Persistent reshaping of cohesive sediment towards stable flocs by turbulence

Yu, M. and Mehta, A. and Manning, A.J. and Khan, F. and Balachandar, S. (2023) Persistent reshaping of cohesive sediment towards stable flocs by turbulence. Scientific Reports, 13.

Full text not available from this repository.
Official URL: https://doi.org/10.1038/s41598-023-28960-y

Abstract

Cohesive sediment forms flocs of various sizes and structures in the natural turbulent environment. Understanding flocculation is critical in accurately predicting sediment transport and biogeochemical cycles. In addition to aggregation and breakup, turbulence also reshapes flocs toward more stable structures. An Eulerian–Lagrangian framework has been implemented to investigate the effect of turbulence on flocculation by capturing the time-evolution of individual flocs. We have identified two floc reshaping mechanisms, namely breakage-regrowth and restructuring by hydrodynamic drag. Surface erosion is found to be the primary breakup mechanism for strong flocs, while fragile flocs tend to split into fragments of similar sizes. Aggregation of flocs of sizes comparable to or greater than the Kolmogorov scale is modulated by turbulence with lower aggregation efficiency. Our findings highlight the limiting effects of turbulence on both floc size and structure.

Item Type: Article
Uncontrolled Keywords: Open Access
Subjects: Maritime > General
Divisions: Maritime
Depositing User: Helen Stevenson
Date Deposited: 17 Aug 2023 13:30
Last Modified: 17 Aug 2023 13:30
URI: http://eprints.hrwallingford.com/id/eprint/1557

Actions (for site administrators only - login required)

View Item View Item