Marine snow as vectors for microplastic transport: Multiple aggregation cycles account for the settling of buoyant microplastics to deep-sea sediments

Wu, N. and Grieve, S. and Manning, A.J. and Spencer, K. (2025) Marine snow as vectors for microplastic transport: Multiple aggregation cycles account for the settling of buoyant microplastics to deep-sea sediments. Limnology and Oceanography.

Full text not available from this repository.
Official URL: https://doi.org/10.1002/lno.12814

Abstract

Many studies have reported the paradoxical observation of high concentrations of low-density microplastics (plastic particles < 5 mm) in deep-sea sediments despite their buoyancy. The incorporation of buoyant microplastics into marine snow has been observed to enhance microplastic settling. Previous studies on the vertical movement of buoyant microplastics have been unable to theoretically account for these ocean observations and no study has comprehensively elucidated microplastic transport pathways in the ocean from the surface to seafloor. Here, we establish a one-dimensional theoretical model, that embraces key elements of the flocculation process, to explain how marine snow acts as a vector to transport buoyant microplastics to deep water and the ocean bottom. Microplastics reach the ocean floor through multiple cycles of aggregation, settling, and disaggregation between marine snow and microplastics. Each settling cycle results in a net settling of 200–400 m. We demonstrate that microplastics with different sizes show distinct vertical settling behaviors and only microplastics less than 100 μm in diameter can reach the ocean bottom. This theoretical model refines our ability to predict and understand the global and long-term fate, transport, and inventory of microplastics in the ocean interior, the influence of microplastics on the biological carbon pump and the efficacy of plastic management policies.

Item Type: Article
Additional Information: Early view. Open Access
Subjects: Maritime > General
Divisions: Maritime
Depositing User: Helen Stevenson
Date Deposited: 17 Feb 2025 11:50
Last Modified: 17 Feb 2025 11:50
URI: http://eprints.hrwallingford.com/id/eprint/1671

Actions (for site administrators only - login required)

View Item View Item