complete on 12 CPU cores.  

A sequence of snapshots of the free-surface elevation for the first condition (H/d = 0.0185) is presented in 
Figure 5, showing the shoaling, run-up and run-down of the solitary wave. The free surface profiles are 
compared with experimental data and the analytical solution from Synolakis (1986). The comparison reveals 
a good agreement between the numerical results and both the experimental data and the analytical solution. 
In instances where the experimental data and the analytical solution differ, the two-phase flow numerical 
model matches the former better. A similar sequence of snapshots is presented in Figure 6, showing the 
free-surface evolution of the solitary wave with H/d = 0.3. The comparison with the experimental data shows 
that the numerical model captures well the dynamics of shoaling, breaking and run-up. 

4.2. Solitary wave run-up at a conical island 
The well-known experimental study of solitary wave run-up at a conical island, performed in Briggs et al. 
(1995), is numerically reproduced. The geometry of the physical model is numerically represented as shown 
in Figure 7. The island is a frustum of a cone, with base diameter 7.2 m, height 0.625 m and beach slope of 
1/4, mounted on a flat bathymetry. The solitary wave propagates over the bathymetry, until it strikes the 
island, which is located at the centre of the basin. The flow field is expected to be symmetric with respect to 
the plane AA′, therefore only the half domain is modelled, as shown in Figure 7.  
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The operative length of the domain is 25.3 m and the half-width is 13.6 m. The length of the 
generation/absorption zone is 4 m and the water depth is 0.32 m. The fixed walls at the domain are modelled 
as free-slip walls (bottom, island, outlet and side wall opposite to AA′), according to Equations 6–8. The flow 
entering and exiting through the atmosphere boundary is governed by Equations 9–11. A symmetric flow 
condition is imposed at the plane AA′ (Figure 7). 

 

 

Figure 5  Free-surface elevation snapshots of a non-breaking solitary wave (H=d ¼ 0.0185) running up at a 
constant slope beach, for consecutive time instants (𝑡 ∗= 𝑡�𝒈/𝑑). Solid line corresponds to numerical model 
results, whereas dashed lines and cross symbols correspond to analytical predictions and measurements by 
Synolakis (1986) 
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Figure 6  Free-surface elevation snapshots of a breaking solitary wave (H/d = 0.3) running up at a constant 
slope beach, for consecutive time instants (𝑡 ∗= 𝑡�𝒈/𝑑). Solid line corresponds to numerical model results 
and symbols correspond to measurements from Synolakis (1986) 
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Figure 7  Conical island bathymetry (Briggs et al., 1995), with generation and absorption zones: (a) plan view 
and (b) longitudinal section. The locations of wave probes PG1 to PG4 are also shown.  All dimensions are 
in m 

 

The tsunami is approximated by a first-order solitary wave, with height H = 0.058 m and height-to-depth ratio 
H/d = 0.181. A turbulence modelling approach based on the LES method is applied as in Section 4.1. Again, 
the LES method is not strictly compatible with the symmetry plane condition, as the condition does not 
represent a fully 3D flow; however, as discussed in Section 4.1, 2D SGS stress models produce good 
predictions for breaking waves in 2D flow conditions. 

An unstructured mesh is generated, with characteristic horizontal cell sizes Δx1 = Δx3 = 0.04 m parallel and 
normal to the propagation direction, respectively. In the vertical direction, Δx2 is smaller (0.005 m) within an 
area extending up to 0.06 m from the still water level and more relaxed (0.04 m) outside. The size of the 
mesh is about 6 million cells. The simulation needs about a day to run for 17 s of model time, in parallel 
execution (12 CPU cores, 2.6 GHz). This experiment was also numerically reproduced with a Boussinesq 
model (Chen et al., 2000) and a shallow water equation model (Titov and Synolakis, 1998) and another 
OpenFOAM®-based model (Higuera et al., 2013), but the latter considered a different modelling set-up 
(active absorbing numerical wave maker, no-slip walls, k - є and k - ω models for turbulence).  

Experimental measurements of the free-surface elevation are available at locations indicated in Figure 7 
(PG1–PG4). Four wave probes are placed at corresponding locations within the computational domain and 
the comparison between physical and numerical model results is shown in Figure 8. The results are also 
compared with the numerical models mentioned above.  

The present model captures very well the shape and the amplitude of the wave, at each probe location. 
There is a slight delay in the arrival of the wave, suggesting some dispersion errors. The model performs 
better than depth-integrated models (Chen et al., 2000; Titov and Synolakis, 1998), especially at the back of 
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the island (PG4), where the prediction of the wave evolution is a demanding task. Comparison with a 3D 
model (Higuera et al., 2013) also shows that the present modelling approach is more efficient for capturing 
the evolution of the free surface at the back of the island (probe PG4). 

 

 

 

 

Figure 8  Surface elevation evolution at (a) PG1; (b) 
PG2; (c) PG3; (d) PG4. The solid line corresponds to 
the present numerical model, dashed, dotted and dot-
dashed line to Titov and Synolakis (1998), Chen et al. 
(2000) and Higuera et al. (2013), respectively, while 
circles correspond to experimental data from Briggs et 
al. (1995). All time series are synchronised at PG1 

Figure 9  Maximum wave run-up chart at the 
perimeter of the conical island. The thin dashed line 
corresponds to the still water level. Circles 
correspond to the experimental data, solid line to 
the present numerical model and dot-dashed line 
corresponds to results from Higuera et al. (2013) 

 

The measurement of wave run-up at a conical island is achieved with a data acquisition set-up that 
corresponds to the experimental configuration. An array of 24 inclined wave probes is placed at the 
perimeter of the island. The array is more densely arranged at the lee side of the island to increase the 
measurement resolution, as the refraction of the solitary wave creates a sharp run-up pattern at the 
shoreline. For defining maximum run-up, mesh cells at the shoreline are considered completely inundated 
when a . 0.1 (10% water).  
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The maximum wave run-up predicted from the numerical model is shown in Figure 9, in comparison with 
experimental data and results from Higuera et al. (2013). The comparison reveals very good agreement 
between the physical and the present numerical model, with the latter having less than 10% average 
difference in run-up predictions from the physical model. Run-up predictions from Higuera et al. (2013) show 
a very similar trend with the present numerical model. 

4.3. Tsunami run-up at Monai valley 
The physical model of this case was constructed in a 205 m long, 6 m deep and 3.5 m wide flume, in 1/400 
scale (Liu et al., 2008). A 3D view of the Monai valley bathymetry is shown in Figure 10. The bathymetry is 
relatively steep and there is an island in front of the shore that rises about 20 m above the sea level (0.05 m 
in model scale). Three wave probes are placed at the positions shown in Figure 10 (gauges 1, 2 and 3), to 
measure the tsunami run-up, as it strikes the shoreline. 

The numerical model is configured to represent the physical model and not the real bathymetry, thus all 
dimensions are in model scale. The length and the width of the bathymetry domain are 5.5 m and 3.4 m, 
respectively. The generation/absorption zone is added by truncating the bathymetry at 0.13 m below the sea 
level and merging a flat bottom at this level. 

Two configurations of the generation/absorption zone are used, with lengths 0.5 m and 5 m, respectively. 
The longer generation/ absorption zone is used to assess the capability of the model in absorbing the 
reflected tsunami at the shoreline. The free-surface profile of the generated tsunami corresponds to a 
leading depression N-wave (LDN) and it is reproduced from the physical model (Liu et al., 2008; NOAA, 
2014). This profile cannot be described by an analytical solution and it is reconstructed by a 14th-order 
polynomial, which approximates the actual profile with a correlation coefficient R2 > 0.99. 

Unlike the previous cases, the relaxation zone method was used to force only the free-surface elevation and 
not the velocities. In this case, the model by default assumes that the pressure driving the velocity field is 
hydrostatic and this assumption is reasonably close to reality. 

The remaining boundaries are configured similarly to previous cases: Equations 9–12 govern the flow at the 
atmosphere boundary, while free-slip conditions are imposed at solid walls. A relatively coarse, unstructured 
mesh is used, having a size of bout 170 000 cells in both cases. Characteristic cell sizes along and normal to 
wave propagation (Δx1 and Δx3) are 0.05 m. In the vertical direction, the characteristic size is Δx2 = 0.005 m 
at a distance of 0.035 m from the still water level and Δx2 ¼ 0.05 outside this region. For the shorter 
=generation/absorption zone case, mesh refinement is the same as stated above. To maintain the same 
mesh size for the longer generation/absorption zone case, cell size x1 is increased with a constant ratio 
(about 1.1) in the generation/absorption zone, as the inflow boundary is approached. The domain was 
initialised with a still water level.  The simulation ran for 200 s of model time, as in the physical model, and it 
required 4 h to complete, while computing on 12 CPU cores (2.6 GHz). 

The free-surface elevation is measured at the three locations shown in Figure 10 and is compared with 
experimental data in Figure 11. In this figure, two regions can be distinguished: the first (t , 25 s) corresponds 
to the propagation of the generated tsunami and the second (t . 25 s) corresponds to the propagation of 
secondary waves that originate from the tsunami, as it reflects back from the upstream wall. 
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Figure 10  Figure 10. Monai valley bathymetry with 0.5 m long generation/absorption zone. The dashed line 
corresponds to the generation/absorption zone extension. Bathymetry contours correspond to 0.01 m 
increment (model scale) and the solid line contour corresponds to the initial position of the shoreline. The 
locations of gauges 1, 2 and 3 are also shown. All dimensions are in m. 

 

The first region is more important in terms of studying the tsunami impact on the shoreline. The elevation rise 
and the peak of the wave is preceded by a depression, which the numerical model captures as a trend at 
gauge 1, but not as clearly in gauge 2 and gauge 3. During the rise of the free-surface elevation to its peak, 
the numerical model responds very well: the shape of the profile is quite similar to the one measured in the 
lab, capturing also some secondary peaks at gauge 1 and gauge 2, while the maximum free-surface 
elevation is about 5% different from the physical model. In addition, the difference between the two cases 
(short and long generation/absorption zone) is not significant, confirming that the relaxation zone method is 
robust. 

In the second region, the experimental data show the secondary waves that reflect from the upstream 
boundary. During the duration of the test, five of these secondary waves appear (three are shown in 
Figure 11) and their amplitude is practically stable and about 30% of the maximum amplitude. In the 
numerical model with the shorter generation/absorption zone, there are about ten secondary waves 
appearing in the same duration (five shown in Figure 11), as the upstream boundary is located closer than 
the physical model. The secondary peak amplitude is about 20% of the maximum and it is decreasing to a 
very low value at the tenth secondary wave. 
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Figure 11  Free-surface elevation at (a) gauge 1; (b) gauge 2; (c) gauge 3. Dashed and solid lines 
correspond to the numerical model output for the shorter (0.5 m) and the longer (5 m) generation/absorption 
zone, respectively. Symbols correspond to experimental data from Liu et al. (2008) 

 

For the longer generation/absorption zone case, there is one secondary peak following the tsunami, which is 
smoother than the previous cases and its peak is about 20% of the maximum elevation observed. There are 
no secondary peaks following, as they are completely dissipated in the generation/absorption zone.  

To summarise the observations above, the numerical model is capable of generating a tsunami and 
predicting its transformation, as it impacts on the shoreline. The computational resources necessary to 
capture the important aspects of the flow evolution are acceptable, as the simulation can complete within 
reasonable time using a standard personal computer. The length of the generation/absorption zone is critical 
for absorbing the reflected tsunami and a longer generation/absorption zone could completely dissipate the 
secondary waves. This extension of the generation/absorption zone is made at no extra cost, by 
appropriately configuring the mesh refinement. Thus, it is possible to focus on a particular area of the 
shoreline and to allow more refinement on natural and man-made geometrical features close to the 
shoreline, without the model suffering from artificial reflection and sloshing effects. 
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5. Conclusion 
A 3D numerical model is presented, based in the OpenFOAM® CFD modelling system. The model is 
validated against experimental data for regular wave shoaling and refraction and for tsunami run-up.  

The model captures all the important processes occurring during regular wave propagation over 3D shoals 
and in particular the characteristic short-crested free-surface patter caused by the wave ray intersection 
behind the shoal.  

The study of a solitary wave run-up at a constant-slope beach and at a conical island reveals that the model 
is capable of simulating tsunami wave propagation, transformation and interaction with the coastline. The 
free-surface elevation evolution compares very well with experimental data. 

Finally, a 3D simulation of a real-case scenario is performed, studying the impact of the Hokkaido–Nansei–
Oki tsunami to the Monai valley shoreline. The model is capable of generating a tsunami from field or 
experimental measurements and adequately predicts its evolution over a real foreshore in a relatively short 
time for a 3D model (,4 h in 12 CPU cores); therefore, further mesh refinement to include the modelling of 
interaction with structures will not be prohibitive, in terms of computational resources. 

This work has been carried out at  HR Wallingford within the framework of the internal research project 
CAY0457. The authors wish to thank Dr Stephen Richardson and Se´bastien Bourban (HRWallingford) for 
supporting this work and Daniele Longo for his help during the set up of the simulations. 
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